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Developing an engineering shape benchmark for CAD models
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Abstract

Three-dimensional shape retrieval is a problem of current interest in several different fields, especially in the mechanical engineering domain.
There exists a large body of work in developing representations for 3D shapes. However, there has been limited work done in developing domain-
dependent benchmark databases for 3D shape searching. We propose a benchmark database for evaluating shape-based search methods relevant
to the mechanical engineering domain. Twelve different shape descriptors belonging to three categories, namely: (1) feature vector-based, (2)
histogram-based, and (3) view-based, are compared using the benchmark database. The main contributions of this paper are the development
of a new engineering shape benchmark and an understanding of the effectiveness of different shape representations for classes of engineering
parts. Overall, it was found that view-based representations yielded better retrieval results for a majority of shape classes, while no single method
performed best for all shape categories.
c© 2006 Published by Elsevier Ltd

Keywords: Shape search; Shape matching; Shape benchmarks; Shape databases; Engineering
1. Introduction

Shape-based retrieval of 3D data has applications in various
disciplines such as computer vision [1], artifact searching [2],
molecular biology [3], and chemistry [4]. The 3D shape
retrieval problem has been widely studied in computer vision
and computer graphics communities. Extensive reviews of
shape matching methods are available in [5–7,45]. Recently,
there has been a lot of interest in shape-based retrieval methods
for the mechanical engineering domain [8–17]. Even though a
number of shape representation methods are being developed
to address this problem, there has been limited effort [41,40] in
developing a standard dataset for the engineering domain which
can be used to benchmark various shape representations.

1.1. Engineering databases vs. multimedia databases

In the multimedia domain, the Princeton Shape Benchmark
(PSB) [20] has become the standard and is being widely used
for evaluating various shape representations. The shape repos-
itory at AIM@SHAPE (http://shapes.aim-at-shape.net/) [53]
also makes several 3D models available for researchers to com-
pare shape matching algorithms. However, the PSB and other
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multimedia datasets are not well suited for the engineering do-
main due to the following reasons:

1. Engineering shapes often have high genus and are
characterized by the presence of features such as holes,
tunnels, cavities, ribs, and helixes. The number of such
features and their relative positioning are important factors
in the resemblance of two shapes [34], unlike multimedia
where the overall shape is more important.

2. The 3D models presented in the PSB have a high
level of abstraction. For example, in the engineering
domain, airplanes and chairs will generally be considered as
assemblies of individual objects (or parts) rather than gross
3D shapes.

3. The PSB classifies models primarily on the basis of
function, and secondarily based on shape. Most objects
created in the multi-media domain can be classified into a
category such as “bed”, “tree” or “airplane”, purely based
on their nature or function; however, in the engineering
domain the existence of many varieties of semi-standard
and one-of-a-type components makes it impossible to give
names to objects or to classify them into different functional
categories. For example, beds with different geometric
shapes are placed in the same category in the PSB (see
Fig. 1) because of the similarity in their function. Similarly,
it is easy to see that dinosaurs and humans belong to different
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Fig. 1. Parts from the “Beds” category from the PSB [20].

(a) Parts with similar shape but different functions.

(b) Parts with different shape but same name — washer.

Fig. 2. Examples of parts with different forms and functions.

categories of shapes, but it is more difficult to characterize
the shapes in Fig. 2(a) into different categories.

4. The motivation for experiments with the PSB was only
related to multimedia objects. Shilane et al. [20] explicitly
removed all CAD objects from the PSB because their goal
was to avoid including domain-independent data.

Consequently, the evaluated shape descriptors may perform
differently on an engineering database compared to the
PSB. For example, structure-preserving representations in
multimedia such as shock graphs [35] and Reeb graphs [36,18,
21,37–39] are widely used and work well for multimedia shapes
of Genus-0, but issues related to the topological sensitivity of
Reeb graphs have been shown to result in significant number
of false positives in engineering databases [18]. Therefore it
is necessary to develop benchmark datasets of engineering
artifacts, so as to gain better insight into the performance of
various shape descriptors for engineering shape retrieval.

In related work, Bespalov et al. [41] provide several
classifications for engineering artifacts selected from the
National Design Repository (NDR) [11]. This benchmark
database consists of four datasets with a total of around 700
models. Among them two datasets, called the Actual Artifacts
Dataset (AAD) include: (1) a LEGO R©dataset (40 models)
and (2) a dataset of 180 models with real-world engineering
parts from the NDR. The second dataset consists of two
classifications — a functional classification (70 models) and
a manufacturing classification (110 models). In our study, we
have used both of these datasets, and will henceforth refer to
Table 1
Classification of models in AAD

Functional
classification

#
Models

Manufacturing
classification

# Models

Brackets 9 Machined 56
Gears 12 Cast-then-machined 54
Housings 6
Linkage arms 13 Total 110
Nuts 7
Screws and bolts 18
Springs 5

Total 70

Fig. 3. Shape representations and the elements of product design (adapted
from [52]).

them as the AAD datasets. Details of this dataset are provided
in Table 1.

1.2. Motivation for an engineering shape benchmark

It is well-known in engineering that product design is an
iterative process, and that the different aspects of product design
are interdependent. Fig. 3 presents the relationships between
various aspects of product design. The form of a product or
component includes shape, color, texture, product architecture,
and other factors related to the structure of the product [52].
Since shape representations try to approximate the form of
an artifact by capturing various shape features, our goal in
developing the engineering shape benchmark (ESB) was to
determine whether various shape representations have enough
shape content in them to discriminate between different forms
that we come across in the engineering domain.

