
Economics of Agricultural Anaerobic Digestion

Juliana Vasco-Correa

Assistant Professor
Agricultural and Biological Engineering
Penn State University

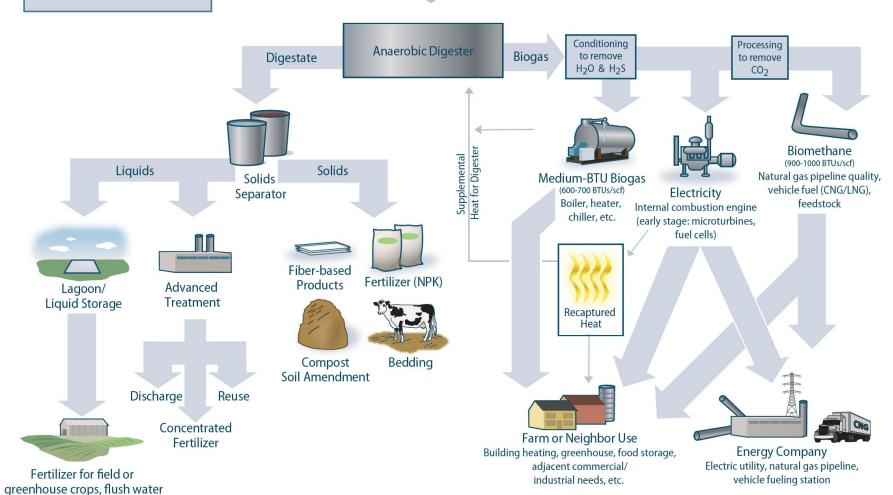
Anaerobic digestion (AD)

Types of digesters

Stand-alone

On farm

WWTP



All of the opportunities presented will not be appropriate for all digester systems based upon technical and financial constraints.

Digester Inputs (manure, organic substrates)

Benefits of AD

Benefits	Outcome
Economic and Financial	New revenues from AD/biogas systems can significantly diversify farm income.
Environmental and Socio-Economic	Waste products that are considered a liability are converted into a beneficial resource. AD/biogas systems create circular use of materials such that waste products are recycled into beneficial use products.
Energy Generation	Biogas from digestion can be used to provide usable energy, such as thermal energy, electrical power, pipeline-quality natural gas, and/or RNG. Electrical power from biogas can be used as baseload and/or dispatchable power generation (i.e., generation of power at peak periods, as dictated by the utilities). These are two of several significant advantages over wind and solar renewable energy generation, which require energy storage to be added to meet these power demands.
Transportation Fuel	When RNG is used as a vehicle fuel, emissions meet the most stringent GHG pollution laws. For example, as defined by the State of California, RNG is the most carbon negative transportation fuel available.
Stabilized Digestate	Digestate can be used as a nutrient-rich fertilizer and as a soil amendment to improve soil health and crop production, both on farm and off farm.
Climate Change Mitigation	Emissions are reduced by capturing methane (CH $_4$) that may have been lost to the atmosphere and utilization of that CH $_4$ as a renewable fuel, offsetting the use of fossil fuels.
Overall General Benefits	The implementation of on farm AD/biogas systems increases overall sustainability, reduces pathogens, and improves overall efficiency of natural resources.
Bio-Products	The primary and secondary products of AD/biogas systems can be the foundation for renewable bio-based products, such as bio-based plastics. This is something no other renewable technology can provide.

Economic and financial benefits of AD

New sources of income:

- Selling biogas-based renewable energy
- Receipt of tipping fees for co-digestion feedstocks.
- Digestate-derived products...
- Create new opportunities for rural economic growth

AD System Process Components

On-site Organic Waste Collection System

Collects manure and other organic manner and transport these to digester facility

Anaerobic Digester

The digester converts the organic matter into biogas and other beneficial products

Biogas Handling System

Collects, stores and treats the biogas for beneficial use

Electricity and/or Heat — The biogas can be converted by mechanical systems into both electricity and heat

Renewable Natural Gas — Biogas can be purified, compressed and used for transportation fuel or injected into the natural gas system

Flare — Prevents uncontrolled methane emissions into the atmosphere

Off-site Waste Receipt and Pre-treatment

Receives and process off-site waste to be compatible with the digester plant

Rejects Storage and Handling

Provides storage and disposal for non-compatible off-site material

Digestate Handling System

Separates solid and liquid byproducts of the digestion process

Solid Coproducts — Includes fiber-based products, fertilizer, compost, soil amendment and bedding

Liquid Coproducts — Includes liquid fertilizer, flush water and concentrated nutrients

