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1.  Introduction

Over the past several decades, scientific studies of insect flight 
have been greatly advanced with new experimental techniques 
ranging from measurements of flow field to aerodynamics of 
flight. Within insect flight studies, insect wing deformation 
and strain have been interesting topics to scientists owing 
to their variety between different species, between different 
flight types of the same insect and even between different 
strokes of the same type of flight [1]. In addition, the deforma-
tion and strain of wings could contain important information 
for lift force analysis [2], which could provide vital insightful 
knowledge for flapping wing design.

In the past, scientists have made great attempts to study 
insect wing deformation by first identifying some general 
patterns of bending during the wing stroke cycles using still 
photographs [3]. In recent decades, scientists have started to 
use optical techniques to quantify the deformation of wings. 
Scientists first attempted to actively illuminate thin laser 
strips onto the flapping wings, and quantify the wing defor-
mation by analyzing the distorted stripes captured by high-
speed cameras [2, 4–7]. However, as shown in figure 1(a), the 
spatial resolutions of such methods are limited by the sparsely 
illuminated ‘comb-shape’-like laser stripes. Moreover, it is 
difficult to track any specific points on the wings with such 
methods [8].
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To overcome the latter limitation, scientists started to use 
high-speed stereo videography [9] to provide quantitative 
descriptions of wing morphology. Within this technique, one 
of the widely adopted methods is to use fiducial markers as 
joints to facilitate identification of similar points in different 
cameras, and 3D information of those joints can be obtained 
by the well-established stereo vision technique. The geom-
etry of the wings can be reconstructed through the joint-based 
hierarchical subdivision surface method [8, 9]. A schematic 
diagram of this method is shown in figure  1(b). Over the 
years, high-speed videography techniques have been widely 
adopted to study a variety of species including hummingbirds 
[10, 11], moths [12], dragonflies [8], butterflies [13], bats [14], 
etc. An important advantage of such methods is that some spe-
cific points (e.g. marker points) can be tracked in different 
frames to accurately quantify the motion and deformations 
of those points of interest. However, since this stereo vision 
based technique hinges on identifying similar points in dif-
ferent camera perspectives, a major limitation of this method 
is that only those sparsely arranged marker points are pre-
cisely measured, albeit the rest of the points can be interpo-
lated through geometric modeling methods [8]. This makes it 
challenging for performing high-resolution deformation and 
strain analysis. In reality, for a deformable flying structure, 
performing high-resolution mechanics testing is of great value 
for analyzing its fluid-structure interactions [15]. Therefore, it 
is important to develop technologies that can perform high-
resolution mechanics evaluation.

Different from the high-speed stereo videography method, 
the digital fringe projection (DFP) technique can reconstruct 
3D geometries of the entire scene with high resolution and 
accuracy [16]. As shown in figure  1(c), a DFP technique 
essentially uses a video projector to illuminate sinusoidal pat-
terns onto the sampled surface, and a camera from another 
viewing angle is to capture the distorted fringe patterns to 
obtain 3D information through fringe analysis. Its high spatial 
resolution makes it possible to realize full-field strain analysis 
if the dynamic deforming process of the flapping wings can 
be captured. In this research, we investigate a special type of 
flapping wing made of an inextensible thin membrane. First, 
we developed a DFP system to measure the dynamic 3D 

geometries of the rapidly deforming wings. Specifically, we 
use a digital-light-processing (DLP) projector to project binary 
defocused patterns on the wings at 5000 Hz. A precisely syn-
chronized camera captures the distorted fringe patterns by the 
object surface. The captured distorted patterns are analyzed 
by a fringe analysis method for 3D topological reconstruction. 
Once the dynamic 3D geometries are precisely measured, the 
strain for each point can be computed through examining the 
geometric deformations. In this research, we also develop a 
strain analysis framework based on geodesic computation 
and the Kirchhoff–Love shell theory. We first develop a novel 
point tracking method based on surface geometry using a pro-
posed method that enhances the Dijkstra’s algorithm [17]. 
The Green–Lagrange strain tensor of each tracked point is 
then determined by the curvature change from its strain-free 
condition. Experimental results on 3D reconstruction, valida-
tion of point tracking, as well as dynamic evaluation of the 
strain field demonstrate the success of our proposed method. 
Our strain analysis framework is solely based on surface geo-
metric information, and thus is advantageous for applications 
where the measured surface does not contain significant tex-
tural variations across the entire image or special surface treat-
ment is undesirable.

