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The accuracy of structured light measurement depends on delicate offline calibration. However, in some
practical applications, the system is supposed to be reconfigured so frequently to track the target that an
online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration
method. For the proposed method, first, the rotation matrix and the normalized translation vector are
attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant re-
gistration such that the actual translation vector is obtained. Experiments have been conducted to verify
the effectiveness of our proposed method and the results indicate a high degree of accuracy.
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1. Introduction

The use of optical measurement techniques has increased in
different areas in recent years. Compared with other methods,
such as stereo vision [1], laser scanning 2], shape from motion [3],
and the time of light [4] method, the structured light method has
the advantages of low cost, small amounts of calculation, fast
measurement speed, and high spatial resolution [5-8]. Thus, it is
widely applied in many fields, such as workpiece inspection, mo-
tion tracking, and reverse engineering.

The structured light measurement system is composed of a
projector and a camera. During the measurement, a set of encoded
patterns is shot to the object by the projector, and the deformed
patterns are captured and decoded by the camera. Finally, the 3D
shape can be calculated using triangulation. The prerequisite of
measurement is calibrating the intrinsic and extrinsic parameters
of the camera and the projector. For most existing calibration
methods for structured light measurement systems, an accurate
calibration gauge or movement equipment is required; also, the
relative position and the orientation between the camera and the
projector are supposed to be fixed [9,10].

However, in practical applications such as robot navigation,
extrinsic parameters are desired to maximize the field of view
(FOV), leading to continuous tracking of the measurement target.
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This action is similar to the phenomenon of two human eyes au-
tonomously adjusting to view an object at different distances.
Because the extrinsic parameters of the system change during the
measurement procedure, the recalibration of extrinsic parameters
needs to be performed online. Thus, the traditional offline cali-
bration method based on a calibration gauge cannot be directly
applied to this type of calibration.

Self-recalibration is a solution to the above problems and has
been widely studied recently. For the self-recalibration method,
the intrinsic parameters of the system are often assumed to be
known and constant, and only the extrinsic parameters are needed
to be recalibrated. In Ref. [11], the extrinsic parameters are cal-
culated using the corresponding point coordinates, and the solu-
tions obtained by using different numbers of points are discussed.
However, these corresponding points have to be non-planar,
moreover, the scale factor is uncalibrated such that it cannot be
used for accurate 3D reconstruction. In Ref. [12], a planar surface is
used to obtain the relative position and the orientation, where the
plane constraint is used during the calculation. In the above
methods, the translation vector between the projector and the
camera is considered as a normalized vector, and the scale factor is
missing. Therefore, the size of the measurement target cannot be
determined by the recalibration result. Moreover, a special cali-
bration plane is also needed. In Ref. [13], the actual relative posi-
tion and the orientation can be attained, but the measurement
system has only two degrees of freedom (DOFs); that is, the pro-
jector can move only along the y-axis and rotate around the z-axis.


www.sciencedirect.com/science/journal/01438166
www.elsevier.com/locate/optlaseng
http://dx.doi.org/10.1016/j.optlaseng.2016.07.003
http://dx.doi.org/10.1016/j.optlaseng.2016.07.003
http://dx.doi.org/10.1016/j.optlaseng.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2016.07.003&domain=pdf
mailto:jingxu@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.optlaseng.2016.07.003

76 R. Chen et al. / Optics and Lasers in Engineering 88 (2017) 75-81

In Ref. [14], the extrinsic parameters are attained by measuring the
object from two different positions and searching for point cor-
respondence based on the texture of the object. This leads to large
computational costs and ambiguities. In Ref. [15], multiple cam-
eras are used for a surplus measurement value, leading to in-
creased installation complexity.

There is a strong demand for an online self-recalibration
method to autonomously and rapidly calibrate the extrinsic
parameters without any extra calibration gauge, especially the
translation vector. To this end, this paper proposes a self-recali-
bration method for the structured light measurement system
based on scale-invariant registration. For the proposed method,
first, the rotation matrix and the normalized translation vector are
attained through the encoded pattern projection. Second, the scale
factor is calibrated by registering the two point clouds of the same
object with the scale-invariant registration method. Finally, the
actual size of the object can be determined by using the proposed
calibration method. The rest of the paper is organized as follows:
the mathematic model of the measurement system is described in
Section 2. The calibration of the rotation matrix and the normal-
ized translation vector is described in Section 3. The scale factor
acquisition is described in Section 4. The entire recalibration pro-
cess, experiments, and results are shown in Section 5. In Section 6,
our work is concluded.

