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Abstract

In the area of 3D shape analysis, research in mesh seg-
mentation has always been an important topic, as it is a fun-
damental low-level task which can be utilized in many ap-
plications including computer-aided design, computer an-
imation, biomedical applications and many other fields.
We define the automatic robust mesh segmentation (ARMS)
method in this paper, which 1) is invariant to isometric
transformation, 2) is insensitive to noise and deformation,
3) performs closely to human perception, 4) is efficient in
computation, and 5) is minimally dependent on prior knowl-
edge. In this work, we develop a new framework, namely
the Center-Shift, which discovers meaningful segments of
a 3D object by exploring the intrinsic geometric structure
encoded in the biharmonic kernel. Our Center-Shift frame-
work has three main steps: First, we construct a feature
space where every vertex on the mesh surface is associated
with the corresponding biharmonic kernel density function
value. Second, we apply the Center-Shift algorithm for ini-
tial segmentation. Third, the initial segmentation result is
refined through an efficient iterative process which leads to
visually salient segmentation of the shape. The performance
of this segmentation method is demonstrated through exten-
sive experiments on various sets of 3D shapes and different
types of noise and deformation. The experimental results
of 3D shape segmentation have shown better performance
of Center-Shift, compared to state-of-the-art segmentation
methods.

1. Introduction
1.1. Background

We have recently witnessed a booming growth in both
creation and utilization of the 3D mesh data, which has at-
tracted much interest across fields as diverse as engineer-
ing, biology, medicine, entertainment and so on [5, 6, 11,
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12, 14, 16, 9]. Fostered by the rapid advancement in 3D
data acquisition, conversion and visualization technologies,
the utilization of 3D mesh data is now easier than ever be-
fore. With limited or no domain knowledge, nowadays peo-
ple can easily create, search, browse and share 3D shape
data, as evidenced by the rapid growth of the Google 3D
warehouse. The ever-increasing amount of 3D mesh data
poses an even greater challenge for the researchers. Amid
all the research interests in this area, a fundamental low-
level task is the segmentation. The segmentation technique
is important because of its applicability towards potential
applications including basic manufacturing practice tools,
reverse engineering tools and preprocessing for advanced
geometrical applications such as innovative 3D model gen-
eration [4, 21].

The segmentation problem of 3D mesh is challenging
as the method is likely to encounter difficulties including:
articulation, incompletion, noise and deformations. More-
over, the segmentation should be as close to human per-
ception as possible. It is also preferable that the method
makes minimum assumptions about the object such as num-
ber of segments. In order to meet the above mentioned
requirements, it is desirable for a segmentation method to
be: 1) isometric transformation invariant, 2) noise and de-
formation insensitive, 3) computationally efficient, 4) re-
sult is perceptually consistent, and 5) demanding minimum
user input. We define Automatic Robust Mesh Segmen-
tation (ARMS) method as the segmentation method that
meets all these requirements such that it is the overarch-
ing goal of all segmentation methods. Compared to exist-
ing methods, ARMS is much more reliable for producing
meaningful segments and more informative. Hence ARMS
can enable diverse geometric applications including shape
retrieval, feature detection, skeleton extraction and mesh re-
finement.

1.2. Related work

Driven by continuing interest in this area, many meth-
ods have been proposed for 3D mesh segmentation [5, 11,
6, 12, 16]. While existing methods have shown potential for



approximating ARMS, some challenges still have not been
fully addressed. While a complete review of the literature
is beyond the scope of this article, we give a brief overview
to focus on closely related works. Interested readers are re-
ferred to recent surveys [1, 18, 5] for an extensive overview
of existing mesh segmentation methods.

The task of developing an ARMS method is non-trivial.
Methods that depend on local features are not robust against
noise due to not being aware of the global properties. In
[11], the authors develop an articulation invariant segmenta-
tion method based on a hierarchial presentation of the body
structure through core extraction. However, the segmenta-
tion is prone to instability as the feature points become un-
reliable under conditions of noise or deformation. The au-
thors in [19] propose a segmentation method utilizing vol-
ume in the neighborhood of a single vertex in order to give
a hierarchial segmentation, by solving the energy function
minimization problem. This method is also sensitive to per-
turbation of local properties.