Section 2 introduces some theoretical principles and basic 
technologies related to this research. Section 3 demonstrates 
the results showing the success of our proposed research. 
Section  4 discusses the merits and limitations of our work, 
and section 5 draws a conclusion of this research.

2.  Methods

In this section, we will elaborate the theoretical foundations 
of superfast 3D imaging, our innovated geodesic-based point 
tracking method, as well as our developed strain computa-
tional framework.

2.1.  Superfast 3D imaging

We used a modified Fourier transform profilometry (FTP) 
method [18] for 3D reconstruction. The basic principles can 

Figure 1.  A schematic diagram of (a) the laser stripe projection technology, (b) the 3D stereo videography technology, and (c) the digital 
fringe projection technology.
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be explained as follows. In theory, two different fringe pat-
terns with a phase shift of π can be described as

I1 = I′(x, y) + I′′(x, y) cos[φ(x, y)],� (1)

I2 = I′(x, y)− I′′(x, y) cos[φ(x, y)],� (2)

where I′(x, y) stands for the average intensity or DC comp
onent, I′′(x, y) represents the intensity modulation, and φ(x, y) 
is the phase information to be computed. After subtracting the 
two fringe images, we can get rid of the DC component and 
obtain

I = (I1 − I2)/2 = I′′(x, y) cos[φ(x, y)].� (3)

Using Euler’s formula, we can reformulate equation (3) as a 
summation of two harmonic conjugate components:

I =
I′′(x, y)

2

[
e jφ(x,y) + e−jφ(x,y)

]
.� (4)

To preserve only one of the two harmonic conjugate comp
onents, we can apply a bandpass filter and obtain the final 
fringe image as

If (x, y) =
I′′(x, y)

2
e jφ(x,y).� (5)

In this research, we chose to use a Hanning window as the 
bandpass filter [18]. After filtering, we can extract the phase 
through an arctangent function:

φ(x, y) = tan−1
{

Im [If (x, y)]
Re [If (x, y)]

}
.� (6)

From equation (6), one can see that the phase φ is in the form 
of an arctangent function. As a result, the extracted phase 
φ is wrapped with a range from −π to π. Therefore, phase 
unwrapping is necessary to obtain an absolute phase map. In 
this research, we adopted a histogram-based method [19] for 
absolute phase retrieval.

From equations (1) and (2), we can see that the modified 
FTP method requires the projection of more than one 8-bit 
sinusoidal pattern. However, the refresh rate of 8-bit pat-
terns are typically limited to several hundred Hz even for 
modern DLP projectors (e.g. 247 Hz for Wintech PRO 6500). 
Consider that our flapping wing robot (e.g. XTIM Bionic Bird 
Avitron V2.0) flaps 25 cycles per second, this projection speed 
is not sufficient for high-quality 3D imaging. Alternatively, 
as introduced by Lei and Zhang [20], one can project 1-bit 
square binary patterns with projector defocusing to produce 
a quasi-sinusoidal profile. This method is called the binary 
defocusing method. The basic principle of the binary defo-
cusing technique is that the projector defocusing effect, which 
is essentially similar to a Gaussian low-pass filter, can effec-
tively suppress high-order harmonics of a square wave in the 
Fourier frequency spectrum. Over the past decade, scientists 
have adopted different methods to further suppress high-order 
harmonics by means of pulse-width modulation [21], area 
modulation [22], dithering [23] and so forth. With the reduced 
data transfer load from 8-bit to 1-bit images, the DLP projec-
tors have enabled kHz 3D shaped measurement speeds [24]. 
In this research, we used a set of area-modulated patterns [25] 

for phase extraction and a set of dithered patterns [23] for 
unwrapping. The fringe pitch for area modulated patterns and 
dithered patterns are T  =  24 and T  =  380 pixels, respectively.

2.2.  Geodesic-based point tracking

Although we have obtained the 3D data for each frame with 
superfast 3D imaging, performing strain analysis for each 
3D frame is nevertheless challenging since it requires point 
tracking on the wings so that the strains can be computed by 
examining the geometric deformations. In this section, we 
will introduce our proposed geometry-based point tracking 
method for inextensible membranes assisted by the computa-
tion of geodesic distance.