For the engineering domain a primarily function-based
classification is difficult because parts with different functions
may have similar shape (see Fig. 2(a)) and vice versa [51].
For example, gimble rings are used in lighting fixtures for
‘fastening’; lock nuts are used primarily for ‘locking’, while
flanges are used for ‘connecting’ two components. Similarly,
the same washer shown in Fig. 2(a) may be used for fastening
or thermal insulation depending on where it is used and its
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Fig. 4. Similar parts bearing different names (adapted from [51]).

material properties. One cannot always explicitly state the
function of an engineering component purely based on its
shape. As a result, designing a function-based classification
for the engineering domain using 3D shape representations is
a challenge. The AAD functional dataset provides one such
classification. However, depending on the requirements of the
application, several different classifications are possible for
the same set of 3D models. Although all the parts in Fig. 4
(e.g. Disc Pin, Stud, Axle, etc.) are similar in shape, they
are given different names depending on context or function.
Gombinski [51] suggests that a classification system based
on design features is more objective and will make the
classification immune to interpretation. Shape-based search
systems in the engineering domain should aim to automate
appropriate aspects of this process, thereby eliminating
subjectivity from classification and retrieval. Similarly, the
AAD manufacturing classification dataset classifies artifacts
into two categories based on their manufacturing process.
However, advances in manufacturing processes and capabilities
often tend to blur the mapping between form and the
manufacturing method [32]. Increasingly complex shapes can
be manufactured in ways that were not thought possible
before. As a result, manufacturing classification is also an open
research challenge [41].

The classification of 3D models in the engineering shape
benchmark (ESB) is designed to overcome these problems. In
his classical paper on classification and coding, Gombinski [51]
provides an excellent review of the applications of component
classification based on shape features, especially in design
standardization, inventory control, production planning, and
cataloging. The motivation for using a primarily shape-based
classification in the ESB is that parts that are similar in their
form (a) are easy to modify and reuse in new designs, (b) may
have similar manufacturing processes, (c) provide additional
insight for design-analysis or manufacturing of similar forms,
and (d) can be outsourced to the same supplier.

The ESB dataset contains a total of 867 3D CAD models
classified into a number of shape classes. Since function-to-
form mapping is not one-to-one, the ESB database is classified
into ‘shape categories’ that are finer than functional categories,
i.e. parts within a category are markedly different in form from
parts in other categories. Hence, although there is no guarantee
that parts in the same category may have the same function or
manufacturing process, they share similar shape characteristics.

2. A 3D engineering shape benchmark (ESB)

This section describes the processes of acquiring 3D models
for the benchmark database, classification of 3D models and
evaluation of shape representations, described in Section 3.

2.1. Model acquisition

The 3D models in the database were acquired from a variety
of sources including the National Design Repository [29],
websites on the internet [30,31], and industry. In addition,
we have included many CAD models created by students in
the undergraduate design class at Purdue University. Large
commercial repositories of standard parts are also available
on the internet. However, one of the major difficulties in
building benchmark databases for engineering arises due to
the proprietary nature of many engineering designs and their
non-availability for public use. Hence we took special care to
include such non-standard parts in our collection. This ensures
that the 3D models in the ESB span a diverse set of shapes
with a significant number of real-world engineering artifacts.
We have provided these models for academic research and
encourage other researchers to use the ESB for testing new
shape matching methods. We will continue to add models to our
ESB to encompass a wider variety of shapes and periodically
update the existing benchmark.

Each 3D model in the ESB has CAD files in two
different neutral formats (STL and OBJ) and an associated
thumbnail image (JPG). Models from the ESB can be
downloaded along with a classification schema from our
website http://purdue.edu/shapelab. Ignoring some small
features during conversion from proprietary commercial
formats to neutral format led to the introduction of a few
duplicates in the ESB.

2.2. Model classification

Users of a shape-based search system are likely to search
a database of previous parts with some intent in mind. In
order to keep our benchmark database as general as possible,
we used the classification methodology developed by Swift
and Booker for the purposes of cost estimation and process
planning [32] for the base classification. The models for the
benchmark database were classified by six individuals unrelated
to this research, with varying degrees of training in Mechanical
Engineering. We provided these individuals with thumbnail
images of 3D models for classification. In case of uncertainty,
the respective 3D models were also provided.

Based on the Swift and Booker model, a total of 1391
3D models were initially partitioned into three super-classes,
namely:

http://purdue.edu/shapelab
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Table 2
Classification of models in ESB

Flat-thin wall components # Models Rectangular-cubic prism # Models Solids of revolution # Models

Backdoors 7 Bearing blocks 7 90 degree elbows 41
Bracket like parts 18 Contoured surfaces 5 Bearling like parts 20
Clips 4 Handles 18 Bolt like parts 53
Contact switches 8 L Blocks 7 Container like parts 10
Curved housings 9 Long machine elements 15 Cylindrical parts 43
Miscellaneous 12 Machined blocks 9 Discs 51
Rectangular housings 14 Machined plates 49 Flange like parts 15
Slender thin plates 12 Miscellaneous 21 Gear like parts 36
Thin plates 23 Motor bodies 7 Intersecting pipes 9

Prismatic stock 36 Long pins 58
Total 107 Rocker arms 10 Miscellaneous 33

Slender links 13 Non-90 degree elbows 8
Small machined blocks 12 Nuts 19
T shaped parts 15 Oil Pans 8
Think plates 12 Posts 11
Thick slotted plates 20 Pulley like parts 12
U shaped parts 25 Round change at end 21

Simple pipes 16
Total 281 Spoked wheels 15

Total 479
• Solids of revolution: Part envelope is largely a solid of
revolution

• Rectangular–cubic prism or prismatic: Part envelope is
largely a rectangular or cubic prism, and

• Thin-walled: Parts with thin-walled sections and shell-like
components.

