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Optimal Path Planning and Control of
Assembly Robots for Hard-Measuring
Easy-Deformation Assemblies

An Wan, Jing Xu, Member, IEEE, Heping Chen, Senior Member, IEEE, Song Zhang, and Ken Chen

Abstract—Assembly robots are widely used in the elec-
tronics and automotive industries. However, assembly
robots still face formidable challenges for assembling large-
scale heavy-weight components such as the tail of the
plane. First, the large-scale component is difficult to mea-
sure; thus, the optimal assembly path is difficult to obtain.
To this end, a learning from demonstration-based optimal
path planning method is developed and implemented. Sec-
ond, the deformation caused by a heavy-weight component
will lead to a large motion error and could cause damage
to the component. To solve this problem, a Gaussian pro-
cess regression (GPR)-based deformation prediction and
compensation method is presented to improve the robot
motion accuracy. The simulation results show that the pro-
posed GPR-based deformation compensation method can
achieve high accuracy. An experimental prototype was de-
veloped to evaluate the proposed methods, and the results
demonstrate the effectiveness of the proposed methods.
Therefore, the proposed methods provide a path toward
hard-measuring easy-deformation assembly task.

Index Terms—Easy deformation, Gaussian process
regression (GPR), hard measuring, learning from demon-
stration (LfD).

|. INTRODUCTION

T PRESENT, assembly robots are widely used in indus-
A tries such as electronics, appliances, and automotive [1]—
[4]. With improvements in the positioning accuracy and load
capacity of robots, it becomes possible for assembly robots
to perform assembly of heavy-weight components. Because
assembly robots could greatly improve the assembly quality
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of large-scale components and are able to adapt to different
components with different sizes and weights, which can consid-
erably decrease the number of assembly fixtures and reduce the
cost, such robots have been widely investigated [5]-[7].

However, compared to the assembly of electronics, automo-
biles, household appliances, and other light-weight components,
the automated robotic assembly of large-scale heavy-weight
components still faces two major challenges:

A. Challenge 1

How to accurately plan the optimal assembly path. That is, to
know where to go for the assembled component.

Prior to assembly, we have to accurately measure the rel-
ative position and orientation (pose) between fixed and mov-
ing components. In other words, the target pose of the moving
component (assembly path) is required to be planned, which
is generally obtained by measuring the axis of the fixed hole
[8]. Due to its high precision and large measurement range, a
laser tracker is typically used for measuring the hole axis. How-
ever, due to the large scale and complex shape, the measurement
distance will be very far and the measurement laser will be eas-
ily blocked; thus, it is difficult to directly obtain the hole axis
in large-scale heavy-weight component assembly. To this end,
the learning from demonstration (LfD, also called programming
by demonstration) method is used to obtain the assembly path
in this paper, in which the robot learns the experience from a
human operator and performs the assembly using the experi-
ence [9]-[10]. Nehmzow et al. [11] proposed an LfD method
to teach a robot to follow human behaviors, and then the robot
transfers human behaviors to robot control code using system
identification techniques. Aleotti et al. [12] improved a virtual
environment-based programming method, where the robot is
programmed by a human operator wearing a data glove in a
virtual environment. The recognized task was performed in a
simulated environment before being performed in a real envi-
ronment to supervise and validate the learning process, making
the demonstration easier and more effective.

In the existing LfD-based methods, human behaviors are
recorded and transferred to robot control code, and then the
robot simply repeats the human operator’s behaviors. However,
in hard-measuring easy-deformation assembly, the assembled
component is difficult to be handled for teaching. Moreover, be-
cause the human assembly path is not optimal, it is unreasonable
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for the robot to directly repeat the human demonstration. To this
end, we propose an LfD-based optimal assembly path planning
method. A small and light demonstration peg is inserted into
the fixed hole by a human operator, and the assembly process is
recorded by a real-time measurement sensor; then, the optimal
assembly path is planned by the robot for real peg assembly.
Here, the robot learns the human experience (i.e., the optimal
assembly path) rather than simply repeats the human assembly
path.

B. Challenge 2

How to deal with the deformation caused by the heavy-weight
component. That is, to know how to deal with the assembled
component.