Recent research initiatives have lead to the discovery
of methods that are more close to ARMS. The algorithms
based on diffusion metrics [16, 6, 12, 15, 8] are promis-
ing as they explore the intrinsic structure of the 3D mesh
by exploiting the rich yet implicit information encoded by
diffusion kernel. The authors in [16] develop a deforma-
tion invariant shape signature, namely the GPS, based on
eigenvalues and eigenfunctions of the Laplace-Beltrami op-
erator (denoted as the Laplacian henceforth). Since segmen-
tation is not the main focus of that work, it is achieved by
simply applying K-Means on the GPS signature. In [6],
the authors propose a hierarchial segmentation algorithm
using diffusion maps, which produces consistent segments
for articulated models. The authors in [6] adapts the dif-
fusion maps to achieve hierarchical segmentation of artic-
ulated shapes. Persistence-based segmentation is recently
introduced in [7]. While these methods can approximate
ARMS to some extent, some difficulties still remain as ev-
ident in various aspects including the segment number de-
termination, initial seeding and termination criteria.

1.3. Center-Shift for ARMS

We present the Center-Shift framework as our approach
towards ARMS. We introduce a novel function defined on
the mesh surface, the biharmonic kernel density function
(BDF), which captures the intrinsic geometric features of
the shape to a large extent. We define segment-exemplar as
a representative vertex that is associated with a mesh seg-
ment, as represented by the orange colored nodes shown
in Figure 1C and D. The Center-Shift algorithm is devised
to seek stable segment-exemplars on the mesh surface by
hunting maxima of the BDF’ feature space, in an automatic
and robust manner. We show the pipeline of our method in
Figure 1:
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1. Preprocessing

3. Refining through Perturbation

2. Initial Segmentation

Figure 1. Center-shift segmentation framework pipeline. Nodes
represent the segment-exemplars found during the Center-Shift
process (only the visible ones are shown).

1. Preprocessing Given 3D mesh data, BDF is com-
puted and mapped onto the mesh surface.

Initial Segmentation Center-shift is applied for pre-
liminary segment-exemplar detection and mesh seg-
mentation.

Refining through perturbation The candidate
segment-exemplars detected in the previous step
are merged through an effective perturbing-merging
iterative process. The segmentation result is updated
concurrently.

The contributions of this work towards Automatic Ro-
bust Mesh Segmentation (ARMS) method are: 1. We intro-
duce biharmonic kernel density function (B D F') for charac-
terizing the 3D shape. 2. A new approach (Center-Shift) for
the determination of segment number, detection of segment-
exemplars and formation of segments, all at the same time.
3. Extensive experiments on various datasets are carried out
for the validation of the proposed framework of 3D mesh
segmentation.

2. Method
2.1. Biharmonic kernel and biharmonic distance

In this section, we give a brief introduction to the bihar-
monic kernel and distance. Interested readers are referred
to [13, 17] for more details. We represent the 3D shape
as a graph G = (V, E, W), where V is the set of all ver-
tices, E is the set of all edges and W is the set of edge
weights (cotangent weight is used). Biharmonic kernel is
the Green’s function of the biharmonic differential equa-
tion, which can be formulated as:

 0i(2)di(y)

Blw,y)=) — 5 1)
i>0 v

Where B(z,y) denotes the biharmonic kernel value be-

tween points z and y, \; denotes the ith eigenvalue and ¢;



HDF
(t=0.1)

HDF
(t=1.0)

Figure 2. Comparison of biharmonic kernel density function (BDF’) and heat kernel density function (H DF') computed at different
diffusion times (¢t = 0.02, 0.1 and 1.0). Both front and back of the 3D hand model are color mapped according to the respective function
value distribution. Red color indicates high function value, blue color indicates low function value and other colors represent values in
between (logarithmic scaled). The isolines follow the distributions of function values.

denotes the ith eigenvector of the Laplacian. Consequently,
the biharmonic distance is introduced as a robust and accu-
rate distance measure on the mesh surface, which can be
formulated as:

D(z,y)* = g(x,2) + g(y,y) — 29(x,y) )

where D(x,y) denotes the biharmonic distance between
points x and y. The discrete construction of the biharmonic
kernel and distance are introduced in [13, 17]. Note that,
biharmonic kernel in this article refers to the global bihar-
monic kernel in the original work [17].

