

Biogas Electricity for Electric Vehicle (EV) Charging - towards a carbon-neutral U.S. dairy industry

Wei Liao¹, Francesca Valenti¹, Dana Kirk¹, Barry Bradford²

- 1. Anaerobic Digestion Research and Education Center (ADREC), Michigan State University
 - 2. Animal Science, Michigan State University

Manure Management and Utilization Technologies (6)

- Anaerobic Digestion Topics Part 3

Reynolds, IN 47980

1. US dairy industry

- 2. Animal manure and anaerobic digestion of biogas production
- 3. Pathways of farm-based biogas utilization
 - Current pathways of farm-based biogas utilization
 - New pathway of farm-based EV charging
- 4. Example of farm-based electricity generation for EV charging
- 5. Dairy farms and commercial EV charging network
- 6. Summary

- There are approximately 49,000 dairy farms with 9 million cows and 500 milk processing plants in the U.S.
- 97% of U.S. dairy farms are owned by family
- Average dairy farm size is 187 cows per dairy farm
- More than 90% of the U.S. dairy farms are small- and medium-sized farms (less than 1,000 cows)
- The U.S. dairy industry contributed to 1% of GDP in 2019 (\$630 Billion)

From the MSU dairy farm

https://diamondv.com/the-top-three-tech-trends-in-the-dairy-farming-industry/

https://www.dairyfoods.com/articles/94516-the-2020dairy-100-changes-at-the-top

- More than 27 million tons (dry dairy manure) produced in the U.S. annually
- Animal manure rich in carbohydrate and nitrogen
- Average energy content of animal manure around 13.4 MJ/kg
- Dairy manure containing approximately 45% of the gross carbon in forage feeds
- The manure accounts for 1/3 of the global warming potential in the entire dairy supply chain

From: J. Hart, et al., Dairy manure as a fertilizer source, , Nutrient management for dairy production, EM8586, 1997 From: J. Blignaut, et al., Agricultural Systems, 195(2022), 103286

4

etc.)

Anaerobic digestion of animal manure

6

Current farm-based biogas plants

Current operational and potential biogas plants in the U.S.

	Livestock manure	Landfill gas	Wastewater treatment facilities	Total
Currently operational systems	331	636	1,241	2,208
Potential biogas systems	23,000	1,086	3,681	27,767

Estimated energy potential from organic wastes in the U.S.

	Livestock manure	Landfill gas	Wastewater treatment facilities	Total
Biogas production potential (billion cubic feet per year)	257	284	113	654
Electricity potential (billion kWh/year)	13.1	22.5	5.6	41.2
Vehicle fuel (million GGE)	1031	1028	441	2499

Challenges:

- For the heat and electricity generation pathway, economic performance is not favorable for small- and medium- farm operations (less than 1,000 cows or equivalent).
- For the RNG pathway, location and size of the farm operation (large farms and near exiting pipeline) are the key factors (along with other factors such as cost, carbon intensity, pipeline leaking etc.) that limit its extension to a large of rural communities.

New pathway of farm-based EV charging

Dairy-farm-based renewable electric vehicle (EV) charging solution

The goal of the concept is to establish renewable EV charging solutions as a climate-smart product to enable a carbon-neutral and zero-discharging U.S. dairy industry.

A 200 dairy cow biogas plant -- The MSU biogas plant

- Digester tank
 - 400,000 gallons
 - The tank with a diameter of 52 ft and a height of 26 ft plus cover
- Digestate storage tank
 - 2.1 million gallons
 - The tank with a diameter of 101 ft and a height of 42 ft plus cover
- CHP unit
 - 400 kW electrical production & 450 kW of thermal energy recovery
 - Offset power at 8 to 10 south campus facilities
 - Thermal energy used to sustain the process, heat support building and separator area
- Feedstock
 - Dairy manure
 - Food wastes

MSU SCAD

Organic wastes in manure pit and food waste pit

Organic wastes fed to different pits

No	Manure Pit	Food Pit
1	Digestate (recycle)	Filtrate (recycle)
2	Filtrate (recycle)	Cart Food Wastes (Pre and post- consumer)
3	ANS Other (i.e., eggs)	Fat, Oil, and Grease (FOG)
4	Beef Manure	Other
5	Dairy Gutter Manure (Dairy G)	Pineapple (P.A.) and other Fruits
6	Dairy Freestall Manure (Parlor)	Pulp
7	Poultry Manure	SLS Solids (Coarse digestate fiber)
8	SLS Solids	Waste Forage
9	Swine Manure	
10	Waste Forage	