During assembly, deformation of the robot caused by the
heavy-weight component cannot be neglected. Thus, we have
to utilize the measured results and control strategy to achieve
high-precision pose adjustment regardless of the deformation.
Compared with small component assembly, the heavy weight of
the assembled component (the assembled component typically
weighs a few tons) would cause a serious deformation, resulting
in jamming or damage [13]. The unknown value and distribu-
tion of the weight make accurately modeling the deformation
difficult. Moreover, increasing the stiffness to compensate for
deformation would make the mechanical structure bulky.

To overcome the problem of deformation, Takahashi et al.
[14] presented a passive alignment principle-based control strat-
egy to perform compliance control by using contact force
detection with a force sensor, which can achieve extremely
high precision in a ring and shaft assembly. However, in easy-
deformation assembly, it is impossible for a force sensor to
detect the tiny contact force due to the heavy-weight payload,
leading to damage to the assembled component. Another solu-
tion is to rebuild the robot kinematics, but this solution would
fail due to the unknown value and distribution of the weight.
Cheah et al. [15] proposed an approximate Jacobian control
method to address the uncertainty of robot kinematics, and this
method does not require the exact kinematics and Jacobian ma-
trix of the robot. This method works well for point control, but
it is only applicable for point control; thus, it is not suitable
for trajectory control of assembly tasks. Cheng et al. [16] im-
proved an adaptive neural network tracking control method to
address the uncertainty of kinematics, but this method does not
perform well if singular points exist; hence, it is not reliable in
practice. A robust nonlinear control method using three-layer
neural networks was also presented to control the motion of
the manipulator without an exact kinematics model [17]. This
method requires considerable computation and is thus difficult
to be realized in real time, which is required for the real-time
control of assembly robots. In addition, H. Chen et al. [18], [19]
proposed a robotically controlled holographic optical tweezers
method to transport biological cells, where a drag force model
and gradient descent optimization based method was improved
to calibrate cell dynamics online. But this method is not suitable
for large component control.

Qiao et al. [20]-[22] improved a high-precision peg-in-hole
assembly strategy based on the concept of attractive region in

environment and analysis of the allowable range of the peg
system, where contact forces are used to control the robot, re-
placing some of the input forces. The method allows the relative
low-precision robot to perform high-precision peg-in-hole as-
sembly. But in this method, the peg needs to contact with
the hole, which would damage the assembled component in
heavy-weight component assembly. Cheng et al. [23] proposed
an online assembly parameter optimization method for high-
precision robot assembly process, using Gaussian process re-
gression (GPR) surrogated Bayesian optimization algorithm
(GPRBOA) to optimize peg-in-hole assembly process parame-
ters. Wu et al. [24] further improved an orthogonal exploration
(OE-GPRBOA) method based on the GPRBOA, using the OE
method to improve the searching efficiency. Chen et al. [25] im-
proved a robot learning method based on GPR to optimize the
assembly parameters in complex robot assembly process such
as three stage torque converter assembly, where the GPR is used
to model the relationship between the assembly parameters and
system performance.

These GPR-based methods aim to optimize the assembly pa-
rameters using GPR model and various optimization algorithms,
depending on force control and force sensor. However, as men-
tioned above, in easy-deformation assembly, it is impossible
for a force sensor to realize high-precision control. Therefore a
high-precision control method without using force sensor and
force control has to be investigated. In this paper, we propose
a learning based online robot control method that uses GPR
and deformation compensation strategy to model and compen-
sate the robot deformation. The proposed method can predict
and compensate the deformation without knowing the value
and distribution of the weight of the assembled component in
advance or rebuilding the robot kinematics, leading to a great
improvement in the robot motion accuracy.

In short, the main contribution of this paper is to de-
velop innovative technologies to perform hard-measuring easy-
deformation assembly by proposing an LfD-based optimal path
planning method and a GPR-based deformation prediction and
compensation method to improve the robot motion accuracy.

Il. WORKING PRINCIPLE
A. Assembly Robot System

The proposed assembly robot system consists of a real-time
three-dimensional (3-D) measurement sensor (such as a vision
sensor, laser tracker, or other real-time 3-D sensors), an assem-
bly robot, and a computer (see Fig. 1). The assembly robot gen-
erally has six degrees of freedom (DOF), and the assembled
component is mounted on the robot end effector. In hard-
measuring easy-deformation assembly, the hole is the fixed
component and the peg is the moving component. In the pro-
posed assembly system, a real-time 3-D vision sensor is adopted.
Therefore, there are several markers on the demonstration peg
and the real assembled peg, and the marker locations with re-
spect to the peg axis have been calibrated in advance. The overall
assembly process is described as follows (see Fig. 2).