Within each super-class, models were further classified
into clusters of similar shapes. A model was included in a
particular category only when the six individuals agreed upon
it. This classification process continued iteratively until all
the 1391 models were exhausted. Initially, a large number of
trivial models were removed. Of the remaining models, classes
containing less than 4 models which could not be grouped with
other classes were moved into the “Miscellaneous” class in the
ESB. The final classification consists of 801 models classified
into 42 categories of similar parts such as “Discs”, “T-shaped
parts” and “Bracket-like parts,” and 66 models classified into
three “Miscellaneous” classes, one in each super-class. A list
of super-classes along with their respective classes is shown in
Table 2. The naming of the classes has been made in such a way
to describe the general shape of parts in that class. The names
might have a functional meaning too but that is only incidental.

2.3. Evaluation methodology

We used standard evaluation procedures from information
retrieval, namely precision–recall curves and E-measure,
for evaluating the various shape representations. We also
retrieved models randomly to ensure that every shape
representation performed better than random retrievals (RDM).
Precision–recall (PR) curves describe the relationship between
precision and recall for an information retrieval method.
Precision is the ratio of the relevant models retrieved to the
retrieval size. Recall is the fraction of the relevant models
retrieved for a given retrieval size.
A perfect retrieval retrieves all relevant models consistently
at each recall level, producing a horizontal line at precision =

1.0. However, in practice, precision decreases with increasing
recall. The closer a PR curve tends to the horizontal line at
precision = 1.0, the better the information retrieval method.
We used standard techniques of constructing PR curves from
the NIST TREC standards [33].

In addition to the PR curves, we present the E-measure
for all the methods evaluated here. The E-measure [48,20]
provides a single value which describes the performance of
the retrieval for a given retrieval size. The user is usually most
interested in the first R matches, e.g. fitting onto the first result
page. The E-measure incorporates both the precision and recall
computed for a fixed number of top k matches:

E =
(b2

+ 1)

1
P +

b2

R

(1)

where b indicates the relative importance of precision and
recall.

We set b = 0.5 and calculate E-measures for a given
retrieval size R = 10 (or 20), i.e. we assume that 10 (or
20) thumbnail images representing the 3D models appear on
a result page. The value of b indicates the weight given to
precision and recall, respectively. By choosing a value of 0.5,
we are weighting the precision and recall equally. From the
above definitions, it follows that the E-measure can range
between 0 and 1, and that the higher the E-value, the better
the retrieval effectiveness. In our study, we calculated the E-
measures for different retrieval sizes.

In addition to the standard measures, we also quantified
the performance of shape representation methods with respect
to a base method (in our case, 3D shape distributions) as an
Average of Differences (AOD) [40]. Although this is not a
standard practice in information retrieval, we find that it gives
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relevant results in the context of this study. We calculated the
AOD between the precision values of 3D shape distributions
and the rest of the methods under investigation. This average
performance is expressed as a percentage of the performance of
the base method.

3. Shape representations

A comprehensive review of various shape representations
and search techniques for 3D shapes is available in [5–7]. Based
on the type of descriptor used, these methods can be classified
into three types [45]: Feature vector-based, histogram-based,
and graph-based. We create a separate class in the feature
vector-based methods called the view-based methods to help
us understand the results clearly. Feature vector (FV) based
representations use geometric transformations to obtain shape
characteristics while histogram-based representations obtain
statistics about angles and distance between points on the
surface of the 3D model to represent the global shape of 3D
objects. View-based representations obtain multiple 2D views
of the 3D object from different orientations and represent their
geometry using statistical or 2D shape measures. Examples
of FV-based representations include moment invariants,
spherical harmonics and crinkliness and compactness, while
3D shape distributions and solid angle shape histograms are
representatives of histogram-based methods. Similarly, 2.5D
spherical harmonics [22], and 2D Shape Distributions [23,24]
are some examples of view-based representations. We briefly
describe below the 12 shape representations that we have used
for benchmarking.

3.1. Feature vector-based methods

3.1.1. Moment invariants (MI)
The three second-order moment invariants [49,46,47] for the

model are stored as a feature vector. Moment invariants are by
nature independent of orientation. These values are obtained
by calculating the translation, rotational and scale invariant
second-order moments for every voxel in the 3D model. For this
feature vector, we use the L1 metric as the distance measure.
More details can also be found in [6,40].

3.1.2. Principal moments (PM)
The principal moments for a 3D model [49] are the three

eigenvalues of the moment matrix M (see Eq. (2)) which is
obtained from the second-order moments as given in Eq. (3).
More details can be found in [6,40].