Economics of an AD project

Capital costs

- Property purchase
- AD plant installation
- · Plant life
- Interest rate

Operating costs

- Feedstock
- Labor
- Plant maintenance
- Service and inspection
- Spare parts

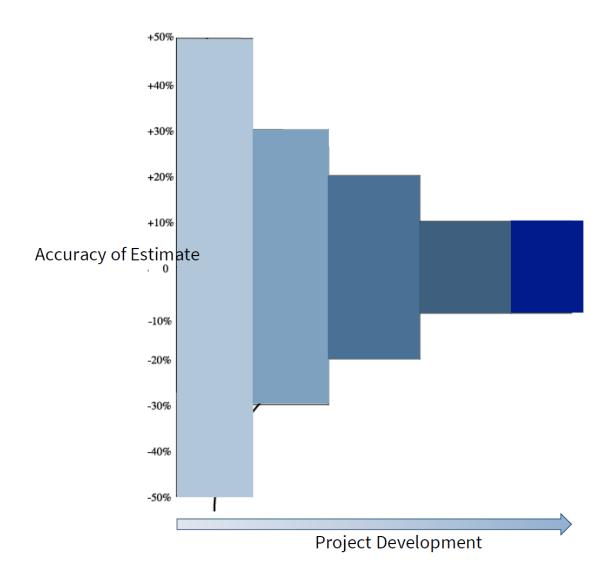
Other costs

- Insurance
- Administration

Revenues

- Revenue from heat sale or equivalent compensation
- Revenue from electricity sale or equivalent compensation
- Revenue from biogas/ biofuel sale
- Revenue from digestate sale
- Subsidies

Net revenue or energy production costs (\$/energy unit)

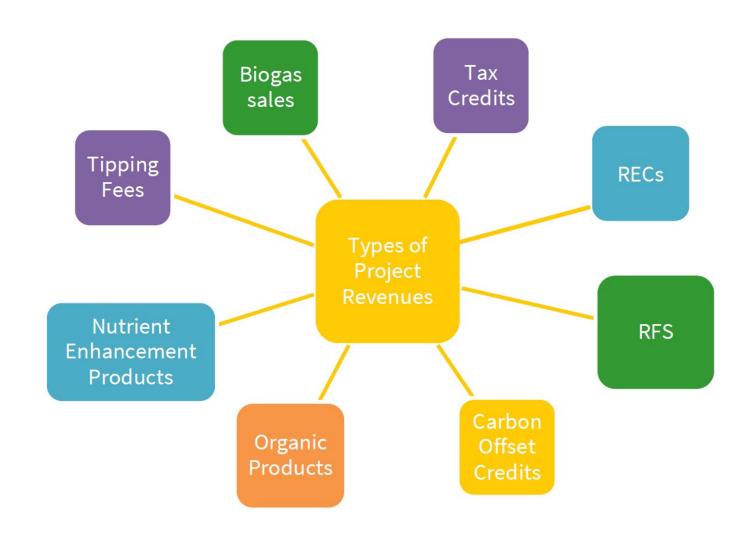

Capital investment

- Land acquisition;
- Site development;
- Civil works (earthwork, site work, etc.);
- Structure (buildings, tanks, etc.);
- Equipment (mixers, pumps, generator, relays, etc.);
- Equipment installation;
- Conveyance systems;

- Project controls;
- Interconnection;
- Permitting fees;
- Project management;
- Consulting and legal;
- Contractor overhead and profit; and
- Developer costs for process design and engineering services.

Other costs

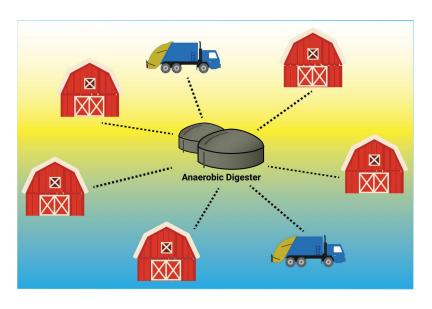
- Working capital
- Contingency

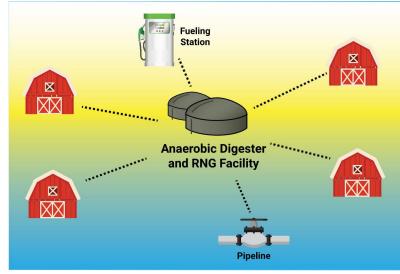

Operating expenses

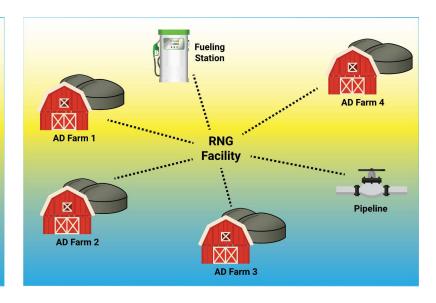
- Daily operating labor;
- Purchased utilities;
- Mechanical systems maintenance;
- Chemicals and consumables;
- Digestate disposal;
- Regulatory compliance;
- Insurance;
- Miscellaneous; and
- Property taxes.