Food wastes (Pre-consumer)

Fruit & Vegetable

Food wastes (Post-consumer)

FOG

Energy balance of the digestion system ^a

	SCAD
Energy input	
Heat input (W _{heat} , kWh-e/year) ^b	-742,090
Electricity input (W _{electricity} , kWh-e/year) ^c	-170,320
Energy output	
Energy output as heat (E _{heat} , kWh-e/year) ^d	5,584,551
Energy output as electricity (E _{electricity} , kWh-e/year) ^e	2,462,190
Net energy output	
Net heat output (kWh-e/year) ^f	4,842,461
Net electricity output (kWh-e/year) ^g	2,291,870

a. Negative numbers mean energy inputs, and positive numbers mean energy outputs.

b. Eq. 1 was used to calculate the heat input.

c. Eq. 2 was used to calculate the electricity input.

d. The annual biogas production of 1,323,757 m³ with 65% (v/v) of methane was used to calculate the energy content of the biogas. The low heating value of methane is 35.8 MJ/m^3 methane. The thermal conversion efficiency of the CHP unit is 65%.

e. The electricity output is the metered number of the digestion operation.

f. The net heat
$$output = E_{heat} - W_{hea}$$

g. The net electricity output =
$$E_{electricity}$$
 - $W_{electricity}$

Economic performance of the digestion system ^a

Capital expenditure (CapEX)	Cost	Reference
Feedstock Receiving	\$727,927	Data
Digester	\$1,442,140	Data
СНР	\$778,651	Data
Bond	\$38,143	Data
Interconnection	\$300,000	Data
Site improvements & excavation	\$300,000	Data
Total CapEX	\$3,586,861	

Revenue (per year)	Cost	Reference
Electricity ^b	\$237,746	Data
Tipping	\$217,854	Data
Total revenue (per year)	\$455,600	
Total net revenue (per year) ^c	\$157,444	
Payback time (Years) ^d	21.5	

OpEX (per year)	Cost	Reference
AD Repairs	\$28,373	Data
ADMIN Fee	\$2,948	Data
Bio Analysis	\$2,827	Data
CHPS	\$74,226	Data
Labor	\$123,616	Data
Laundry	\$378	Data
Maintenance and Repair	\$6,482	Data
MISC	\$4,064	Data
Motor Pool / Vehicle	\$1,165	Data
Supplies	\$396	Data
Telephone	\$772	Data
Transport (DHT)	\$52,910	Data
Total OpEX (per year)	\$298,156	

- a. The OpEX and revenue are the operational data from 2019-2020.
- b. The average electricity price is \$0.10/kWh.
- c. The net revenue = Total revenue Total OpEx
- d. The 5-year average local inflation of 3.2% in the U.S. is used as the inflation rate. The depreciation period is set at 20 years. The depreciation is just on CapEx. The annual depreciation rates from MARCRS (Modified Accelerated Cost Recovery System) are: 0.100, 0.188, 0.144, 0.115, 0.092, 0.074, 0.066, 0.066, 0.065, 0.065, and 0.033 (after 10 years).

- Nine variables feedstock receiving, digester, CHP, interconnections, site improvements, CHP maintenance, labor, electricity, and tipping fees – were taken into consideration for the economic sensitivity.
- The analysis was done by modifying each variable by ± 25% while keeping the other variables constant for the baseline scenario.
- The electricity revenue and tipping fees are the main factor to the economic performance of the commercial digesters. The payback period is reduced to 10 and 11 years, respectively, with 25% increase on electricity cost and tipping fees.