The advantage of the biharmonic kernel arises from the
the denominator \2, whereas the heat kernel has e~ *i¢. The
denominator balances the decaying rate of the normalized
eigenvalue (1/)? in this case). This allows the biharmonic
kernel to exploit local information and explore global prop-
erties of the 3D mesh surface at the same time. The bihar-
monic kernel is intrinsic, informative, robust and computa-
tionally efficient [17].

2.2. Biharmonic kernel density function

We define biharmonic kernel density function (BDF') on
the 3D mesh domain M, which is formulated as:

BDF(z) = {B(z,z)|z € M} 3)

where B is the biharmonic kernel matrix.

BDF provides a highly concise representation of the 3D
mesh without compromising loss of critical geometrical at-
tributes. The validity of BDF' is supported by the Informa-
tive Theorem proposed by Sun et. al. in [20]. According to
the theorem, the diagonal of the kernel matrix is almost as
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Figure 3. Robustness test of BDF'. Figure A and B demonstrate
the hand model used in Figure 2 with numerical noise and holes,
respectively. Figure C shows another hand model with very differ-
ent topological structure. BDF’ is insensitive to noise and defor-
mations, and is comparable on models with similar shape.

informative as the original kernel. The theorem holds under
the condition that the Laplacian has non-repeated eigenval-
ues, which is true throughout our test cases. As a result,
BDF naturally inherits many of the properties of the bi-
harmonic kernel, which makes it very lucrative for geomet-
ric applications. We demonstrate the properties of BDF
through two experiments:

Informative For the purpose of comparison, we define heat
kernel density function (H D F') as the counterpart of BDF
in the widely used heat kernel. In other words, H DF’ val-



ues correspond to the diagonal elements of heat kernel. We
compare BDF with HDF calculated at different diffusion
times as shown in Figure 2. It is observed that at small
time (¢ = 0.02), HDF is localized without global aware-
ness, evidenced by the presence of many local minima. At
alarger time (¢t = 0.1), H D F isolines become more shape-
aware as seen on the fingers, however still remain largely
localized as seen on the center of the hand. The H D F' iso-
lines appear to be similar to that of BDF' after heat has
explored the entire surface for a large time (¢ = 1.0). How-
ever, BDF' is more globally and locally aware than HDF,
as can be observed from the center of the hand: BDF' iso-
lines are denser than that of H D F' which indicates a better
parametrization of the shape. Also, BDF isolines are near
circles while H D F produces elliptical isolines.

Robust We regenerate the hand model used in Figure 2 with
numerical noises and holes, as shown in Figure 3A and 3B.
The distribution of BDF' values of the new models remain
largely unchanged comparing to the result in Figure 2. The
isolines follow the shape indifferently under the condition
of noise and holes.

Consistent We show BDF' of another hand model with
very different sampling and topological structure in Figure
3C. In spite of the differences in shape, the geometry fea-
tures captured by BDF' of the two hand models are highly
consistent. Note that BDF' value distribution of the new
hand model has an extra mode because the kernel intelli-
gently senses the extra wrist part. Other than that, the geom-
etry features captured by BDF' remain largely unaffected
throughout the rest of the mesh surface.

2.3. Center-shift Framework
2.3.1 BDF feature space

We define the BDF feature space where every vertex on
the mesh is associated with the corresponding B D F value.
As observed from the hand model in Figure 2, the distribu-
tion of BDF values on the mesh surface reveals the intrin-
sic structure of the model: The maxima are located at geo-
metrical salient points such as finger tips. The isolines lie
perpendicularly to the axis of individual part and follow the
shape intelligently. We learn from these observations that
the modes of BDF feature space can be suitably used as
segment-exemplars. Consequently, the clusters of vertices
can be delineated based on the structure of this multimode
distribution. The problem of mesh segmentation is naturally
converted to the clustering problem of assigning vertices to
the associated segment-exemplars, which correspond to the
modes of BDF feature space.

