

Techno-economic and Life-Cycle Analysis of a Commercial AD System

Fahmi Dwilaksono, Louis Faivor, Dana Kirk, Wei Liao

Anaerobic digestion Research and Education Center (ADREC) Biosystems and Agricultural Engineering, Michigan State University

> Manure Management and Utilization Technologies Purdue University Extension October 20, 2022

- 1. MSU South Campus Anaerobic Digester (MSU SCAD)
- 2. Organic wastes for the SCAD
- 3. Long-term operational data
- 4. Techno-economic analysis of the digestion operation
- 5. Life cycle impact analysis of the digestion operation
- 6. Summary

Why did the MSU build a demonstration digester

- Utilize food wastes from dining halls and animal wastes on campus
- Generate renewable electricity
- Control odor
- Mitigate climate change lowering greenhouse gas emissions
- Carry out research, education, and extension activities at the large scale

Organic solid wastes http://geographyblog.eu/wp/geography-of-food-wasteis-staggering/

Renewable electricity from a solar-bio-power unit

GHG emission http://www.huffingtonpost.com/2013/07/25/carbo emissions-developing-countries_n_3651513.html

Animal manure <u>www.wikipedia.com</u>

1. MSU South Campus Anaerobic Digester (SCAD)

Where is the MSU SCAD

Located next to the MSU Dairy Cattle Teaching and Research Center, 4075 College Rd, Lansing, 48910

1. MSU South Campus Anaerobic Digester (SCAD)

Configuration of the MSU SCAD

- Digester tank
 - 400,000 gallons
 - The tank with a diameter of 52 ft and a height of 26 ft plus cover
- Digestate storage tank
 - 2.1 million gallons
 - The tank with a diameter of 101 ft and a height of 42 ft plus cover
- CHP unit
 - 400 kW electrical production & 450 kW of thermal energy recovery
 - Offset power at 8 to 10 south campus facilities
 - Thermal energy used to sustain the process, heat support building and separator area
- Digestate treatment
 - Separated solids to compost
 - Separated liquid to storage and land application

MSU SCAD

1. MSU South Campus Anaerobic Digester (SCAD)

Organic wastes in manure pit and food waste pit for the SCAD

Organic wastes fed to different pits

No	Manure Pit	Food Pit
1	Digestate (recycle)	Filtrate (recycle)
2	Filtrate (recycle)	Cart Food Wastes (Pre and post- consumer)
3	ANS Other (i.e., eggs)	Fat, Oil, and Grease (FOG)
4	Beef Manure	Other
5	Dairy Gutter Manure (Dairy G)	Pineapple (P.A.) and other Fruits
6	Dairy Freestall Manure (Parlor)	Pulp
7	Poultry Manure	SLS Solids (Coarse digestate fiber)
8	SLS Solids	Waste Forage
9	Swine Manure	
10	Waste Forage	

Food wastes (Pre-consumer)

Fruit & Vegetable

Food wastes (Post-consumer)

Organic wastes in manure pit and food waste pit for the SCAD

Wastes in manure and food pits

Year	Manure Pit (Metric ton/year)	Food Pit (Metric ton/year)	Total (Metric ton/year)	Food Pit (%)
2014	14,763	8,533	23,297	37%
2015	13,805	12,800	26,605	48%
2016	11,059	11,726	22,785	51%
2017	11,109	9,129	20,238	45%
2018	10,859	8,605	19,464	44%
2019	11,353	10,539	21,893	48%
2020	10,332	14,531	24,863	58%
Max	14,763	14,531	26,605	58%
Min	10,332	8,533	19,464	37%
Mean	11,802	10,637	22,618	47%
Average	11,897	10,838	22,735	47%
St. Dev	1,683	2,294	2,499	7%

Monthly feeding amounts of different waste streams (2022)