Economic performance comparison of different biogas applications

	Heat and electricity	EV charging
Capital expenditure (including, feedstock receiving, digester, CHP, fast charging stations, bond, interconnection, site improvements & excavation)	\$3,586,861	\$3,800,000
Operating expenditure (including, maintenance, Administration fee, sample analysis, labor, supplies, and others)	\$298,156/year	\$310,000/year
Revenue 1 (Electricity)	\$237,746/year ^b	\$832,111/year ^c
Revenue 2 (waste tipping)	\$217,854/year	\$217,854/year
Total net revenue ^d	\$157,444	\$739,965
Payback time ^e	21.5 years	5.2 years

- a. The OpEX and revenue are the operational data from 2019-2020.
- b. The electricity price for the grid is \$0.10/kWh.
- c. The electricity price for the EV charging is **\$0.35/kWh**.
- d. The net revenue = Total revenue Total OpEx
- e. The 5-year average local inflation of 3.2% in the U.S. is used as the inflation rate. The depreciation period is set at 20 years. The depreciation is just on CapEx. The annual depreciation rates from MARCRS (Modified Accelerated Cost Recovery System) are: 0.100, 0.188, 0.144, 0.115, 0.092, 0.074, 0.066, 0.066, 0.065, 0.065, and 0.033 (after 10 years).

Scenarios and boundaries for life cycle impact assessment

- Scenario 1: Co-digestion system of manure and food wastes
- Scenario 0: Lagoon storage and landfill application of manure and food waste

Inventory for the life cycle impact assessment ^a

	Value	Unit	Source
Rav	w materials		
Manure wastes	10,913	Metric ton/year	Data
Total solids of manure wastes	11.4	%	Data
Volatile solids of manure wastes	10.0	%	Data
TN of manure wastes	4,143	mg/kg	Data
TP of manure wastes	413	mg/kg	Data
sCOD of manure wastes	59,446	mg/kg	Data
Food wastes	10,701	Metric ton/year	Data
Total solids of food wastes	10.1	%	Data
Volatile solids of food wastes	9.3	%	Data
TN of food wastes	5,318	mg/kg	Data
TP of food wastes	449	mg/kg	Data
sCOD of food wastes	17,525	mg/kg	Data

	Value	Unit	Source		
Anaerobic digestion and energy production inventory					
Biogas production	1,323,757	m ³ /year	Data		
CH ₄ content in biogas	65	% v/v	Data		
CO ₂ content in biogas	34	% v/v	Data		
Electricity production from biogas	2,462,190	kWh-e/year	Data		
EV electricity consumption	34	kWh-e/100 miles	Ref.		
Conventional gas-powered vehicle fuel consumption	3.5	Gallon gasoline/100 miles	Ref.		
GWP of gasoline	8,780	g CO ₂ -e/gallon	Ref.		
Heat production from biogas	5,584,551	kWh-e/year	Data		
Effluent	19,948	Metric ton/year	Data		
TS of effluent	6.3	% (w/w)	Data		
TN of effluent	3,246	mg/kg	Data		
TP of effluent	584	mg/kg	Data		
sCOD of effluent	7,894	mg/kg	Data		
N_2O emission from the effluent	0.005	g N ₂ O/g TN	Ref.		
GWP of N ₂ O	298	g CO ₂ -e/g N ₂ O	Ref.		
CH ₄ emission from effluent	3.08×10 ⁻⁴	Metric ton CO ₂ -e/metric ton TS	Ref.		
Water eutrophication potential (WEP) of TN	0.9864	g N-e/kg TN	Ref.		
WEP of TP	7.29	g N-e/kg TP	Ref.		
WEP of COD	0.05	G N-e/kg COD	Ref.		

Inventory for the life cycle impact assessment ^a (cont'd)

	Value	Unit	Source	
Animal wastes lagoon storage and land application inventory				
CH ₄ emission	0.127	Metric ton CH ₄ /metric ton VS	(Owen & Silver, 2015)	
N ₂ O emission	0.005	$g N_2O/g TN$ in the waste	(RTI International, 2010)	
Water eutrophication potential (WEP) of TN	0.9864	g N-e/kg TN in the waste	(RTI International, 2010)	
Water eutrophication potential (WEP) of TP	7.29	g N-e/kg TP in the waste	(RTI International, 2010)	
Water eutrophication potential (WEP) of COD	0.05	g N-e/kg COD in the waste	(RTI International, 2010)	