For an inextensible surface, an important property is that 
the geodesic distances will be retained after surface deforma-
tion [26], which provides us with additional constraints to per-
form point tracking. For any point p(t0) on the initial surface 
configuration S(t0), we need to identify its corresponding point 
p(t) on a deformed surface configuration S(t). Figure 2 illus-
trates a schematic diagram of our proposed tracking approach 
using geodesic computation. Suppose we have two anchor 
points c1 and c2, for any point p(t0) on an initial undeformed 
surface S(t0), we compute its geodesic distances d1 and d2, 
respectively, to the anchor points c1 and c2. Then, on the cur
rent deformed surface S(t), we extract the curves γ1 and γ2, 
respectively, with equal geodesic distances d1 and d2. Finally, 
we identify the point p(t) by computing the numerical solu-
tion of the intersecting point of γ1 and γ2. Next, we introduce 
the detailed procedures of our proposed tracking approach.

The first step of our tracking approach is to compute the 
geodesic distances of any point p(t0) to the anchor points c1 
and c2. The geodesic distance is essentially the length of the 
shortest distance between two points on the surface. Some 
well-known computational approaches include Dijkstra’s 
algorithm [17], which is based on distance computation, and 
the fast marching algorithm [27, 28], which is based on gra-
dient computation. In this research, we developed a compu-
tational approach that is based on Dijkstra’s algorithm, but 
optimized to our case by considering that the surface data 
could contain some noise.

Dijkstra’s algorithm finds the shortest path from the a 
given anchor point on the graph to any other nodes on the 
graph. Figure 3 shows a simple example of the computational 

Figure 2.  Finding the correspondence between point p(t0) on the 
initial surface configuration S(t0) and point p(t) on the current-
deformed configuration S(t); p(t) is identified by finding the 
intersecting point of the curves γ1(x, y, z) with equal geodesic 
distance d1 and γ2(x, y, z) with equal geodesic distance d2.
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procedure of Dijkstra’s algorithm. Suppose node 1 on the 
graph is the initial anchor point, the distances from which will 
be computed for each of its neighbors. The one that has the 
smallest distance becomes the new anchor point, and the pre-
vious anchor point will not be visited again and marked as out. 
This procedure continues, and the distance value of each node 
will be updated whenever a smaller distance value is found. 
Once all node points have been marked as out, the entire pro-
cedure is done.

Dijkstra’s algorithm performs a good approximation 
of geodesic computation if the data is ideal and noise-free. 
However, since our reconstructed 3D data could be ‘polluted’ 
by camera noise, here we propose an optimization of the 
conventional Dijkstra algorithm. The optimization is mainly 
composed of two parts: (1) selecting a bigger neighborhood 
window (i.e. 7  ×  7) for possible marching directions; (2) 
using a fitted cubic Bézier curve to substitute the direct sum-
mation of line segments. Figure 4 illustrates the optimization 
scheme of our proposed geodesic computational method. For 
each currently visited node P0, instead of only searching its 
four-connectivity or eight-connectivity neighbors, we pick its 
7 × 7 neighborhood and search all possible marching direc-
tions within this 7 × 7 window, as illustrated on the left-hand 
diagram. For each searching path (e.g. the path denoted by the 
purple arrow), we pick two more points, P1 and P2, in addi-
tion to the start point P0 and end point P3. After picking up the 
four points P0–P3, we then fit a cubic Bézier curve that can be 
formulated as follows:

B(t) = (1 − t)3P0 + 3(1 − t)2tP1

+ 3(1 − t)t2P2 + t3P3, 0 � t � 1.
�

(7)

Then, the surface distance d(P0, P3) between the nodes P0 and 
P3 is estimated as the arc length of the fitted Bézier curve.

d(P0, P3) =

∫ 1

0
|B′(t)| dt,� (8)

where B′(t) is the first-order derivative of the Bézier curve 
B(t).

With this optimized scheme for geodesic computation, 
we can generate maps of geodesic distances D1(t,u,v) and 
D2(t,u,v) with respect to anchor points c1 and c2. Then, we 
extract a set of points p1(t) and p2(t) with equal geodesic dis-
tance d1 and d2, respectively, and perform a least-square fitting 
into spatial curves γ1[x(τ), y(τ), z(τ)] and γ2[x(τ), y(τ), z(τ)] 
of fourth-order polynomials. For instance, the parametric rep-
resentation of a fourth-order spatial curve γ[x(τ), y(τ), z(τ)] 
can be expressed as

[
x y z

]T
= M

[
τ 4 τ 3 τ 2 τ 1,

]T
� (9)

where M is a 3  ×  5 coefficient matrix. The matching point 
p(t) can be identified by the intersecting point of the spatial 
curves γ1[x(τ), y(τ), z(τ)] and γ2[x(τ), y(τ), z(τ)]:

p(t) = {(x, y, z)|γ1(x, y, z) ∩ γ2(x, y, z)} .� (10)

The numerical solution for this set of simultaneous nonlinear 
equations was computed using the MatLab fsolve function.