Characterization of the organic wastes fed to the SCAD

Characterization of the organic wastes

Feedstock	TS (mg/L)	VS (mg/L)	рН	EC (mS/cm)	SCOD (mg/L)	TN (mg/L)	TP (mg/L)	NH3 (mg/L)
Parlor	63,844±20,998	52,742±18,966	7.01±0.30	13.72±1.37	25,900	2,190±214	1,210	932
Manure								
Beef	462,152±109,098	393,620±100,761	8.64±0.06	1.89±0.76	-	-	-	-
Dairy Gutter	162,268	142,940	8.23	7.74	-	5,050	1,386	1,085
FOG	120,191±172,277	105,384±142,739	5.50±1.51	12.17±38.04	109,380± 167,383	15,250	300	253.75
Food Other	219,447±286,460	193,795±265,043	5.41±1.45	8.52±6.03	-	9,139±10,502	1,032±1,36 0	195±363
Pineapple	127,389±14,312	114,749±5,820	3.91±0.04	2.26±0.62	-	595	109	62.70
Pulp	275,459	262,105	4.36	1.49	-	-	-	-

Digester temperature (2014-2020)

Profile of monthly digester temperature

3. Long-term Operational Data

Hydraulic retention time (HRT) (2018-2020)

Comparison of HRT in 2018-2020: daily, 7 days average, and 30 average

	HRT										
	Day										
Month		2018			2019			2020			
	Doily	7 Days	30 Days	Daily	7 Days	30 Days	Doily	7 Days	30 Days		
	Daily	AVG	AVG	Daily	AVG	AVG	Daily	AVG	AVG		
January	24	24	24	29	21	21	20	20	20		
February	28	25	25	71	42	29	19	19	19		
March	23	23	23	26	25	30	30	24	22		
April	21	26	24	27	26	25	28	24	23		
May	20	28	25	18	19	21	20	22	22		
June	24	29	28	20	22	19	27	28	25		
July	20	28	29	28	25	24	28	21	24		
August	25	34	30	35	26	25	18	16	7		
September	18	27	31	20	24	20	25	19	19		
October	20	28	26	35	21	20	18	16	16		
November	21	24	25	40	31	27	27	26	21		
December	18	22	22	26	25	25	67	26	26		
Average	21.7	26.5	25.9	31.2	25.69	23.8	27.3	21.8	20.3		
St. Dev	2.8	3.1	2.7	13.6	5.9	3.5	12.6	3.8	4.8		

11

Biogas production and methane content (2014-2020)

Distribution of daily biogas production

Biogas production and methane content (2014-2020)

Distribution of H2S content in biogas

Distribution of methane content in biogas

Characteristics of digestate (2014-2020)

Distribution of TS in the digestate

Distribution of TN in the digestate

Characteristics of digestate (2014-2020)

Distribution of pH in the digestate

3. Long-term Operational Data

TS and VS reduction (2014-2020)

TS reduction

VS reduction

		Reduction			
Year		mg/L)		0/
	Influent	n	Effluent	n	%
2014	93,359±12,280	12	49,085±5,709	11	47
2015	107,615±4,216	4	57,082±8,282	10	47
2016	104,673±20,115	7	65,928±7,110	12	37
2017	107,881±17,283	3	70,359±5,929	9	35
2018	113,498	1	58,913±3,944	12	48
2019	-		59,702±6,768	10	-
2020	-		64,138±6,668	7	-
Max	113,498		70,359		48
Min	93,359		49,085		35
Mean	105,186		60,398		42
Average	105,405		60,744		43
St. Dev	6,666		6,377		6

		Reduction			
Year		0/			
	Influent	n	Effluent	n	7 0
2014	80,623±10,397	12	38,018±4,767	11	53
2015	93,101±3,727	4	43,803±7,684	10	53
2016	90,718±17,274	7	52,485±6,158	12	42
2017	96,555±16,237	3	58,056±4,682	9	40
2018	103,020	1	47,524±3,339	12	54
2019	-		47,354±6,291	10	-
2020	-		51,626±5,843	7	-
Max	103,020		58,056		54
Min	80,623		38,018		40
Mean	92,504		48,029		48
Average	92,803		48,209		48
St. Dev	7,366		5,989		6