2.3.2 Center-Shift Algorithm

We hereby propose the Center-Shift algorithm for the detec-
tion of segment-exemplars by searching the modes of BD F'
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Figure 4. Center-shift applied on single vertex. The center figure
illustrates the process of Center-Shift of single vertex on a camel
mesh model (color mapped with BDF"). The orange colored node
and ring represent the starting vertex and its neighborhood. The
red colored nodes and rings represent the temporary centers and
their corresponding neighborhoods. The above depicted Center-
Shift process terminates after arriving at the termination vertex
(purple node on the tail). The lower left image shows the seg-
mentation result which contains 6 segments.

feature space, which describes the characteristic of vertices
on the mesh surface, analogous to Mean-Shift that explores
the gaussian feature space. Let G; denotes the neighbor-
hood of the ith vertex V;. G; is the set of all vertices that
are within a specified distance r from V;, where r is de-
noted as the neighborhood radius. The common practice of
using a universal parameter value for r is suboptimal as in-
dividual vertex’s property is overlooked. On the contrary,
we take an adaptive approach towards neighborhood con-
struction by considering the distance distribution from all
vertices to the given vertex. Our neighborhood radius com-
putation is given by:

r; = h-max{D(V;,V;)|j € M} 4
where h is denoted as the neighborhood threshold and
D(V;, V;) denotes the biharmonic distance between vertices
Vi and Vj. G; is then constructed based on 7.

We visualize the process of applying Center-Shift algo-
rithm on a vertex as in Figure 4. Starting from a vertex,
we calculate the weighted mean of its neighborhood using
coordinates weighted by BDF' values. Due to the nature
of this computation, one critical issue is that the weighted
mean may not be precisely on the mesh surface. We address
this problem by replacing the weighted mean with the clos-
est vertex on the mesh surface (denoted as the temporary
center). If the temporary center is the same as the starting
vertex, the process terminates as the starting vertex is al-
ready the barycenter of its own neighborhood weighted by



BDF. Otherwise, the above process is repeated by starting
from the temporary center. The vertex at which the iteration
ends is referred to the termination vertex and considered as
a potential segment-exemplar. The Center-Shift algorithm
approaches the mode of feature space, which is associated
with a potential segment-exemplar, by iteratively shifting
to regions of higher BDF'. The starting vertex is assigned
to the segment associated with the segment-exemplar de-
tected. The numerical implementation is described by Al-
gorithm 1.

Algorithm 1 CENTER-SHIFT (starting-verter)

1: > Given vertices number N, coordinates coord and bi-
harmonic distance matrix D
> G, represents the neighborhood of starting-vertex
weighted-mean
= Y. coord(i)BDF(i)/ >. BDF(i)

1€G sy 1€G sy

> find the closest vertex to weighted-mean

5: temporary-center
= arg min ||weighted-mean — coord(1)||
iEM
while D(temporary-center, starting-vertex)
> converge-threshold
and not reach maximum iteration number do
CENTER-SHIFT (temporary-center)
end while
termination-vertex = temporary-center
exemplar = termination-vertex
> return the termination vertex as a candidate segment-
exemplar
return exemplar

10:
11:

12:

2.3.3 Center-Shift driven mesh segmentation

We propose the following two-step mesh segmentation
method based on Center-Shift algorithm:

1. Initial segmentation We start with applying Center-Shift
algorithm on every vertex on the mesh. Each termination
vertex becomes a candidate segment-exemplar with the cor-
responding starting vertex being a member of its associated
segment. In this way, vertices are assigned to the same clus-
ter if they share the same termination vertex. However, the
above described segmentation method usually leads to over-
segmentation (as in Figure 1C) because the shifting process
is likely to be trapped by local maxima, especially under
condition of noise and deformation.

2. Refining through perturbation We overcome over-
segmentation by seeking stable segment-exemplars within
the candidates obtained in the previous step. To examine if
a candidate segment-exemplar is stable, we simply perturb
the candidate within its neighborhood and apply Center-
Shift on the perturbed vertex. The candidate segment-
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A K=6 B C K=4

Figure 5. Segment-exemplar detection and segmentation experi-
ment result. Figures in the first row illustrate the shapes color
mapped with BDF' along with the detected stable segment-
exemplars (orange colored nodes). The segmentation results are
shown in the second row. K denotes both the number of stable
segment-exemplars and segments.