First, a small and light demonstration peg with the same fit
tolerance as the real peg is inserted into the fixed real hole,
and the human assembly process is recorded by the real-time
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Fig. 2. Assembly process.

3-D vision sensor. Obviously, the human assembly path is not
optimal, even with jamming.

Second, the human assembly path is optimized using the LfD
method to obtain the optimal assembly path, which is collinear
to the fixed hole axis.

Third, the real peg is moved along the optimal assembly path.
The assembly process is also monitored by the real-time 3-D
vision sensor, and the robot motion path is corrected using the
GPR-based deformation prediction and compensation method
until the assembly process is complete.

B. LfD-Based Optimal Path Planning Method

Prior to assembly, the optimal assembly path is required to
avoid jamming and damage to the assembly component. To this
end, an LfD-based optimal path planning method is proposed
for hard-measuring easy-deformation assembly in this paper.
The principle and procedure are described as follows.

The human operator assembles a small and light demonstra-
tion peg into the fixed hole as a demonstration. Then, the assem-
bly process is recorded by a real-time 3-D vision sensor to teach
the robot. Because there is no assisted force or position sensor
to restrict manual assembly, the assembly cannot achieve high
precision along the assembly path without jamming; hence, it is
not effective for the robot to directly repeat the manual assem-
bly path. To simplify the optimization of the manual assembly
path, the human operator is asked to rotate the demonstration

Then, the robot learns and plans the optimal assembly path
(the hole axis) by using the following optimal path planning
method.

Assume that the maximum clearance (the acceptable maxi-
mum assembly error) between the peg and hole is o and that the
distance the peg has entered into the hole is d. Then, the max-
imum inclined angle 6 is a function of the insertion distance d
(see Fig. 3).

Clearly, the maximum inclined angle 6 decreases with the
increased insertion distance of the demonstration peg; thus, the
maximum inclined angle 6 of the demonstration peg is becoming
increasingly smaller.

Obviously, the angle 6 is also the angle between the peg axis
U, and the hole axis ¢, . Hence, we have

U - T, = cosb. 2)

During the assembly procedure, there will be several groups
of peg axes v, and the corresponding maximum inclined angle
0, composing an n-by-3 matrix V,, and an n-by-1 matrix ¢. Due
to the measurement error, there is no perfect vector vy, that can
fit the above equation for every peg position. Thus, we obtain a
least squares problem. Set an objective function

M:Z(%i'E—COSQi)Q. 3)

i=1

The least squares problem is to find an optimal v;, to minimize
the objective function. Because the problem can be expressed
in matrix form, the least squares problem has a closed-form
solution. Calculate the pseudoinverse of the matrix V),

pinv(V;) = (VV,) V. )

Then, the optimal hole axis 7, can be obtained by a closed-
form solution

o = (V) V,) 'V, cos ¢. (5)

The obtained hole axis 9, is the desired optimal assembly path.

In practical assembly, the robot generally moves along a given
assembly path, which determines a series of the assembled com-
ponent positions. However, to insert the peg into the hole, a cor-
rect orientation is also required (see Fig. 4). Note that the peg is
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Fig. 5. Demonstration peg coordinate system.

expected to move along the hole axis throughout the peg-in-hole
assembly procedure. Therefore, only the position of the peg is
varied during the assembly process, while the orientation of the
peg is constant. Clearly, the peg axis must coincide with the
optimal assembly path.

Here, we can construct a demonstration peg coordinate sys-
tem P, . using the markers on the demonstration peg as shown
in Fig. 5, and the peg axis can be described in this coordinate
system. The next step is to find an orientation of P,,. to allow
the demonstration peg axis to coincide with the obtained optimal
assembly path. Set the real-time 3-D vision sensor coordinate
system as V'S, .. Set the rotation matrix from P,,. to V.S,
as R. Then, we have the following constraint:

G =R, (©)

where ©j, is the optimal assembly path in V'S,,. and v, is the
peg axis in P, ., which is calibrated in advance. Here, R is a
3-by-3 matrix with 3 unknown rotation angles; however, there is

Unconstrained motion

Fig. 6. Unconstrained motion.

only one constraint equation for determining the demonstration
peg orientation. In other words, the peg can rotate along the
optimal assembly path and turn upside down along any axis
that is perpendicular to the optimal assembly path, as shown
in Fig. 6. To solve this problem and simplify the measurement,
the markers are allowed to completely face the real-time 3-D
vision sensor, which restricts the other two direction rotations
of the demonstration peg, that is, the desired orientation can be
determined.