M =

µ200 µ110 µ101
µ110 µ020 µ011
µ101 µ011 µ002

 →

µxx 0 0
0 µyy 0
0 0 µzz

 (2)

µlmn =

∫ ∫
∞

−∞

∫
(x − x̂)l(y − ŷ)m(z − ẑ)n

×ρ(x, y, z) dxdydz l, m, n = 1, 2, 3, . . . (3)

where (x̂, ŷ, ẑ) is the centroid of the model and where ρ is the
density function.
3.1.3. 3D Spherical harmonics (SH)
Spherical harmonics are a decomposition of a spherical

function by finding the Fourier transform on a sphere [21]. The
theory of spherical harmonics says that any spherical function
f (θ, φ) can be decomposed as the sum of its harmonics as seen
in Eq. (4):

f (θ, φ) =

∑
l≥0

∑
|m|≤l

almY m
l (θ, φ)

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

(4)

where alm are the Fourier coefficients and Y m
l (θ, φ) are the

solutions to the normalized Laplace equation in spherical
coordinates. The spherical harmonic coefficients can be used
to reconstruct an approximation of the underlying object at
different levels. Similar to moments, a partial yet accurate
description of the part can be obtained by using a limited
subset of Fourier coefficients. Intuitively, we expect this method
to perform especially well for objects with radial symmetry,
because of the spherical decomposition.

3.1.4. Surface area and volume based attributes
a. Surface area and volume (SAV)
In a general shape-based search system, shape representa-

tions are required to be independent of translation, rotation and
size. However, in the mechanical engineering domain, the sur-
face area and volume of a component have serious implications
on the manufacturability of an object. Due to their relevance to
design and manufacturing we include these representations in
our tests.

b. Surface area to volume ratio (SVR)
For the same volume, thin-walled components such as

manifolds and tubular parts often have higher surface area
compared to prismatic components. Hence the surface area
to volume ratio (SVR) will help distinguish between thin-
walled and prismatic components and can be used to prune the
database when using a multi-step search approach.

c. Crinkliness and compactness (CC)
Crinkliness and compactness are two feature vectors

developed by Corney et al. [14]. Compactness is defined as the
non-dimensional ratio of the volume squared over the cube of
the surface area. Crinkliness is defined as the surface area of the
model divided by the surface area of a sphere having the same
volume as the model.

3.1.5. Geometric ratios (GR)
We have also included the two aspect ratios of the bounding

box for a 3D model in our tests due to the simplicity of
computation and its relevance to classification. The underlying
assumption here is that the aspect ratios will serve as good
initial search filters.

3.2. Statistics-based representations

3.2.1. 3D Shape distribution (3DS)
Shape distributions represent the shape signature as a

probability distribution sampled from a shape function
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Fig. 5. Procedure of converting a 3D model into the convex hull histogram representation.
measuring the geometric properties of a 3D model [25,19].
In this study, we use the D2 shape measure, as it has been
shown to provide the best performance among all other shape
distributions.

3.2.2. Convex hull histogram (CHH)

In this shape representation method we compute the 3D
convex hull for a given model using the Quickhull [26]
algorithm. Then we build a histogram of the pairwise distances
based on the points obtained from the convex hull [27,28]. This
method is identical to the basic idea described in Rea et al. [50],
which presents a detailed study analyzing the merits of this
method.

The number of histogram bins is set based on the accuracy
needed for similarity searching. We divided the histogram into
200 bins and the values of the histogram bins are normalized
and stored in the database for comparison. Models are retrieved
based on the L1 norm for similarity searching [28]. Some of the
key features of this method are illustrated in Fig. 5. The convex
hull only considers the external convex envelope and does not
take into account the concave features such as holes and the
gear tooth contacts. As a result, the CHH method may serve as
a good filter to obtain parts with similar external envelope.

3.2.3. 3D Shape histogram — solid angle (SAH)

The solid-angle-based shape histogram method measures
the concavity and the convexity of geometric surfaces. It is
described in more detail in [3,16,17]. Histograms are usually
based on a complete partitioning of the 3D space into disjoint
cells which correspond to the bins of the histograms. The three-
dimensional data space is divided into axis-parallel and equi-
sized partitions. This kind of space partitioning is especially
suitable for voxelized data, as cells and voxels are of the same
shape, i.e. cells can be regarded as coarse voxels. Each of these
partitions is assigned to one or several bins in a histogram based
on different models. We tested a solid-angle-based similarity
model as given below.

Let Kc,r be a set of voxels that describes a 3D voxelized
sphere with central voxel c and radius r . For each surface-voxel
v of an object o the solid-angle value is computed as follows.
The voxels of o which are inside Kv,r are counted and divided
by the size of Kv,r , i.e. the number of voxels of Kv,r . The
resulting measure is called the solid-angle value SA(v, r) and
can be computed as follows:

SA(v, r) =
|Kv,r ∩ V o

|

|Kv,r |
. (5)

The solid-angle value of each cell is transferred into three
bins — surface voxels, inside voxels and no voxels. The
histogram represents the 3D shape of the object and the L1
norm is used to determine the similarity between two objects.

3.3. View-based representations

We present an evaluation of three view-based shape
representations which have shown promising results in recent
experiments on various databases. However, several other two-
dimensional view-based approaches have been proposed in the
literature, including aspect graphs [45], which were used in
computer vision research. For a review of other view-based
methods please refer to [5–7].

The view-based methods proposed in this section have
some unique advantages compared to the other 3D shape-
based techniques. They can not only be applied for 3D model
matching but also for matching 3D models with 2D vector
drawings, as well as scanned drawings. This is especially useful
from an engineering CAD perspective since there is a need to
compare 3D CAD models with legacy 2D drawings, which are
prevalent in several manufacturing industries.