exemplar is considered stable if it coincides with the new
segment-exemplar returned by Center-Shift. Otherwise the
candidate segment-exemplar is eliminated and its associ-
ated vertices are re-assigned to other segment-exemplars,
along with which the number of segments is reduced and
the segmentation result is refined. The above described pro-
cess is iterated for every candidate segment-exemplar till
convergence. Here convergence is defined as the state that
the segment-exemplars remain unchanged for a consecu-
tive number of iterations (denoted as stable iteration num-
ber). The remaining segment-exemplars are thus denoted
as stable segment-exemplars. This iteration process is com-
putationally efficient, as we only investigate the segment-
exemplars, whose number is orders of magnitude smaller
than IV and is being continuously reduced. Empirically, we
use stable iteration number 20. In addition, the refining pro-
cess largely reduces our dependence on the selection of the
neighborhood threshold & as the final set of stable segment-
exemplars are insensitive to the choice of parameter value
of h. We use a neighborhood threshold value around 0.1
throughout the tests. The implementation of the refinement
step is presented in Algorithm 2.

We show results of segment-exemplar detection and seg-
mentation in Figure 5. As shown in the figure, our algorithm
automatically determines the number of segments, detects
the segment-exemplars and produces perceptually consis-
tent segments across different types of 3D models.

3. Experiment Results

We demonstrate the performance of the Center-Shift seg-
mentation method through extensive experiments on var-
ious shape datasets and over types including articulation,



Algorithm 2 REFINEMENT
1: > Given the candidate segment-exemplars exemplars,
vertices number N and coordinates coord

2: while not converged and not reach maximum iterations
do

3: > Kis the number of elements in ezemplars
4:  create array perturbed-vertices of length K
5: fori=1to K do
6: perturbed-vertices(i) is a randomly chosen ver-
tex within G; other than exzemplars(z)
7: new-exemplars(i)
= CENTER-SHIFT(perturbed-vertices(i))
8: if new-exemplars(i) # exemplars(i) then
9: reassign vertices associated with ezemplars(i)
to the nearest new-exemplars
10: end if
11:  end for
12:  update exzemplars

13: end while
14: return exemplars

Figure 6. Segmentation results of articulated models. Group A and
B consist of armadillo and centaur models with various poses, re-
spectively. More examples of armadillo model with pose variation
can be found in Figure 7 and 8.

incompletion, noise, topological short-circuit and other de-
formations. The test data used in our experiments are from
TOSCA dataset [2], SHREC dataset [3] and Stanford seg-
mentation benchmark [5].

3.1. Consistency over articulation

In this experiment, we test the performance of Center-
Shift on models with articulation changes. We carry out
two sets of experiments on the armadillo models and the
centaur models, assuming only isometric transformation
among shapes within the same group. The segmentation
results are demonstrated in Figure 6, where we observe two
interesting results. First, within the same group, models
have the same number of segment (6 for group A and 9
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K=9 K=7 K=9 K=6

Figure 7. Segmentation results of incomplete models. Incomplete
models are shown by the right side of its original version. Black
colored circle denotes missing part. K denotes the number of seg-
ments.

Randomized

Center-Shift Cuts

Shape Diameter Core Extraction

K=6 K=16

K=9

K=7

Figure 8. Comparison with other segmentation methods. In this
figure, non-touching patches represent different segments regard-
less of the color.

for group B). The number of segments determined by our
method is consistent throughout the same group, without
prior knowledge of the group or individual shape. Second,
Center-Shift correctly segments the meaningful functional
components of the objects, such as tail and limbs. More-
over, the cuts between segments are consistent throughout
the same group of models. More examples of armadillo
models with pose variations can be found in Figure 7 and 8.
The segmentation results obtained by our method are both
consistent and visually salient for articulated shapes.

3.2. Consistent segmentation of incomplete shapes

We are also interested in the sensitivity of the segmenta-
tion method over incomplete shapes. Therefore, we apply
Center-Shift on a set of complete and incomplete models as
shown in Figure 7. For each group, the segmented incom-
plete model is displayed along with its original version. The
incompletions can be identified as body parts missing from
the original model such as claws of the armadillo and arms
of the octopus. The Center-Shift framework automatically



Figure 9. Noise and deformation model segmentation result. 8 different types of noisy and deformed models from the SHREC database
are tested, following the terminology of the original work: A. null, B. noise, C. hole, D. shot noise, E. sampling, F. topology (2 linkages),