2.3.  Strain computation

As is shown in figure 5, once we can determine the point-to-
point correspondence between a current frame S(t) and the 
initial frame S(t0), we can then calculate the Green–Lagrange 
strain tensor on that specific point. According to the Kirchoff–
Love shell theory [29], the coefficients Eαβ of the Green–
Lagrange strain tensor can be modeled as [30, 31]
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Figure 3.  An example of computing the shortest distance by using Dijkstra’s algorithm. The numbers between two different nodes denote 
the length of the path connecting the two nodes. (a)–(f) The computational procedure. Node 1 is the initial anchor point. Each unvisited 
vertex with the lowest distance becomes the new anchor points, and the old anchor points will not be visited again. Each visited node will 
have an updated distance value if smaller than the previously marked distance value.

Meas. Sci. Technol. 29 (2018) 045402



B Li and S Zhang﻿

5

Eαβ = εαβ + θ3καβ , α,β = 1, 2,� (11)

where α,β = 1, 2 denotes the indexes of the matrix tensor; 
εαβ denotes the membrane strain due to surface extension 
or compression; καβ represents the curvature changes due 
to bending, and θ3 is the coordinate in thickness direction 
(−0.5h � θ3 � 0.5h, h represents the thickness).

Since the wings of our bird robot are made of a thin layer 
of inelastic plastic membrane with uniform thickness of h, 
according to Borg [32, 33], the elastic membrane strain εαβ 
reduces to 0 and the model can be simplified as

Eαβ = −h
2
καβ . α,β = 1, 2.� (12)

The curvature change καβ is defined by the change in cur-
vature tensor coefficients

καβ = bαβ − Bαβ , α,β = 1, 2,� (13)

where bαβ and Bαβ are, respectively, the curvature tensor 
coefficients of the point on the current and initial surface 
configuration. In fact, bαβ and Bαβ are defined by the second 
fundamental forms of the surfaces. To compute their second 
fundamental forms, now suppose that we have already found 
the corresponding points p(t0) and p(t), respectively, on the 
initial undeformed and current deformed surfaces, we select 
a 15 × 15 pixels neighborhood for both p(t0) and p(t) and fit 
them into quadratic surfaces r(θ1, θ2) as

x = θ1,� (14)

y = θ2,� (15)

z = Aθ2
1 + Bθ2

2 + Cθ1θ2 + Dθ1 + Eθ2 + F.� (16)

We coincide θ1 and θ2  with the world coordinate x and y to 
ensure that our surfaces are using the same parameterization. 
Then, we find the tangent plane base vectors (G1, G2) and (g1, 
g2), respectively, from the initial undeformed state S(t0) and 
the current deformed state S(t) as [30, 31]

(G1, G2) =

[
∂r(t0)
∂θ1

,
∂r(t0)
∂θ2

]
,� (17)

(g1, g2) =

[
∂r(t)
∂θ1

,
∂r(t)
∂θ2

]
.� (18)

Then, the second-order partial derivatives can be computed as

Gαβ =
∂2r(t0)
∂θα∂θβ

, gαβ =
∂2r(t)
∂θα∂θβ

. α,β = 1, 2.� (19)

Finally, the curvature tensor coefficients bαβ and Bαβ can be 
computed by their corresponding second fundamental forms:

Bαβ = Gαβ · G3, bαβ = gαβ · g3. α,β = 1, 2,� (20)

where G3 and g3 are, respectively, the normal vectors given by

G3 =
G1 × G2

|G1 × G2|
, g3 =

g1 × g2

|g1 × g2|
.� (21)

Once we have computed the curvature tensor coefficients bαβ 
and Bαβ, we can compute the strain tensor coefficients Eαβ 
by referring to equations (12) and (13). For visualization pur-
poses, we demonstrate the strain maps in our later results (see 
figure 16) by extracting the dominant eigenvalue of the com-
puted strain tensor.