Summary of the SCAD performance (2014-2020)

	Input			Output				
Year	Total Manure Pit Metric Ton	Total Food Pit Metric Ton	Total Feedstock Metric Ton	Total Biogas SCM	Total Electricity kWh	Effluent Total Metric Ton	Wet Fiber Total Metric Ton	
2014	14,763	8,533	23,297	846,232	1,727,073	11,273	3,920	
2015	13,805	12,800	26,605	1,103,695	2,118,966	14,100	4,858	
2016	11,059	11,726	22,785	1,418,746	1,470,356	14,007	3,583	
2017	11,109	9,129	20,238	1,326,335	2,169,693	12,751	2,779	
2018	10,859	8,605	19,464	1,348,024	2,680,954	14,857	1,884	
2019	11,353	10,539	21,893	1,280,438	2,333,449	15,762	2,758	
2020	10,332	14,531	24,863	1,340,179	2,664,665	17,745	3,082	
Total	83,281	75,864	159,145	8,663,649	15,165,156	100,495	22,864	
Average	11,897	10,838	22,735	1,237,664	2,680,954	14,356	3,266	
St. Deviation	1,683	2,294	2,499	198,468	1,470,356	2,081	958	

4. Techno-economic Analysis

Mass balance of the digestion system *

Energy balance of the digestion system^a

	SCAD
Energy input	
Heat input (W _{heat} , kWh-e/year) ^b	-742,090
Electricity input (W _{electricity} , kWh-e/year) ^c	-170,320
Energy output	
Energy output as heat (E _{heat} , kWh-e/year) ^d	5,584,551
Energy output as electricity (E _{electricity} , kWh-e/year) ^e	2,462,190
Net energy output	
Net heat output (kWh-e/year) ^f	4,842,461
Net electricity output (kWh-e/year) ^g	2,291,870

a. Negative numbers mean energy inputs, and positive numbers mean energy outputs.

b. Eq. 1 was used to calculate the heat input.

c. Eq. 2 was used to calculate the electricity input.

d. The annual biogas production of 1,323,757 m³ with 65% (v/v) of methane was used to calculate the energy content of the biogas. The low heating value of methane is 35.8 MJ/m^3 methane. The thermal conversion efficiency of the CHP unit is 65%.

e. The electricity output is the metered number of the digestion operation.

f. The net heat output = $E_{heat} - W_{heat}$

g. The net electricity output = $E_{electricity}$ - $W_{electricity}$

4. Techno-economic Analysis

Economic performance of the digestion system^a

Capital expenditure (CapEX)	Cost	Reference
Feedstock Receiving	\$727,927	Data
Digester	\$1,442,140	Data
СНР	\$778,651	Data
Bond	\$38,143	Data
Interconnection	\$300,000	Data
Site improvements & excavation	\$300,000	Data
Total CapEX	\$3,586,861	

Revenue (per year)	Cost	Reference
Electricity ^b	\$237,746	Data
Tipping	\$217,854	Data
Total revenue (per year)	\$455,600	
Total net revenue (per year) ^c	\$157,444	
Payback time (Years) ^d	21.5	

OpEX (per year)	Cost	Reference
AD Repairs	\$28,373	Data
ADMIN Fee	\$2,948	Data
Bio Analysis	\$2,827	Data
CHPS	\$74,226	Data
Labor	\$123,616	Data
Laundry	\$378	Data
Maintenance and Repair	\$6,482	Data
MISC	\$4,064	Data
Motor Pool / Vehicle	\$1,165	Data
Supplies	\$396	Data
Telephone	\$772	Data
Transport (DHT)	\$52,910	Data
Total OpEX (per year)	\$298,156	

- a. The OpEX and revenue are the operational data from 2019-2020.
- b. The average electricity price is \$0.10/kWh.
- c. The net revenue = Total revenue Total OpEx
- d. The 5-year average local inflation of 3.2% in the U.S. is used as the inflation rate. The depreciation period is set at 20 years. The depreciation is just on CapEx. The annual depreciation rates from MARCRS (Modified Accelerated Cost Recovery System) are: 0.100, 0.188, 0.144, 0.115, 0.092, 0.074, 0.066, 0.066, 0.065, 0.065, and 0.033 (after 10 years).