3.3.1. Light field descriptors (LFD)
Light field descriptors were proposed by Chen et al. [43]

and have been shown to perform well on the PSB. The LFD
method represents a 3D model as a collection of 2D images
rendered from uniformly sampled positions on a viewing sphere
located around the model. Each viewing position yields a
2D image representing the silhouette of the 3D object. The
2D views are then described using Zernike moments for the
filled contour and the Fourier descriptors for the contour. The
distance between two descriptors is defined as the minimum L1-
difference, taken over all rotations and all pairings of vertices
on two dodecahedra. Comparison between a pair of 3D models
is obtained using a cross-correlation measure between the 60
views of each object. We obtained the implementation of the
LFD method from the 3D Model Retrieval website at National
Taiwan University (http://3d.csie.ntu.edu.tw/). Details of the
implementation are described in the accompanying paper [44].

http://3d.csie.ntu.edu.tw/
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Fig. 6. Procedure of converting a 2D view into the 2.5D harmonics
representation.

3.3.2. 2.5D spherical harmonics (2.5DSH)
The 2.5D spherical harmonics technique is a new

representation proposed in [23] for representing 2D engineering
drawings and 3D models. In this work, a 3D model is first
converted into a set of three 2D views through a pose estimation
algorithm described in [23,24]. Each 2D view is represented
as a spherical function by transforming it uniquely from 2D
space into 3D space [42]. The 2D view is initially enclosed
in a bounding hemisphere such that the 2D view lies in
the equatorial plane of the hemisphere, the radius of the
hemisphere is half the length of the diagonal of the bounding
rectangle, and the centroid of the hemisphere coincides with
the centroid of the bounding rectangle. Subsequently, 2D
rays are cast from the centroid through a set of sampled
directions which lead to intersections with the edges of the
2D view. The intersection points represent the 2D image. A
spherical harmonics transformation is carried out to transform
all intersection points {pi = f (θi , di )} into a spherical function
form {pi = f (θi , ϕi , di )} by introducing a new variable ϕi .
To ensure each intersection point pi corresponding to a unique
(θi , ϕi ), a simple transformation is used to determine ϕi :

ϕi = arctan
(

di

r

)
. (6)

The resulting spherical harmonic transform yields the shape
descriptor for the 2D view (see Fig. 6). Thus, the shape
matching problem is reduced to several simple steps, such as
sampling, normalization, and distance computation between the
descriptors.

In our tests we used a bandwidth of 64 for the 2.5D
spherical harmonics method, i.e., the descriptor of a drawing
contains 64 signatures. The L1 norm is used to compare two
descriptors. Given a 3D object, the pair of 2D views which
provide the best match (i.e. with the least distance) are called
the principal matching views. The other two corresponding
pairs are determined likewise. The total distance between two
3D models is obtained through the summation of distances
between corresponding view pairs.

3.3.3. 2D Shape distributions (2DSD)
Jiantao and Ramani [23,24] recently also proposed a shape

representation method to obtain shape signatures of 3D models
after automatically obtaining their three orthogonal main views.
Subsequently, a statistics-based approach represents the shape
of the 2D views as a distance distribution between pairs of
randomly sampled points (Fig. 7). The 2D shape distributions
thus obtained are used to compare 3D objects. For ease of
understanding we call this method the 2D shape distributions
(2DSD), although Ref. [23] terms the method ‘Orthogonal
Main View’. The L2 norm is used for computing distance
between two shape distributions. The best matching pair of
views is that pair which produces the least distance, and leads
to the first principal matching views. The next best matching
pair from the remaining views produces the second principal
matching views and so on. The total similarity is obtained by
computing the summation of distances from the three principal
matching view pairs.

4. Results and discussion

We evaluated the precision at various levels of recall for
all the shape representation methods to generate PR curves
for the ESB classification. For this database, we found that
all shape representation methods performs better than the
random retrieval method. Comparisons of the three view-based
methods – LFD, 2.5DSH and 2DSD – for the manufacturing
and functional classifications from Bespalov et al. [41] are
presented in Section 4.1.

4.1. Results on AAD benchmark

For our tests, we downloaded the VRML models provided
on the national design repository website (http://www.
Fig. 7. Procedure for converting a 2D view into the 2D shape distribution representation.

http://www.designrepository.org/datasets
http://www.designrepository.org/datasets
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Fig. 8. PR curves for ‘Manufacturing Classification’ database: (a) for the
methods described in Bespalov [41] (figure taken from [41], 2005 c© ACM
Press), and (b) for the methods implemented in this paper.

designrepository.org/datasets). We present results for the
functional and manufacturing classifications. In their paper,
Bespalov et al. [41] presented the precision–recall curves for
several methods. Readers are referred to this paper for detailed
descriptions of all these methods. We complement those results
by presenting the precision–recall curves for several other
methods that we described in Section 3. In addition, we also
provide the E-measure values for the newly evaluated methods.

4.1.1. Manufacturing classification
Fig. 8(b) presents the new results for the manufacturing

classification. In the experimental results presented in [41]
it was found that EigenFeat and Eigen-BRep representations,
which are derived from the boundary representations (B-Rep)
of 3D models, performed better than other methods on the
manufacturing classification. From our experiments we also
found that the view-based techniques seem to perform well for
this classification. The 2.5D SH and 2D SD methods performed
better than 3D shape distributions methods at all recall values,
while LFD performed well at low and medium recall values.