Revenues

Owner and Operator Models


Farm owned and operated


Third party owned and operated


Third party operated

Hub and spoke

Hub and Spoke Systems

Feasibility studies

Opportunities for Smaller Farm-based AD/Biogas Systems

The success of farm-based systems is usually enhanced with a larger herd size. However, there are exceptions that create opportunities for smaller farms, including:

- Environmental issues
- Odor issues
- Energy production incentives
- Grant funding
- Farm location
- Manure collection practices
- AD/biogas system design
- Farm owner's goals

One exception, for example, is the ability of smaller farms to use co-digestion feedstocks to produce significantly more biogas than a manure-based system alone. Plus, the co-digestion feedstocks also provide new revenues from the tipping fees.

For example, the Bar-Way Farm in Deerfield, MA operates an AD/biogas system using the manure from only 250 dairy cows (see Figure 7.1). The project is successful because it annually co-digests 30,000 tons of food waste in addition to the 9,200 tons of manure produced by the dairy cattle.

Pre-feasibility

- Concentrated animal feeding operation (CAFO) status;
- Animal type and number of animals
 - For dairy farms lactating, dry and heifers, layers
 - For swine farms sow, nursery, finishing, and the stocking plan for the finishing operation
 - For poultry farms turkey or chicken, and for chicken layers or broilers;
- Barn type, including for example, free stall, open corral, slatted floor, cross ventilated;
- The amount of time livestock spend in barns as summarized on daily and yearly averages;
- Manure removal practices on the farm, including for example, flush, vacuum, scrape, pit, pull plug, deep pit manure management practices;
- Manure collection frequency;
- Water sources and amounts entering manure stream (e.g., parlor wash, manure flushing, and rainwater management on farm);
- Current manure handling practices (e.g., separation, lagoon, land application practices);
- Current energy uses (e.g., the cost and quantity of electricity, fuel oil, propane, natural gas, electricity service, single- or three-phase);
- Siting available and configuration;
- Co-digestion feedstocks, if any

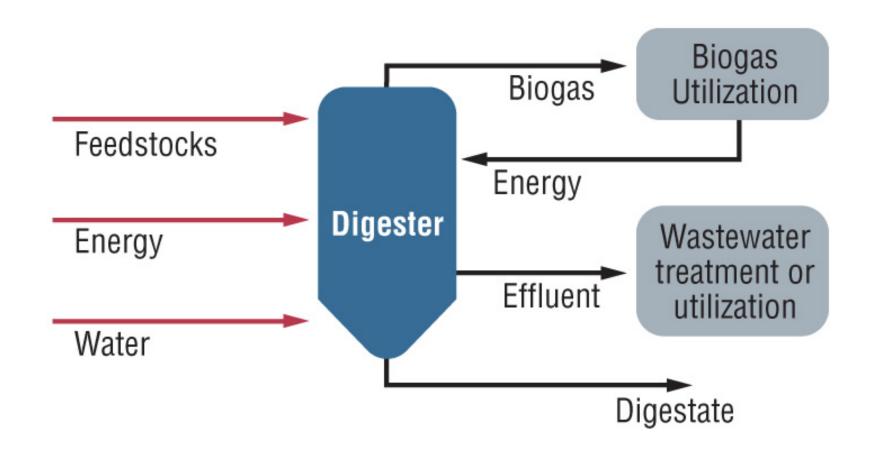
Feasibility

Feedstock definition

Recoverable products definition

Preliminary technology definition

Mass and energy balance


Capital cost estimate

Operating costs estimate

Revenues estimate

Economic and financial projections

Mass and energy balances

Sources

Bioresource Technology

Volume 247, January 2018, Pages 1015-1026

Review

Anaerobic digestion for bioenergy production: Global status, environmental and technoeconomic implications, and government policies

Juliana Vasco-Correa, Sami Khanal, Ashish Manandhar, Ajay Shah △ 🖾

Show more ✓

+ Add to Mendeley 📽 Share 🥦 Cite

https://doi.org/10.1016/j.biortech.2017.09.004

Get rights and content

Thank you

Questions?

Juliana Vasco-Correa

julianavasco@psu.edu @vascolab