P0 P3

P2P1

All marching directions Cubic Bézier curve fitting

Figure 4.  Optimization of Dijkstra’s algorithm in accordance with 
our measured 3D data. Each grid point on the left figure denotes 
one 3D point corresponding to a camera pixel. For each currently 
visited point P0, we pick its 7 × 7 neighborhood and search all 
possible marching directions as illustrated. For each searching path, 
we pick two more points in addition to the start and end point, and 
the distance is computed as the arc length of the interpolated cubic 
Bézier curve.

Figure 5.  Notations in differential geometry. (Gα, Gβ) and (gα, gβ) 
are the base vectors of the tangent planes of the initial configuration 
S(t0) and the deformed surface S(t); G3 and g3 are the corresponding 
normal vectors; r(t0) and r(t) are the position vectors; θ1 and θ2  
denote the surface parametrizations which coincide with world 
coordinate x and y in our research.

Robotic bird High-speed camera

High-speed projector

Synchronization circuit

Figure 6.  Photograph of the test system.
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3.  Results

3.1.  Superfast 3D imaging of a robotic bird’s flapping wing

We built a DFP system as shown in figure 6 for superfast 3D 
imaging. The system is composed of a high-speed DLP pro-
jector (Wintech PRO 6500) for fringe projection and a high-
speed CMOS camera (NAC MEMRECAM GX-8F) for image 
acquisition. The fringe projection speed was set as 5000 Hz 
with an image resolution of 1920 × 1080 pixels. Precisely 
synchronized with the fringe projection, the camera captures 
images also at a rate of 5000 Hz with an image resolution of 
800 × 600 pixels. A lens (SIGMA 24 mm f/1.8 EX DG) with 

a focal length of 24 mm is attached to the camera whose aper-
ture ranges from f/1.8 to f/22. The robotic bird (XTIM Bionic 
Bird Avitron version 2.0) that we used in this research has a 
beat frequency of approximately 25 cycles per second with 
both wings made of inextensible thin membranes. The rib is 
made of a single metal bar positioned on the upper boundary 
of the wing. The total span of a single wing is about 150 mm 
(L)  ×  70 mm (W). We employed a modified FTP method [18] 
for 3D reconstruction. In our strain evaluation, we performed 
analysis with 30 803 and 29 840 points on the left and right 
wing, respectively, which equals the total number of pixels 
that the wings occupy in our initial frame. We took the first 
100 frames for 3D reconstruction and strain analysis.

(c)(b)

(f)(e)(d)

Anchor points

(a)

5

4

3
1

2

5 3
4

2

1

Marker points

Figure 7.  3D measurement results of a flying bird robot with markers and anchor points for validation of our proposed point tracking. 
These markers are used to compare our point tracking scheme with the marker-based point tracking. (a)–(c) Three sample frames of 2D 
images from supplemental video S1; (d)–(f) three sample frames of 3D geometries from video S1.

(c)(b)

(f)(e)(d)

(a)

Anchor points

Figure 8.  3D measurement results of a flying bird robot with anchor points only for strain computation. The markers are removed to reduce 
potential mechanics changes. (a)–(c) Three sample frames of 2D images from supplemental video S2; (d)–(f) three sample frames of 3D 
geometries in supplemental video S2.
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We captured two sets of 3D data in preparation for further 
strain analysis: (1) with both two anchor points (black) on the 
corner and five marker points (white) inside of each robot wing 
(see figures 7(a)–(c)); (2) with only two anchor points (black) 
on the corner of each robot wing (see figures 8(a)–(c)). We 
used our first dataset to validate our proposed point-tracking 
method by comparing it with conventional marker-based point 
tracking; then, we used our second dataset to perform strain 
computation. Since our proposed method does not need those 
markers inside of the wings, we removed them in our second 
dataset to reduce the potential mechanics changes caused by 
markers. The purpose of anchor points is to assist our proposed 
geometry-based point tracking. Figures  7(d)–(f) (supple-
mental video S1 (stacks.iop.org/MST/29/045402/mmedia)) 
and figures  8(d)–(f) (supplemental video S2), respectively, 
show the reconstructed 3D geometries of both datasets. From 
which we can see that our proposed 3D measurement algo-
rithm consistently works well for the entire dynamic flapping 
flight processes of the bird robot.