We expected SAV and CC to perform well on this classifica-
tion, because of their inclusion of geometric characteristics that
Fig. 9. PR curves for ‘Functional Classification’ database: (a) for the methods
described in Bespalov [41] (figure taken from [41], 2005 c© ACM Press), and
(b) for the methods implemented in this study.

are considered in manufacturing decisions, viz., surface area
and volume. However, they did not perform well, suggesting
that these simple measures may not be enough to distinguish
between the two manufacturing processes. An interesting re-
sult from our experiments on this dataset is that at medium and
high recall levels, simpler shape features, GR and PM, yielded
higher precision than even the view-based methods. However,
due to the small size of this database and the limited number of
classes, it is difficult to draw general conclusions regarding the
discrimination characteristics for this classification.

In addition, as noted earlier, none of the currently
evaluated shape representations explicitly capture the shape
characteristics or manufacturing features that indicate possible
manufacturing process.

4.1.2. Functional classification
Fig. 9 presents the results for the functional classification

dataset. It was observed that the LFD method performed
considerably better than all other methods. The 2.5D SH and 2D
SD methods performed comparably with many of the methods
evaluated in [41]. At the same time, most of the methods
evaluated in our study seemed to perform better than the scale
space method, especially at low recall values. Table 3 presents

http://www.designrepository.org/datasets
http://www.designrepository.org/datasets
http://www.designrepository.org/datasets
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Table 3
E-measures for the AAD datasets

Functional classification dataset

Method E-measure
R = 10 R = 20

LFD 0.563 0.406
CC 0.464 0.429
3DSH 0.456 0.425
2DSD 0.447 0.358
3DSD 0.410 0.330
CHH 0.411 0.360
2.5DSH 0.406 0.340
SAH 0.391 0.314
GR 0.352 0.325
PM 0.318 0.312
SAV 0.303 0.306
MI 0.302 0.277

LEGO R©dataset

Method E-measure
R = 5 R = 10

SAH 0.559 0.731
GR 0.532 0.641
CHH 0.527 0.613
CC 0.460 0.556
PM 0.420 0.468
LFD 0.452 0.468
SD 0.416 0.455
3DSH 0.434 0.499
SAV 0.429 0.425
MI 0.326 0.394
2DSD 0.348 0.382
2.5DSH 0.320 0.368

E-measures obtained from the 12 shape representations for this
dataset. In calculating the E-measure for this dataset, we used
retrieval sizes of 10 and 20, since the size of the dataset is 70
and the average group size is 10.

From the E-measure values and the PR curves it is evident
that LFD clearly performs better than the other methods.
Surprisingly, the CC method also tends to perform better than
the other methods, supporting the suggestion that Crinkliness
and Compactness measures can be used as initial coarse filters
for large databases [14]. For larger retrieval sizes the CC
method seems to show better effectiveness than LFD. However,
this needs to be confirmed on a larger database, as the number
and variety of parts in this dataset is small.

4.1.3. LEGO R©Models classification
Fig. 10 presents the results for the LEGO R©dataset. The

SAH and GR methods performed significantly better than all
the other methods for this dataset. Surprisingly, the 2DSD
and 2.5DSH methods performed worse than all other methods.
Although LFD did not perform as well as GR and SAH, it
performed comparably with CC and PM as seen from the E-
measures and PR curves. We provided the E-measures for
retrieval sizes of 5 and 10 because of the small size of the
dataset. Since this dataset consists of 46 models and simple
shape measures such as GR and CHH achieve high retrieval
Fig. 10. Comparison of various shape descriptors on LEGO R©dataset.

rates on this classification, we believe that the results and
conclusions are not scalable.

4.2. Results on ESB

Since the AAD datasets are small, we set out to confirm
these results on an expanded dataset that encompasses more
categories of shapes. Although similar to the LEGO

R©
dataset

of [41], the ESB dataset provides one with a comparable, but
expanded dataset for performing shape retrieval experiments.

It was found that, on average, the three methods based
on 2D views (LFD, 2.5DSH and 2DSD) outperform other
methods consistently. Additionally, LFD had significantly
better precision than all other methods. These results are
consistent with conclusions drawn in [20], where the LFD
method works better than other 3D methods. However,
as pointed out in [20], view-based methods involve more
computation compared to the 3D shape measures such as D2
and SAH. Hence, for quicker comparison, the shape descriptors
such as SAV and D2 may serve as good initial filters. On the
other hand, the view-based methods bear some resemblance
to traditional engineering drawings, which use 2D projections
to represent 3D models. Spherical harmonics and the two
histogram-based methods – SAH and CHH – also perform
better than D2 shape distributions.

Clearly, elaborate histogram-based methods outperform
feature vector-based methods such as Moment Invariants and
Principal Moments, as observed from Fig. 11. This is because
histogram-based methods capture more of the shape content
than feature vector-based methods. The only exception is
spherical harmonics, which approximates a shape with 64
harmonic coefficients, thereby capturing more shape content
than other feature vector-based methods.

On an average, the base method, 3DSD (i.e., D2 shape
distribution) method, for AOD performs 5.57 times better than
random retrieval. Table 4 shows the AOD of various methods as
a percentage value. We have ranked the methods based on their
AOD and E-measures. Clearly, the shape representations that
hold more shape content are better at retrieving more relevant
models. Performing a similar analysis for each of the three
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Fig. 11. Precision–recall calculations for 12 shape representations.