Val		lue	Unit		Source	
Food wastes landfill inventory with landfill gas (LFG) combustion					bustion	
CH ₄ emission, food wastes andfill	2.3		Metr e/ton	ic ton CO ₂ - TS food waste	(Envi Prote 2020)	ironmental ction Agency,) ^b
N ₂ O emission	0.00	5	g N ₂ wast	O/g TN in the e	(RTI 2010)	International,
Water eutrophication potential (WEP) of TN	0.98	64	g N-0 wast	e/kg TN in the e	(RTI 2010)	International,
Water eutrophication potential (WEP) of TP	7.29		g N- wast	e/kg TP in the e	(RTI 2010)	International,)
Water eutrophication potential (WEP) of COD	0.05		G N- the v	-e/kg COD in vaste	(RTI 2010)	International,
Water eutrophication potential (WEP) of COD	0.05		G N-	-e/kg COD	Ref.	

- a. CO_2 from manure wastes and food wastes is not counted in the calculation of greenhouse gas emissions because the CO_2 is considered of biogenic origin and therefore is assumed to be offset by CO_2 capture by regrowth of the plants.
- b. The moisture content of the typical food wastes in the reference is set at 70%.

The life cycle impact assessment

- With the EV charging, manure utilization is carbon negative.
- The SCAD reduces WEP up to 25%.

Dairy industry and commercial EV charging in the U.S.

Distribution of the U.S. dairy farms

Distribution of the DC fast EV charging stations ^{a, b}

a: There are 6,478 DC fast EV charging stations, mainly located in the major cities and highways.

b: There are 200 DC fact EV charging stations in Michigan.

b: As a comparison, the U.S. has more than 115,000 gas stations.

Dairy industry and commercial EV charging in the U.S. – Long-haul electric trucks

Facts of electric vehicles (trucks)

- Four million Class-8 trucks are running in the U.S.
- Regional trucks travel 30,000-40,000 miles per year. Other long-haul trucks travel 150,000 200,000 miles per year.
- If all Class-8 trucks are electric trucks, they require 504 TWh per year in the U.S.
- The U.S. dairy industry can generate up to 118 TWh electricity per year using the co-digestion technology (23% of the demand from long-haul electric trucks).

Challenges

- The fast charging station for EV Class-8 trucks requires a 1 MW capacity (Tesla V4 supercharger).
- The most of dairy farms are in the range of 100 to 1,000 cows, the biogas capacity is between 50 kW to 500 kW.
- A rural biogas network is needed to support regional high-capacity fast charging station.

The EV charging solution for Clinton county

- Michigan has around 1,000 grade A milk producers.
- Clinton county has 42 Grade A milk producers for the analysis.
- The milk producers in Clinton county produce 277,525 kg/day of dry manure, and can generate and store 103 MWh/day of electricity.
- Four charging stations with V4 superchargers (1 MW) can be set up in Clinton county to charge 100 long-haul electric trucks per day.

Current rest areas and pumping stations

- The revenues from biogas EV charging can cover up to 41% of the milk production cost, especially for smalland medium-dairy operation.
- Carbon capture from manure and renewable electricity will reduce the carbon footprint of the dairy operation by at least 45% (including both reduced GHG emissions and renewable electricity replacing fossil fuels).
- The farm-based EV charging solution can facilitate establishment of the charging network in rural areas.
- The U.S. dairy industry with the farm-based biogas EV charging solution can satisfy more than 20% of the demand of 4 million long-haul electric trucks in the U.S.
- The new MSU dairy farm with the EV charging station will provide a platform for demonstrating and optimizing the EV charging solutions for rural communities.

Collaboration of researching and developing farm-based EV charging solutions *

*: Yellow dots are potential demonstration farms; Red stars are R&D institutions.

Financial Supports

- MSU AgBioResearch
- Michigan Economic Development Corporation (MEDC)
- USDA Agricultural Research Service (ARS)

MSU Anaerobic Digestion Research and Education Center (MSU ADREC)

Main building

High-bay area

External combustion engine

Mobile charging unit

CSTR system (2000 m³, 0.4 MW)

Plug flow system (1000 m³)

Pilot water and energy testing site

Mobile solar-bio-powered waste utilization system

Homepage: <u>http://www.egr.msu.edu/bae/adrec/</u>