3.2.  Validation of point tracking

Once the dynamic 3D data is obtained, the next task is to 
perform point tracking so that the strain can be computed by 
examining the surface deformation. Here we propose a novel 
point tracking method based on geodesic computation. Given 
that we are investigating inextensible surfaces, the theoretical 
foundation of our proposed point tracking method is that topo-
logical changes will not change the shortest distances of any 
two points on the surface. Therefore, for any point inside of 
the wings in one 3D frame, we locate its corresponding point 
in other 3D frames by computing its geodesic distances to the 
two anchor points. This conceptual idea is shown in figure 2 
and the detailed principles are discussed in the Methods 
section.

We used our first dataset shown in figure  7 to compare 
our proposed point tracking with conventional marker-based 
tracking. We performed the comparison by examining the dif-
ferences of the extracted trajectories in X, Y and Z from both 
methods. Table  1 shows both the mean and the root-mean-
square (RMS) differences. The maximum mean difference is 
about 1.2 mm for X and Y, and 0.80 mm for Z; the maximum 

RMS difference is about 1.2 mm for X and Y, and 1.0 mm for 
Z. Considering the total span of a single wing (i.e. 150 mm 
(L)  ×  70 mm (W)), this difference is relatively small. For 
visualization, here we show two different comparison results 
of the left wing in figures 9 and 10, which corresponds to the 
ones with least (marker 4) and most (marker 5) differences. 
We overlaid the extracted X, Y and Z trajectories from our pro-
posed method (blue solid line) with the ones directly extracted 
from circle centers (red dashed line), from which we can see the 
overall extracted trajectories from the two methods are pretty 
similar. The results show that our proposed geometry-based 
method can achieve very similar point tracking compared to 
the conventional marker based method, which demonstrates 
the success of our proposed point tracking framework.

To evaluate the smoothness of our point tracking method, 
we take the marker with larger tracking difference (marker 5)  
as an example, and then compute its velocity and accelera-
tion for the data obtained both from direct marker tracking 
and our proposed method. Figures  11 and 12, respectively, 
show the velocity and acceleration curves from the data in 
figure 10. Overall, the mean and RMS differences for velocity 
are between 0.01–0.02 mm ms−1 and 0.1–0.2 mm ms−1, 
respectively; the mean and RMS differences for acceleration 
are between 0.001–0.004 mm ms−2 and 0.04–0.06 mm ms−2, 
respectively. This result clearly demonstrates that our point 
tracking is as smooth as direct marker tracking, which can 
potentially benefit the wing dynamics analysis.

To further validate our proposed method, we compared our 
point tracking approach with the well-known digital image 
correlation (DIC) [34–37] technology. Essentially, DIC is 
a well-established technology for mechanics testing in the 
optics field. The DIC computes the displacement field by 
identifying similar points in different images through textural 
analysis. Therefore, such technology requires the sampled 
surface to present a strongly varying texture or to perform 
random speckle painting.

We first used our second dataset (without markers) shown 
in figure 8 to extract the displacement field using both DIC 
and our method. The open source DIC software Ncorr [38] is 
used to perform image correlation analysis. Figure 13 shows 
a sample frame of computed horizontal and vertical displace-
ment fields. The result clearly shows that our method can 

Table 1.  Validation of our geometry-based point tracking by comparing with the marker based tracking. Diff  =  difference.

Marker # Diff X (Mean) Diff Y (Mean) Diff Z (Mean) Diff X (RMS) Diff Y (RMS) DiffZ(RMS)

Lett wing

1 0.05 mm 0.42 mm 0.15 mm 0.39 mm 0.75 mm 0.37 mm
2 0.56 mm 0.73 mm 0.02 mm 0.72 mm 0.78 mm 0.21 mm
3 0.06 mm 0.40 mm 0.13 mm 0.80 mm 1.06 mm 0.48 mm
4 0.17 mm 0.18 mm 0.02 mm 0.42 mm 0.67 mm 0.29 mm
5 0.08 mm 1.17 mm 0.51 mm 0.53 mm 1.24 mm 1.05 mm

Right wing

1 0.02 mm 0.42 mm 0.20 mm 0.35 mm 0.19 mm 0.17 mm
2 0.13 mm 0.45 mm 0.17 mm 0.77 mm 0.28 mm 0.26 mm
3 0.27 mm 0.30 mm 0.35 mm 1.19 mm 0.37 mm 0.36 mm
4 0.45 mm 0.72 mm 0.22 mm 0.84 mm 0.40 mm 0.20 mm
5 0.61 mm 0.94 mm 0.76 mm 1.14 mm 0.48 mm 0.86 mm
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extract the full displacement field yet the DIC method fails 
in some specific regions. This is due to the fact that the wings 
shown in the images present weak or repetitive features in 
particular regions, which is challenging for image correlation 
analysis. Also, large bending will further weaken the point 
similarities between images. In contrast, our method is based 
on surface geometric analysis, which does not require ana-
lyzing textural variations. Thus, it is less likely to fail given 
the aforementioned conditions.