Table 4
Effectiveness measures for 12 shape representations with 3D shape
distributions as a reference

Method E-measure AOD
(R = 10) (R = 20) (R = 32) (%)

LFD 0.431 0.406 0.376 143.79
2.5DSH 0.357 0.338 0.303 81.15
2DSD 0.345 0.327 0.296 72.50
3DSH 0.338 0.311 0.288 56.04
SAH 0.312 0.274 0.236 27.00
CHH 0.280 0.243 0.225 33.87
3DSD (D2) 0.236 0.195 0.167 0.00
SAV 0.212 0.171 0.149 −13.17
GR 0.208 0.163 0.150 −14.10
CC 0.186 0.161 0.155 −14.38
PM 0.167 0.147 0.137 −35.24
MI 0.168 0.138 0.121 −41.66

super-classes, we found that SAV gives better precision than
3DSD for Thin-Walled parts. Not surprisingly, for all three
super-classes, both methods based on 2D views outperformed
other methods at low recall levels. The E-measures shown in
Table 4 suggest that the trends predicted by the AOD and PR
curves are generally true.

4.2.1. Thin-walled components
For the Thin-Walled components class, the view-based

methods outperformed other methods. Surprisingly, 3D shape
distributions and Surface Area and Volume performed better
than the rest of the three methods based on more complex
feature vectors, viz., SH, CHH, and SAH. Although simple, the
SAV performs better for this super-class because thin-walled
components have higher surface areas and lower volume,
and these features are more explicitly captured in the SAV
compared to other point-based methods. Hence, SAV may
serve as a good filter when searching for this super-class of
shapes. The PR curves for all the methods for the Thin-Walled
components super-class are shown in Fig. 12. This super-class
also highlights some of the disadvantages of the LFD method.
While the LFD method performs considerably better than the
2.5DSH and 2DSD methods for the other super-classes, it
performs comparably with those two methods for this super-
Fig. 12. Precision–recall curves for thin-walled components.

class. The differentiating characteristics between the various
classes in this super-class come from the internal features such
as holes and slots, rather than the external envelope and through
holes alone. The LFD method captures these features. Since the
2.5D SH method and 2D SD methods capture these internal
features well, they tend to maintain higher precision for large
recall values.

4.2.2. Prismatic parts
For this super-class, LFD has considerably high precision

for all recall values. In addition, four other methods performed
consistently better than D2 shape distributions, namely the
three 2D view-based methods (2.5DSH and 2DSD), 3D
Spherical Harmonics and SAH. While the 2D view-based
methods performed consistently well, two other methods,
viz., spherical harmonics (3DSH) and Solid Angle histograms
(SAH), performed comparably at higher recall levels (after
0.3 and 0.5 recall respectively) as we had expected (see
Fig. 13). It was also observed that topology-based methods did
not perform well for rectangular prismatic parts especially at
medium and low recall values. However, for many of these
categories the view-based methods yielded better results, except
for two categories ‘slender links’ and ‘bearing blocks’. While
the internal contour details negatively affect the view-based
methods for these categories, the LFD method overcomes the
disadvantages by focusing only on the external silhouette,
thereby leading to much higher precision.

4.2.3. Solids of revolution
The PR curves for the Solids of Revolution super-class

is shown in Fig. 14. Although many shapes in this category
contain many internal features, the external shape is distinct for
these classes. For example, all the view-based methods (LFD,
2.5D SH, and 2D SD) performed significantly better than the
other methods for this class. Similarly, the 3DSH and CHH
techniques performed better than 3DSD.

4.2.4. PRCs for individual classes
In this section, we will discuss in further detail the

performance of various methods for particular shape categories
having unique, non-standard parts. This analysis gives us a
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Fig. 13. Precision–recall curves for prismatic parts.

Fig. 14. Precision–recall curves for solids of revolution.

picture of the behavior of different shape representations in a
typical engineering scenario. We have presented results from
six shape categories representing two from each super-class.

Contact switches (Flat-thin walled parts)
All parts in this class have a common feature – the

rectangular slot – which is related to its function as a contact
switch. The SAV method seems to capture the shape content
better than the other methods. This is due to the fact that most
of these components have a very small uniform thickness. Due
to the variations in the overall shape like presence of bends
and different aspect ratios, the statistics-based and view-based
methods show a drop in performance for after a recall of 0.2
(see Fig. 15), indicating that they are able to identify the closest
shapes based on overall similarity, but not the other shapes
in this category. We suspect that methods based on feature
detection and other topology-based methods can capture this
common feature fairly well. This class highlights the fact that
an ideal search system should not only consider the overall
shape, but also allow search based on individual design features.
Simple shape measures such as the SAV can be used in these
cases to prune the search space quickly.

Brackets (Flat-thin walled parts)
From Fig. 16, all methods perform similarly for this class.

The statistics-based and the view-based methods perform
poorly for this category. The performance of all the methods
is poor, mainly due to the fact that the variety in shapes is
significant. The distinguishing characteristic of this category is
the small thickness and the bends. We expected the SAV and CC
methods to perform well on this category, but these measures
are too simple to distinguish shapes from other categories which
may have similar surface area and volume but different shape
features.