At this point, the optimal assembly path is learned and planned
by using the proposed LfD-based optimal path planning method.
The proposed method does not require exact alignment of the
peg and hole, and the demonstration is easy to perform without
an additional force sensor or position sensor.

C. GPR-Based Deformation Prediction and
Compensation Method

After obtaining the optimal assembly path, the next step is
to control the assembled component moving along the planned
optimal assembly path. The heavy-weight component inevitably
results in deformation of the robot. To improve robot motion ac-
curacy, a GPR-based deformation prediction and compensation
method is proposed in this paper.

D. Establish the GPR Model

The assembled component is mounted on the robot end ef-
fector. To establish the GPR-based deformation prediction and
compensation model, we control each robot joint to move to
different angles, and the corresponding poses of the assembled
component are measured by the real-time 3-D vision sensor.
Comparing the measured poses with the theoretical poses of
the assembled component, we can obtain N groups of defor-
mation, which are set to be the output of training data Y. A
6-by-N matrix X composed of N groups of the six joint angles
is considered as the input of training data.

Set a process function f (x) between the input X and out-
put Y. Define a Gaussian process f(z) ~ GP(m(z), k(z,2")),
where m(z) and k(z, 2") are the mean function and covariance
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function of f (z), respectively. Then, we have
m(z) = E[f (z)] O
k(z,a') = E[(f(z) = m(x)) - (f(@") —m())] (@)

where z, 2/ € R? are random variables.
The robot motion error and measurement error cannot be
ignored. The process function is

y=f(x)+e 9)

where  and y are samples of X and Y, respectively, and ¢
is the error. To construct a Gaussian process, the error ¢ is
assumed to obey the Gaussian distribution e ~ N (0, 02 ), where
o2 represents the integrated error of X and Y.

Thus, we can obtain the prior distribution of output Y accord-
ing to the input X:

Y ~ N(0,G) (10)

in which G = K(X, X) + 021, is the covariance function of
the distribution, where K(X,X) = K,, = (k; ;) and k; ; =
k(x;,x;) presents the correlation between the two elements
x; and x; of the input X For the test input, its predicted output
is subject to the joint probability distribution. Then, for a new
input x*, the distribution of the corresponding output y* is

Y K(X,X)+ o021, K(x,2%)
{y*] ~ N (0’ [ K(z*, ) k(x*,x*)]) (i

where K (x,z") is the covariance matrix of X and z*, and we
have K (z,2*) = K(2*,x)". Therefore, the above distribution
is a joint probability distribution of Y and y*. Then, the posterior
distribution of the output y* is

Y IX,y, 2" ~N(y", cov(y)) (12)

in which
¥ = K(z*,2)G 'y (13)
cov(y®) = k(z*,2*) — K(z*, X)G 'K (X, z*) (14)

E. Train the GPR Model

The reliability of the GPR model depends on the covariance
function, and the training of the GPR model consists of searching
for the optimal mean and covariance function. A commonly used
covariance function is the square exponential function, which
has the following form:

k(z,2') = UJ% exp (—;(m — Y M (2 — w')) (15)

where M = diag(?), [? is the variance scale, and a; is called the
signal variance [26]-[28]. Thus, we obtain a hyper-parameter
0 = {M, 0}, 0}, }, which describes the character of the input and
output of the GPR model. Therefore, the GPR training consists
of optimizing # by the training data.

The optimal 6 is generally obtained using the like-
lihood method. First, set a likelihood function L(6) =
—log(p(Y |X,0)),in which p(Y | X, 0) is the conditional prob-
ability of the output Y. Typically, the likelihood function is of

the following form:

1 1

L(B) = 5¥TC'Y + 5 log|C + g log2r (16
where C' = K,, + 021,.

Second, calculate the partial derivatives of L(6), through
which we obtain

OL(0) _ 1 T e
= _t -C

g6, — 2'"((ae )
where o = C7'Y = (K +021,)7'Y.

Finally, the optimal hyper-parameter is obtained by minimiz-
ing the partial derivatives using the steepest descent method.