For accuracy validation, we selected one obvious feature 
on each wing (highlighted as cross markers on the top left 
image of figure  13), and then compared the point tracking 

between DIC and our method. Figures  14 and 15 show the 
tracked motion trajectories and the corresponding errors plots. 
The results show that, for these feature points, our method can 
provide a tracking accuracy comparable to DIC. Moreover, 
DIC fails in quite a few number of frames, while our method 
still prevails. Overall, for both DIC and our proposed method, 
the mean and RMS errors are around 0.1–0.3 mm and  
0.3–0.6 mm, respectively. For fair comparison, the mean and 
RMS errors we provided are based on data points where both 
methods survive. The result demonstrates that our proposed 
method can achieve an accuracy similar to the well-estab-
lished DIC method, while our method can achieve a higher 

(c)(b)

(f)(e)(d)

(a)

Figure 9.  Visualization of tracking for marker point 4 of the left wing. (a)–(c) Overlay of the directly extracted marker points (red dashed 
lines) with tracked marker points (blue solid lines) using geodesic computation under X, Y and Z coordinates; (d)–(f) the difference plots of 
(a)–(c) obtained by taking the difference of curves, the mean differences for X, Y and Z are 0.17 mm, 0.18 mm and 0.02 mm, respectively; 
the RMS difference for X, Y and Z are 0.42 mm, 0.67 mm and 0.29 mm, respectively.

(c)(b)

(f)(e)(d)

(a)

Figure 10.  Visualization of tracking for marker point 5 of the left wing. (a)–(c) Overlay the directly extracted marker points (red dashed 
lines) with tracked marker points (blue solid lines) using geodesic computation under X, Y and Z coordinates; (d)–(f) the difference 
plots of (a)–(c) are obtained by taking the difference of curves. The mean differences for X, Y and Z are 0.08 mm, 1.17 mm and 0.51 mm, 
respectively; the RMS difference sfor X, Y and Z are 0.53 mm, 1.24 mm and 1.05 mm, respectively.
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success rate than DIC over the entire sampled image if a  
special surface treatment is unavailable.

3.3.  Visualization of the strain map

Since we have validated that our proposed point tracking 
method can work well, we can now perform strain computation 

using the second dataset shown in figure  8. As mentioned 
above, to reduce potential mechanics changes, we removed 
the markers inside of the wings in our second dataset given 
that our point tracking method does not need them. Since the 
wings are inextensible, here we mainly consider the bending 
strain in a Green–Lagrange strain tensor. For each point on the 
wings that is tracked between different frames, the bending 

(c)(b)

(f)(e)(d)

(a)

Figure 11.  Visualization of velocity for marker point 5 of the left wing. (a)–(c) Overlay of the directly extracted marker velocity (red 
dashed lines) with tracked marker velocity (blue solid lines) using geodesic computation under X, Y and Z coordinates; (d)–(f) the 
difference plots of (a)–(c) obtained by taking the difference of curves; the mean differences for X, Y and Z are 0.01 mm ms−1, 0.02 mm ms−1 
and 0.01 mm ms−1, respectively; the RMS differences for X, Y and Z are 0.13 mm ms−1, 0.20 mm ms−1 and 0.15 mm ms−1, respectively.

(c)(b)

(f)(e)(d)

(a)

Figure 12.  Visualization of acceleration for marker point 5 of the left wing. (a)–(c) Overlay of the directly extracted marker acceleration 
(red dashed lines) with tracked marker acceleration (blue solid lines) using geodesic computation under X, Y and Z coordinates; (d)–(f) the 
difference plots of (a)–(c) obtained by taking the difference of curves, the mean differences for X, Y and Z are 0.001 mm ms−2, 0.001  
mm ms−2 and 0.004 mm ms−2, respectively; the RMS differences for X, Y and Z are 0.04 mm ms−2, 0.06 mm ms−2 and 0.04 mm ms−2, 
respectively.
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strain can be computed by examining the curvature changes. 
The theoretical background of strain computation is discussed 
in the Methods section.