2. Mathematic models of camera and projector

The structured light measurement system is composed of a
projector and a camera. In this paper, a pinhole model is used for
both the camera and the projector, where the projector is con-
sidered as a pseudo-camera. The world coordinate system is co-
incident with the projector coordinate system, and the rotation
matrix and the translation vector from camera to projector are R
and t respectively as shown in Fig. 1.

For a 3D point P, its corresponding image pixel coordinates in
the camera and the projector mc, m, can be attained by:

me = aKPmy, = pK,P, M

where B, =P, . =RB, + t, m¢ = [ug, v, 1T,

ke 0 0xc kp 0 Oxp
my=[up, vp, 11, Ke=| 0 kye oyc| Ko=| 0 kyp oy
0 0 1 0 0 1

are the intrinsic parameter matrices of the camera and the
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Fig. 1. Geometrical relations of the structured light measurement system.

projector, and a, g are non-zero scale coefficients.

Moreover, because of the lens distortion of the camera or the
projector, the actual image pixel coordinates may derivate from
the ideal ones, which can be expressed as [15]:

w=(1+aor?+ ar + ard)u + sor? + (pg + por?)(r? + 2u?)
v =(1+agr? + air? + ayr®)v + s + (py + pr?)(r2 + 212
r2=u? +v2 )

where u, v are the ideal image pixel coordinates of the camera or
the projector, w, v’ are the actual image pixel coordinates, and
{ai}, {si}, {p;} are the lens distortion coefficients of the camera or
the projector.

According to Eqgs. (1) and (2), when K, K, {af}, {sf}, {p{}, {aF}
{sP}, {pF}, R, t are known, the world 3D coordinate P can be cal-
culated from m. and m, . Because intrinsic parameters K, K,
{af}, {sf} {pf), {aP}, {sP}, {pP} are determined by the lens and the
CCD of the camera and the DMD of the projector, which are con-
stant for one specific camera or projector, whereas extrinsic
parameters R, t are determined by the relative position and the
orientation between the camera and the projector, the calibration
process of the structured light system is composed of two
procedures.

The intrinsic parameters need to be calibrated only once for
camera and projector. This is known as the static calibration pro-
cedure. The extrinsic parameters need to be recalibrated as many
times as the position and the orientation between the camera and
the projector change. This is known as the dynamic recalibration
procedure. The dynamic recalibration of extrinsic parameters is
expected to be performed online rapidly and autonomously; that
is, self-recalibration of extrinsic parameters is the important task
of the structured light measurement system with varied extrinsic
parameters. Thus, we focus on the extrinsic parameter self-re-
calibration in this paper.

3. Rotation matrix and normalized translation vector
calibration

The position and the orientation between the camera and the
projector are contained in the fundamental matrix, which con-
strain the camera and projector pixel coordinates corresponding to
a common physical 3D point. To recalibrate the extrinsic para-
meters, we first obtain the fundamental matrix through encoded
pattern projection. Second, the rotation matrix and the normalized
translation vector between the camera and the projector are fur-
ther decomposed from the fundamental matrix.

3.1. Fundamental matrix calculation

The relation between the object point coordinate P. in camera
coordinate frame and P, in projector coordinate frame can be ex-
pressed as:

P=RP+t 3
yielding to
P.—t=RR, 4

And because the cross production of two vectors is perpendicular
to both vectors, the following equation could be obtained:

(R -0(exR)=0 5)

Combining Eqgs. (3) and (4), the constraint between P. and B, can
be obtained as:
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PIRTS,P. = 0 (6)

where S, is the skew symmetric matrix of translation vector t:

0 -3 b
Ss=l 8 0 -—f
- 4 0

According to Eq. (1), the unknown actual physic 3D coordinates
P, P, in (6) can be substituted by the corresponding image pixel
coordinates mc, my.

For the structured light measurement system, the encoded
vertical and horizontal fringe patterns are successively shot to the
measured object. Then, for every camera pixel coordinate m,, the
corresponding projector pixel coordinate m, is obtained by de-
coding the captured patterns. Therefore, the correspondence
m¢, my, for a physical 3D point P can be found.

Thus, Eq. (6) becomes:

my(K;") RTSK:me = 0 (7)
Fundamental matrix F is defined as:

F=(K") RISk

Eq. (7) becomes:

mpFme =0 ®)

The fundamental matrix F is of rank 2, and it has 8 parameters.
It is noted that we can obtain only a normalized fundamental
matrix F from Eq. (8); that is, the actual fundamental matrix is
perhaps a scale factor by the solved normalized fundamental
matrix.