At this point, the optimal hyper-parameter and the covariance
function are obtained. Then, given a new input, we can predict
the output using the trained GPR model.

s
00;

a7

F. Online GPR-Based Deformation Compensation
Method

Prior to assembly, the real-time 3-D vision sensor measures
the manual assembly procedure to obtain the optimal assembly
path. The assembled component is mounted on the robot end
effector. Then, the robot is controlled to move in space, and
the assembled component poses are measured by the real-time
3-D vision sensor; meanwhile, several groups of joint angles
are also recorded. Taking into account the deformation caused
by the heavy-weight component, the measured pose M can-
not completely coincide with the theoretical pose 7', and the
deformation is

e=M-T. (18)

Considering N groups of joint angles J and deformations ¢ as
the input and output of the GPR model, we can train the GPR
model using the above method. Then, given a new joint angle,
we can predict the deformation using the GPR model. To reach
the target pose T regardless of robot deformation, the following
control strategy is performed.

First, calculate the corresponding joint angles using the in-
verse kinematics

Jo = ikine(T). (19)

However, taking into account the robot deformation, the as-
sembled component cannot reach the target pose only by robot
kinematics. By setting the joint angles .Jy to be the new input,
the deformation £y can be predicted by the GPR model

g0 = GPR(Jp). (20)
Second, the adjusted pose by robot motion is
Tpl :T—EU. (21)

Third, we can obtain the adjusted joint angles using the inverse
kinematics

Jy = ikine(Tpy). (22)
Finally, the actual pose of the assembled component is
AP1 = Tp1 +ée1 (23)
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Fig. 7. Flowchart of GPR-based control method.

where €; = GPR(J;) is the deformation corresponding to
the joint angles J;. Here, J; # Jy; therefore, we have
to determine whether AP, is equal to 7. Calculate the
corresponding Euler angles «, (3, v and translation vec-
tor v of the matrixes AP, and T. Setting two thresh-

olds k; and ko, if ‘(anﬂia%‘)T — (ar, Br,yr)"| >k or

‘(Jci,yi,zi)T — (xT,yT,zT)T‘ > ko, we should perform the
next prediction using the new initiate joint angles .J; and defor-
mation ;.

Tps =T — ¢ (24)

J2 = ikine(Tpg) (25)

APy =Tpy +¢5. (26)

The process iterates until ‘ (s Bi,'yi)T — (ar, Br, WT)T <

- ($T>yT>ZT)T
bled component can be considered to reach the target pose 7.

Finally, control the robot movement to the joint angles .J;,
and the assembled component will reach the target pose. Fig. 7
shows the entire iteration procedure. Note that the iteration is
calculated by the computer, and the robot does not move until
the iteration is completed and the final joint angles are obtained;
therefore, the control process is very efficient.

k1 and ‘(mi,yi,zi)T ‘ < ko, and the assem-

G. Jam Handling Method

During the assembly procedure, the pose of the assembled
component should be monitored to avoid jams. The real-time
3-D vision sensor measures the pose of the assembled compo-
nent at every target point along the planned assembly path. For
the ith target pose, the measured pose M; is compared with the
predicted pose P;. If the difference m; = M; — P, is greater
than a given threshold, it means that the deformation prediction

[ Start ]
!

Initiate pose ]

!

‘ Get joint angles &
deformation

|
Update GPR model ]

!

Predict pose ]

—

No

Reach target pose

Fig. 8. Flowchart of dealing with jam control strategy.

has a noticeable error, which would lead to a high risk of jams.
Therefore, the deformation must be predicted again using the
newest training data.

The jam handling method is performed by controlling the
assembled component to move back to the pose P; _ ; and per-
forming another iteration (see Fig. 8).

First, obtain the first group of joint angles using the above
method, and then control the robot to move to the predicted
pose AP;. The actual pose M is obtained by the vision sensor.

Second, the deformation e; = M; — T'p; and the joint angles
Ji1 are added to the GPR training data to predict the next pose
AP,. Similarly, the actual pose Ms is obtained, and the GPR
model is updated. The process iterates until the error (M; — T')
is smaller than the given threshold.

Throughout the assembly procedure, the deformation is pre-
dicted by the GPR method without modeling the kinematics
after deformation. Therefore, the proposed deformation predic-
tion and compensation method is suitable for different assem-
bly systems and payload conditions with high accuracy and
efficiency.

I1l. SIMULATIONS

To test the proposed GPR method, we perform the following
simulations.