Figure 16 (supplemental video S3) shows the results of our 
strain computation. It illustrates that our method can compute 

the strains of the entire wings. Here we show a sample frame 
of an up-stroke and a down-stroke, respectively. One can 
notice that the wings are mostly strained on areas where we 
see the most bending or curvature, which agrees well with the 
nature of bending strain. This result demonstrates the success 

DIC result Proposed method result

Horizontal displacement (pixel) Horizontal displacement (pixel)

Vertical displacement (pixel) Vertical displacement (pixel)

2D image 2D image

Figure 13.  Results of extracted displacement field from both DIC and the proposed method.

(c)(b)

(f)(e)(d)

(a)

Figure 14.  Validation of point tracking of the left wing feature point. (a)–(c) Overlay of the extracted feature X, Y and Z trajectories with 
the tracked point trajectories using DIC and the proposed method; (d)–(f) corresponding errors plots of both DIC and the proposed method. 
The X, Y and Z mean errors are 0.07 mm, 0.10 mm and  −0.05 mm for DIC, and 0.08 mm, −0.28 mm and 0.07 mm for the proposed method; 
the X, Y and Z RMS errors are 0.43 mm, 0.28 mm and 0.13 mm for DIC, and 0.37 mm, 0.41 mm and 0.20 mm for proposed method.
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of our proposed strain computational framework. The com-
puted strain maps can be easily turned into stress maps if we 
know the modulus of the wing material in advance.

4.  Discussion

Compared to existing technologies, our proposed research has 
the following advantages:

	 •	 Measures both high-resolution 3D geometry and the 
full-field wing strain map. Our measurement technology 

can measure 3D geometry with high spatial and temporal 
resolution, and compute full-field strain for the wings. 
By providing this information, our technology could be 
effective tools for the robotics field for the study of wing 
morphology and mechanics analysis.

	 •	 Requires only two anchor points on the corners. Our point 
tracking scheme only requires identifying two anchor 
points on the corners. It neither requires putting markers 
inside of the wings nor a special surface treatment on the 
wing surfaces, which reduces the potential changes of 
flight mechanics during measurements.

(c)(b)

(f)(e)(d)

(a)

Figure 15.  Validation of point tracking of the right wing feature point. (a)–(c) Overlay of the extracted feature X, Y and Z trajectories with 
the tracked point trajectories using DIC and proposed method; (d)–(f) corresponding errors plots of both DIC and the proposed method. 
The X, Y and Z means errors are  −0.16 mm, 0.11 mm and  −0.25 mm for DIC, and 0.26 mm, −0.08 mm and 0.21 mm for the proposed 
method; the X, Y and Z RMS errors are 0.67 mm, 0.39 mm and 0.34 mm for DIC, and 0.60 mm, 0.34 mm and 0.33 mm for the proposed 
method.

Sample frame (up-stroke) Sample frame (down-stroke)

2D 3D

Left wing strain map Right wing strain map

2D 3D

Left wing strain map Right wing strain map

Figure 16.  Two sample frames of the strain measurement result in supplemental video S3.
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Despite the aforementioned merits, our strain measure-
ments could encounter challenges when the wings contain 
membrane or tension strain. In our strain analysis, we per-
formed point tracking based on the assumption that the wing 
is an inextensible surface. For isometric wings, our algo-
rithm can be adaptable if the ratio of surface expansion can 
be determined beforehand. However, it could be challenging 
to adapt our technology to measurements of non-isometric 
wings. Future work is possible to develop more sophisticated 
algorithms for non-isometric analysis if some a priori knowl-
edge of the dynamics or a physical model of the wings can be 
obtained.

5.  Conclusion

In this research, we introduced a novel method for dynamic 
dense strain measurement of robotic flapping wings. We first 
established a 5000 Hz DFP system with defocused binary pat-
tern projection for superfast 3D imaging. Then, we developed 
a novel dense strain computational framework for the acquired 
dynamic 3D data. Our developed strain computational frame-
work has two major components: (1) a novel geodesic-based 
point tracking scheme without using many fiducial markers; 
and (2) a strain computation scheme based on the Kirchhoff–
Love shell theory. Experiments have demonstrated the success 
of both superfast 3D imaging and strain measurement with 
validations in point tracking.
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