Motor bodies (Prismatic parts)
The parts in this category are solid and have comparable

dimensions along the three axes. Hence the 3D Spherical
Harmonics and Shape Histogram methods perform well for this
category. The view-based methods also perform well for this
category, as seen in Fig. 17. Although all the models in this
category look similar, the individual design features are located
in different positions making each object distinct from the other.
Due to the minor variations in design features, this category is
especially challenging for view-based methods because many
parts in the database will have a similar silhouette. It is therefore
Fig. 15. Contact switches — (a) Sample parts, (b) PRC.
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Fig. 16. Bracket-like parts — (a) Sample parts, (b) PRC.

Fig. 17. Motor bodies — (a) Sample parts, (b) PRC.
not surprising that SAH and 3DSH methods perform better than
the view-based methods because they consider the complete
3D shape rather than just the views. Since the 2.5DSH method
captures the internal details of view in its representation, it
performs better than LFD. The sudden drop in precision for
2DSD, LFD, and CHH methods after a recall of 0.5 is due to
the fact that four of the seven models are more similar to each
other than the others, especially the outer envelope.

U-shaped parts (Prismatic parts)
Only the LFD and SAH methods performed well for this

category, suggesting that the other methods did not capture
the essential features — the main stem and appendages on
both ends (Fig. 18). The other two view-based methods –
2.5DSH and 2DSD – do not perform well due to the pose
estimation procedure adopted prior to computing the shape
representations. While these methods use three orthogonal
views, LFD overcomes this limitation by taking many more
views. On the other hand, the SAH method performed well for
this category because the essential shape is captured in the axis-
parallel bins of the shape histogram.
Spoked wheels (Solids of revolution)
The essential shape features of this category are the radial

spokes connected to the external rim of the wheels. LFD
performs better than the other view-based methods because
in addition to the contour it also retains the region-based
information. This captures the spokes and the gaps between
them. From Fig. 19, it is noted that SAH and 3DSH perform
better than the remaining methods. The SAH particularly
captures the distributed features on the rim in the axis-parallel
bins enabling it to perform better.

Non-90 degree elbows (Solids of revolution)
The two spherical harmonics method (3DSH and 2.5DSH)

perform remarkably well for this category, as can be seen in
Fig. 20. These methods perform nearly perfect, suggesting that
they can capture the elongated, tubular nature of these parts.
Although 2DSD and LFD are also view-based methods, they do
not perform as well as the 2.5DSH method. On the other hand,
the CHH method performs well initially but loses precision for
higher recall.



S. Jayanti et al. / Computer-Aided Design 38 (2006) 939–953 951
Fig. 18. U-shaped parts — (a) Sample parts, (b) PRC.

Fig. 19. Spoked wheels — (a) Sample parts, (b) PRC.
4.3. Summary of results

Comparing the results from AAD and ESB, it is clear that,
in general, the view-based methods tend to perform well for all
the classifications. The LFD method performed best for all the
classifications except for the AAD manufacturing classification.
The other two view-based methods – 2.5DSH and 2DSD –
provided better precision for the manufacturing classification
and performed better than other shape representations.

From the results for individual classes, it was found that no
single method performs well on all categories. It is also evident
that different methods have different strengths and weaknesses.
Sometimes, even simple measures such as SAV and CC can
be used as quick and approximate filters for certain types of
shapes.

5. Conclusions

In the engineering domain, it is important to analyze
which shape representations perform well for a particular
part category, a view that may seem contrary to the
views of researchers in computer vision and graphics. Such
analysis and understanding can lead to development of better
representations.

In summary, we have developed a publicly available
engineering shape benchmark (ESB) for comparing various
shape-based search algorithms. ESB includes a set of 867
models in two neutral formats (STL and OBJ) along with
associated JPG images and a classification schema. All this data
is available from our website http://purdue.edu/shapelab.

The main contributions of this paper are: (1) development of
a new, elaborate engineering shape benchmark, (2) evaluation
of several shape representations on the benchmark datasets
in the engineering domain, the ESB and AAD, and (3)
an understanding of the effectiveness of 12 different shape
representations across several classes of engineering parts. We
used D2 shape distributions (3DSD) as a base method to
evaluate the performance of other methods on the ESB. It
was found that, among all the methods tested, the three view-
based shape representations, viz., LFD, 2.5DSH and 2DSD,

http://purdue.edu/shapelab
http://purdue.edu/shapelab
http://purdue.edu/shapelab
http://purdue.edu/shapelab
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Fig. 20. Non-90 degree elbows — (a) Sample parts, (b) PRC.
perform better than other 3D shape-based methods except for
the LEGO

R©
dataset.

The better performance of 2D view-based algorithms for
all classes of shapes in the ESB reinforces our intuition that
engineering shapes exhibit distinguishing shape features in
their 2D views. In addition, 3D spherical harmonics seem to
perform reasonably well for the prismatic parts and solids of
revolutions compared to other shape representations. Similarly,
shape histograms based on solid angles (SAH) performed
well on the LEGO dataset. Although many of the 3D shape
representations cannot be directly applied to 2D drawings, most
of the view-based representations can be applied for 2D–2D or
2D–3D matching as well.

While the task of classification is difficult, to the best of
our knowledge, this is the most extensive effort at creating a
benchmark database for engineering shapes encompassing a
large number of classes and comparing shape representation
methods. We will continue to add models to the ESB with
contributions from the research community, to encompass a
wider variety of shapes so that researchers can conduct detailed
studies regarding the performance of shape representations
across the whole spectrum of engineering shapes. We expect
that our efforts at building the ESB and conducting studies
using ESB for classes of engineering shapes will give rise to
more robust shape representations.
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