A. Cantilever Beam

Set a cantilever beam as shown in Fig. 9, where point P rep-
resents the assembled component, and its position changes with
the angle 6. Consequently, we have the following kinematics:

x=1L-cosb
{y:L-sinG. @7
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o4
F
P(x,y)
Fig. 9. Cantilever beam.
B
/1 py
J
P Dx
Fig. 10. Deformation of the cantilever beam.

Taking into account gravity acting on the assembled com-
ponent, the deformation cannot be ignored. Set the material to
be aluminum, and the elasticity modulus is £ = 71 GPa. Set
the link length to be L = 500 mm and the width and height
of the cross section to be b = 30 mm and /h = 50 mm, respec-
tively. Set the gravity acting on the assembled component to be
F = 1000 N. Then, by ignoring the gravity acting on the can-
tilever beam and tensile deformation, for each joint angle, we
can obtain the deformation of point P (shown in Fig. 10).

F-cosf-L?
Do — -2 SV 20 g
T T 3EMK /1) M 08)
Dy — F-cosf- L cos 6
YT 3B 12)

Given several joint angles ), we can obtain several positions
of point P and the corresponding deformation D. Then, we add
measurement error to obtain the measured values M and mea-
sured deformation mD. Here, the measurement error is set to
be approximately 10 pm. The GPR model can now be con-
structed by the input 6 and output mD. To test the GPR model,
we randomly set ten new input joint angles « and calculate the
theoretical deformation D, . Then, we place the new input «
into the GPR model to obtain the predicted deformation D),,.
Finally, the two groups of deformations are compared to obtain
the prediction error of the GPR model.

ER =D, — D,. (29)

Table I presents the simulation results. As shown in this table,
the prediction error is approximately 10 pm, which is close to
the measurement error. Fig. 11 shows the prediction error at
different joint angles, and as shown, the prediction error is very
stable and has no relation with the joint angles.

B. Assembly Robot System

We set an assembly robot using the parameters of the ABB
IRB 120 robot (i.e., the robot kinematics). Then, given a set
of joint angles .J, we can obtain the theoretical terminal pose

TABLE |
DEFORMATION AND PREDICTION ERROR OF CANTILEVER BEAM

a/rad  D,/mm D,/mm FER,/mm FR,/mm
0.003 =7.511 0.020 0.011 0.011
0.213 —~7.175 1.552 0.018 0.018
0.290 —6.898 2.056 0.016 0.014
0.556 —5.419 3.367 0.017 0.012
0.833 —3.399 3.739 0.018 0.015
0.929 —2.692 3.602 0.017 0.017
0.933 —2.663 3.593 0.017 0.013
1.074 —1.705 3.146 0.014 0.018
1.518 —-0.021 0.398 0.013 0.020
1.570 0.000 —0.051 0.014 0.012

Prediction Error

——ERx

-e-ERy
0.025

0.02

0.015

Error/mm

0.01

0.005
6
N

Fig. 11.  Prediction error in two directions.

Pr using the theoretical robot kinematics. Taking into account
the deformation caused by the assembled part, we obtain the
actual terminal pose P4. Therefore, the deformation is D =
P4 — Pr.Due to the measurement error, the measured pose Py
is not equal to the actual pose, and the measured deformation is
Dy = Py — Pr, which is the output of the GPR training data.

In the proposed control system, the input and output of the
GPR model are the joint angles and deformation, respectively.
To train the GPR model, we set the robot to move 40 poses in
space, and the deformations are measured by the vision sensor.
Then, the GPR model is trained by the 40 groups of training data.

To test the effectiveness of the system, let the robot randomly
move to 10 poses, obtaining 10 groups of joint angles .J,. By
placing J, into the GPR model, we can obtain the predicted de-
formation Dp. Finally, the predicted deformation Dp is com-
pared with the actual deformation D to obtain the prediction
error. Here, the measurement error of the vision sensor is set to
be 10 pm.