- Nine variables feedstock receiving, digester, CHP, interconnections, site improvements, CHP maintenance, labor, electricity, and tipping fees – were taken into consideration for the economic sensitivity.
- The analysis was done by modifying each variable by ± 25% while keeping the other variables constant for the baseline scenario.
- The electricity revenue and tipping fees are the main factor to the economic performance of the commercial digesters. The payback period is reduced to 10 and 11 years, respectively, with 25% increase on electricity cost and tipping fees.

Scenarios and boundaries for life cycle impact assessment

- Scenario 1: Co-digestion system of manure and food wastes
- Scenario 0: Lagoon storage and landfill application of manure and food waste

and Aaricultural Engineeri

5. Life Cycle Impact Analysis

Inventory for th	a lifa d	vola im	nact accas	scmont a	
mventory for th			paci asses	5111111	Biogas
	Value	Unit	Source	DQI	CII
	Raw	materials			$CH_4 cor$
Manure wastes	10,913	Metric ton/year	Data	1, 1, 2, 2, 1, 1	CO ₂ co
Total solids of manure wastes	11.4	%	Data	1, 1, 2, 2, 1, 1	Electric biogas
Volatile solids of manure wastes	10.0	%	Data	1, 1, 2, 2, 1, 1	Heat pr
TN of manure wastes	4,143	mg/kg	Data	1, 1, 2, 2, 1, 1	Effluen
TP of manure wastes	413	mg/kg	Data	1, 1, 2, 2, 1, 1	
sCOD of manure wastes	59,446	mg/kg	Data	1, 1, 2, 2, 1, 1	TN of e
Food wastes	10,701	Metric ton/year	Data	1, 1, 2, 2, 1, 1	TP of e
Total solids of food wastes	10.1	%	Data	1, 1, 2, 2, 1, 1	N ₂ O en effluen
Volatile solids of food wastes	9.3	%	Data	1, 1, 2, 2, 1, 1	CH_4 en
TN of food wastes	5,318	mg/kg	Data	1, 1, 2, 2, 1, 1	Water of
TP of food wastes	449	mg/kg	Data	1, 1, 2, 2, 1, 1	potenti
sCOD of food wastes	17,525	mg/kg	Data	1, 1, 2, 2, 1, 1	Water of

	Value	Unit	Source	DQI								
Anaerobic digestion and energy production inventory												
Biogas production	1,323,757	m ³ /year	Data	1, 1, 2, 2, 1, 1								
CH ₄ content in biogas	65	% v/v	Data	1, 1, 2, 2, 1, 1								
CO ₂ content in biogas	34	% v/v	Data	1, 1, 2, 2, 1, 1								
Electricity production from piogas	2,462,190	kWh-e/year	Data	1, 1, 2, 2, 1, 1								
Heat production from biogas	5,584,551	kWh-e/year	Data	1, 1, 2, 2, 1, 1								
Effluent	19,948	Metric ton/year	Data	1, 1, 2, 2, 1, 1								
rs of effluent	6.3	% (w/w)	Data	1, 1, 2, 2, 1, 1								
TN of effluent	3,246	mg/kg	Data	1, 1, 2, 2, 1, 1								
rP of effluent	584	mg/kg	Data	1, 1, 2, 2, 1, 1								
COD of effluent	7,894	mg/kg	Data	1, 1, 2, 2, 1, 1								
N_2O emission from the effluent	0.005	g N ₂ O/g TN	Ref.	2, 1, 1, 4, 1, 2								
GWP of N ₂ O	298	$g CO_2$ -e/ $g N_2O$	Ref.	2, 1, 1, 4, 1, 2								
CH ₄ emission from effluent	3.08×10 ⁻⁴	Metric ton CO ₂ - e/metric ton TS	Ref.	2, 1, 1, 4, 2, 2								
Water eutrophication potential (WEP) of TN	0.9864	g N-e/kg TN	Ref.	2, 1, 1, 4, 1, 2								
Water eutrophication potential (WEP) of TP	7.29	g N-e/kg TP	Ref.	2, 1, 1, 4, 1, 2								
Water eutrophication potential (WEP) of COD	0.05	G N-e/kg COD	Ref.	2, 1, 1, 4, 1, 2								