G. topology(7 linkages), H. affine, I. scale.

determines the number of segments, without prior knowl-
edge of the incomplete model or reference to the complete
model. Notice that in Figure 7A, the algorithm correctly
identifies the incomplete left claw even a large portion of
it is missing, whereas the right claw is almost completely
absent and is thus not identified as a component. Figure
7C and D further demonstrate the performance of Center-
Shift when multiple parts are missing from to the origi-
nal model. Our method correctly predicts the number of
segments for the incomplete model regardless of the num-
ber of missing components. Moreover, the partitions of the
rest of the incomplete model are almost unaffected. In this
test, the same neighborhood threshold is used throughout
each group. Through the incompletion test, Center-Shift
is demonstrated to be consistent, part-aware, and operates
under minimum number of assumptions (the neighborhood
threshold in this work).

3.3. Insensitive to noise and deformation

We demonstrate the robustness of Center-Shift under
noise and deformation. The test dataset is a group of camel
models from the SHREC database. Our test results are
shown in Figure 9. In this figure, model A serves as a
reference for the test dataset, which itself retains the same
segmentation as the other camel model in Figure 4 regard-
less of their very different sampling and triangulation. Fig-
ure 9B, C and D demonstrate models with noise, holes and
shot noise, where the segmentation is unaffected from ob-
servation. Figure 9E shows model with ’sampling’ trans-
formation, which consists of only 626 vertices (approxi-
mately 25% of model A). The fact that the segmentation
of this highly simplified model is consistent with the refer-
ence model demonstrates the applicability of our algorithm
on sparse meshes. It is also shown that our method is insen-
sitive to topological changes as observed in Figure 9F and
G, where the topological structure is largely changed due
to the linkages. Model H has affine transformation. Un-
der the condition of transformed distance measure due to
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this severe non-isometric deformation, our method still cor-
rectly identifies geometrical features of the shape and deliv-
ers reasonable segmentation result. The segmentation also
persists for the scaled model H, which is larger than model
A. Throughout the robustness test, our segmentation results
are consistent both in segment number and the segmented
functional components. Our experimental results demon-
strate that Center-Shift is insensitive to noisy and deformed
models.

3.4. Comparison with other segmentation methods

We compare Center-Shift with other segmentation meth-
ods, including: Shape Diameter (SD) [19], Core Extraction
(CE) [11] and Randomized Cuts (RC) [10]. Readers can
find detailed review on these methods in [5]. As noted in the
review, both SD and CE predict number of segments while
RC is the best performer out of the 7 machine segmentation
methods reviewed. We reconstruct the segmentation result
of these methods from the Stanford Segmentation Bench-
mark data. As shown in Figure 8, segmentation results of
our method is the most consistent and perceptually accept-
able. The number of segments predicted by SD or CE are
not consistent for models from the same group as they use
local property of the mesh, which is unreliable. For RC, as
it requires input of number of segments, we use the result
that has the closest K as our estimation. As pointed out in
the original article, RC tends to produce unstable results for
symmetric models as it prefers one of multiple cuts that are
of similar costs (claw and leg). RC also requires the longest
computation time as reported in the survey [5].

4. Discussion and conclusion

In this work we develop a previously undescribed
Center-Shift framework as our approach towards Automatic
Robust Mesh Segmentation (ARMS). The Center-Shift ex-
plores the BDF feature space associated with the 3D mesh,
and accomplishes the tasks of the segment number deter-
mination, segment-exemplar detection and mesh segmen-



tation, all at the same time and with minimum user in-
put. The resulting segmentation is perceptually consistent
and insensitive to noise and deformation. However, we
note that Center-Shift should not be applied blindly. We
used the neighborhood threshold to control the scope of
neighborhood exploration. a larger threshold value enables
more global exploration of the shape structure and a smaller
threshold value leads to more exploitation of the local in-
formation. The Center-Shift framework is less dependent
on user selected values than other methods as the only pa-
rameter is the neighborhood threshold. The sensitivity to
this parameter is further diminished by the refining process
through perturbation. In the future, we will further explore
the optimal threshold value for exploring 3D shape in our
computational framework. Based on empirical results, the
Center-Shift prefers a threshold value that is not too small
that can be trapped in local maxima or too large that results
in under-segmentation, Our choice of threshold value per-
forms reasonably well throughout the experiments. In the
future, we will further explore the refinement of the cuts to
make our segmentation even more perceptually consistent.
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