Table II presents the simulation results, in which position
deformation (PD) and orientation deformation (OD) are the po-
sition and orientation deformation and ERp and ER( are the
position and orientation prediction error. As shown in this table,
the prediction error is considerably less than the deformation.
Figs. 12 and 13 show the position prediction error and orien-
tation prediction error at different joint angles. As shown, the
prediction error is very stable. Hence, the proposed GPR method
can reach high accuracy, and it is highly versatile.
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TABLE Il
DEFORMATION AND PREDICTION ERROR OF ASSEMBLY ROBOT

Pose  PD/um oD/ ERp/um  ERp /'’
1 103.1 209.8 16.2 13.6
2 96.0 185.8 14.7 13.1
3 94.7 163.1 16.0 13.6
4 90.2 181.0 14.9 13.2
5 99.8 196.0 22.6 18.0
6 94.1 141.9 12.8 114
7 52.6 91.2 16.2 13.8
8 95.5 176.6 17.8 14.8
9 98.5 197.2 21.7 17.2
10 81.8 156.4 17.5 15.0
Position Prediction Error
~e-Position Prediction Error
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e
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= 16
g
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Fig. 12.  Position prediction error.
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Fig. 13.  Orientation prediction error.

[V. EXPERIMENTAL

Fig. 14 shows the proposed assembly robot system. Here, the
assembly robot is ABB IRB 120, whose maximum payload is
3 kg. The real-time 3-D vision sensor consists of two cameras,
whose resolution is 2560 x 2480. The assembled component is
designed to be close to the maximum payload of the robot; there-
fore, the assembly task can be considered to be hard-measuring
and easy-deformation. The hole is 40 pm larger than the peg in
diameter; thus, the accepted maximum assembly error is 40 pm,
which exceeds the robot motion accuracy.

A laser tracker is used to verify the effectiveness of the pro-
posed GPR method. As shown in Fig. 14, the laser tracker mea-
sures reflectors mounted on the assembled component to obtain

Robot

Assembled Part  vjsion Sensor

Fixed Hole

Fig. 14. Experiment system.
Position Error
-e-Position Error
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0 5 10 15 20
N
Fig. 15.  Position prediction error of GPR.

the pose of the assembled component. Here, the laser tracker
(Leica AT901) works at a distance of approximately 1 m, and
the measurement accuracy is within 20 ym [29], [30].

By controlling the robot to move to several poses in space,
the poses of the assembled component are measured by the laser
tracker. Then, several groups of joint angles and the correspond-
ing deformations are obtained. The GPR model can be trained
by setting the joint angles to be the input and deformations
to be the output. The robot is then controlled to move to 20
new locations, and the robot joint angles J and deformations
¢ are obtained. Then, the new joint angles J are input to the
GPR model to obtain the predicted deformations ¢,,. Finally, the
prediction error is obtained by comparing €, with ¢.

Figs. 15 and 16 show the position error and orientation error.
As shown, the position error is approximately 10-20 pm, which
is close to the measurement error, and the orientation error is
approximately 10-20 arcsec, which is approximately 5-10 pum
offset at a distance of 100 mm. Thus, the experiment verifies
that the proposed GPR method can achieve high accuracy and
satisfy the requirements for hard-measuring easy-deformation
assembly.

As shown in Fig. 14, the hole and the real-time 3-D vision sen-
sor are fixed on the platform. The markers on the demonstration
peg are tracked by the real-time 3-D vision sensor through-
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Fig. 16.  Orientation prediction error of GPR.

out the demonstration procedure to obtain the peg axis in the
field of view of the real-time 3-D vision sensor. After the hu-
man operator performs the assembly demonstration, the optimal
assembly path is learned and planned by the robot system us-
ing the proposed path planning method. Next, the assembled
peg is mounted on the robot end effector, and then the practical
assembly is performed along the planned assembly path.

The assembly procedure is monitored by the real-time 3-D
vision sensor, and the robot motion is controlled by the above
GPR-based deformation prediction and compensation method.
The result indicates that the robot follows the obtained assembly
path very well, and the assembly process is successful, proving
that the obtained assembly path is the optimal one due to the
tiny acceptable assembly error.

V. CONCLUSION

This paper presents an assembly robot system used for hard-
measuring easy-deformation assembly.

To perform the assembly, an LfD-based optimal path planning
method is developed. A real-time 3-D vision sensor is used to
record the human operator assembly procedure, and an optimal
assembly path is learned and planned from the human demon-
stration. Because the robot will deform during the assembly
process caused by the heavy-weight component, a GPR-based
deformation prediction and compensation method is proposed
to handle the deformation without knowing the exact value and
distribution of the weight of the assembled component. The
proposed methods are validated through experiments and simu-
lations. The results demonstrate that the proposed methods can
be used to perform hard-measuring easy-deformation assem-
bly, which will significantly reduce the assembly cycle time,
mitigate the risk of component damage and decrease assembly
cost.
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