Inventory for the life cycle impact assessment ^a (cont'd)

						1				
	Value	Unit	Source	DOI		Value	Unit	Source	DQI	
					Food wastes landfill inventory with landfill gas (LFG) combustion					
CH_4 emission	0.127	$\begin{array}{c} \text{Metric} \\ \text{ton} \\ \text{CH}_4/\text{metr} \end{array}$	(Owen & Silver, 2015)	2, 1, 1, 3, 2, 2	CH_4 emission, food wastes landfill	2.3	Metric ton CO ₂ - e/ton TS food waste	(Environment al Protection Agency, 2020) ^b	2, 1, 1, 1, 2, 2	
N ₂ O emission	0.005	$\frac{\text{ic ton VS}}{\text{g N}_2\text{O/g}}$ TN in the	(RTI International	2, 1, 1, 4, 1, 2	N ₂ O emission	0.005	g N ₂ O/g TN in the waste	(RTI International, 2010)	2, 1, 1, 4, 1, 2	
Water eutrophication potential (WEP) of TN	0.9864	g N-e/kg TN in the	, 2010) (RTI International	2, 1, 1, 4, 1, 2	Water eutrophication potential (WEP) of TN	0.9864	g N-e/kg TN in the waste	(RTI International, 2010)	2, 1, 1, 4, 1, 2	
Water eutrophication potential (WEP) of TP	7.29	g N-e/kg TP in the	(RTI International	2, 1, 1, 4, 1, 2	Water eutrophication potential (WEP) of TP	7.29	g N-e/kg TP in the waste	(RTI International, 2010)	2, 1, 1, 4, 1, 2	
Water eutrophication potential (WEP) of COD	0.05	g N-e/kg COD in	(RTI International	2, 1, 1, 4, 1, 2	Water eutrophication potential (WEP) of COD	0.05	G N-e/kg COD in the waste	(RTI International, 2010)	2, 1, 1, 4, 1, 2	
		the waste	, 2010)		Water eutrophication potential (WEP) of COD	0.05	G N-e/kg COD	Ref.	2, 1, 1, 4, 1, 2	

a. CO_2 from manure wastes and food wastes is not counted in the calculation of greenhouse gas emissions because the CO_2 is considered of biogenic origin and therefore is assumed to be offset by CO_2 capture by regrowth of the plants.

b. The moisture content of the typical food wastes in the reference is set at 70%.

The life cycle impact assessment

- The SCAD reduces GWP up to 70%.
- The SCAD reduces WEP up to 25%.

- With understanding characteristics of different feedstock, anaerobic co-digestion can handle multiple waste streams to enhance digestion performance (biogas production).
- Dairy manure is a significant component to stabilize the digestion performance.
- Increasing the value of biogas (e.g., renewable natural gas) is a key factor to improve the economic performance of the digestion, and reduce the payback time.
- The life cycle impact analysis elucidated that the anaerobic digestion can significantly reduce GWP and WEP. The liquid digestate needs to be further treated to reduce the WEP of anaerobic digestion.

MSU Anaerobic Digestion Research and Education Center (MSU ADREC)

Main building of ADREC

High-bay area

Wet labs

Hot room

The pilot solar-bio-power system in Costa Rica

A plug-flow digester (1,000 m³)

The container waste utilization unit

Pilot membrane reactor and ultrafiltration unit

Homepage: http://www.egr.msu.edu/bae/adrec/