To enhance the robustness of the algorithm, a large number of
corresponding point pairs are taken into account, and the random
sample consensus algorithm (RANSAC) [16] is used to optimize the
calculation result. For this method, a random subset of 8 point
pairs is extracted from all of the points iteratively to calculate the
fundamental matrix F. The particular solution closest to the aver-
age of all of the solutions is taken as the final solution.

Once the normalized fundamental matrix is attained, rotation
matrix R and normalized translation vector t between the camera
and the projector can be further recovered from F, as described in
Section 3.2.

3.2. Recovery of rotation matrix and normalized translation vector

Define essential matrix E = R'S;. Because normalized funda-
mental matrix F is attained as described above, K. and K, are at-
tained from the static calibration, essential matrix E can be cal-
culated by:

E= K;FKC ©))

Then, R and t can be recovered from E by the following
processes.
The SVD (singular value decomposition) of E is:

E=UY V! (10)
where

€1 00
0 € 0}
000

and det(U) > 0, det(V) > 0.
Then, t = ;7[ 3, U3, u33]T, and R = UDVT or R = UD"V', where
is the unknown scale factor, and

Yy =

Fig. 2. Reconstruction result comparison: (A) reconstruction result with the actual
translation vector, (B) reconstruction result with the normalized translation vector.
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Of note, the scale factor # is impossible to determine using this
method.

Because of the inherent ambiguities, there are four possible
solutions of the combination of R and t:
[R, t1, [R, — t], [R, t], [R, — t]. The chirality constraint is imposed to
eliminate the invalid solutions and find the true solution.

For one arbitrary pair of corresponding image pixel points m,
and my, the 3D coordinates in the camera coordinate system and
the projector system P; and P, are calculated by using R and t
respectively. P, and P, have to be in the common FOV of the
camera and the projector.

However, the scale factor # which is necessary for the re-
construction of the actual size of the object, as shown in Fig. 2, is
still unknown. Note that the small object is the reconstruction
result with the normalized translation vector, whereas the large
object is the result with the scale factor #. Different scale factors
between the projector and the camera would lead to different
translation vectors, so determining the scale factor is necessary for
determining the size of the object. To this end, a scale-invariant 3D
point cloud registration is applied to attain # in this paper.

4. Scale factor acquisition

In this section, the scale factor acquisition by using a scale-in-
variant point cloud registration method is proposed to determine
the actual translation vector. The basic concept is that some
common features of the measured object are extracted to establish
the connection between the origin system and the successive re-
configured system so that the scale factor for every reconfigured
system can be attained.

The continuous measured target object is monitored by the
original system and the reconfigured system. The two measured
point clouds are registered, and the scale factor between them is
attained. Moreover, because the exact extrinsic parameters of the
original system are calibrated from a static calibration procedure,
the scale factor of the reconfigured system can be acquired.
However, because the scale factor of the reconfigured system is
unknown and the normalized translation vector is used for the
reconfigured system, the two measured point clouds are in dif-
ferent scales. Thus, the conventional registration methods, such as
FPFH [17], VFH [18], NARF [19], and 4-PCS [20], may not work in
this situation. To this end, some features invariant to scale are
extracted from the point cloud for registration and further scale
factor acquisition.
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4.1. SIFT feature detection

The Scale Invariant Feature Transform (SIFT) feature detector
has been proposed as a robust 2D image feature detection algo-
rithm [21]. The SIFT algorithm is described as follows.

First, the image is convolved with a series of Gaussian filters of
different sizes, and then the Difference of Gaussian (DoG) function
is performed. The points with local maximum or minimum results
are considered as candidates for key points. Second, points within
low contrast neighborhoods and points at edges are excluded as
candidates. Finally, the histogram calculated from the gradient
magnitudes in all directions is generated as the feature descriptor.

The features extracted from the SIFT detector are invariant to
scale and rotation, thus making them compatible for application in
a correspondence search for the 3D point cloud registration and
further scale factor acquisition.

4.2. 3D point cloud preprocess

The SIFT algorithm works only with 2D images; thus, some
point cloud preprocess needs to be performed before using the
SIFT algorithm for 3D feature correspondence searching:

First, for the structured light measurement system, the 3D co-
ordinates {P} are calculated from the camera image pixel co-
ordinates {m.} and their corresponding projector image pixel co-
ordinates {m,}. A 2D matrix Mp of the same size as the camera
resolution is generated by setting the value at each point as the
distance between P and the origin:

Mp(me) = \[x3 + ¥ + 2 an

Second, Mp is scaled to 0-255, with the maximum distance scaled
to 255, and the others scaled the same. After the preprocess, Mp is
attained and ready for the SIFT feature detection.

4.3. Scale factor acquirement

The same target object is first measured by the structured light
system which has been calibrated statically, and the 2D matrix M
is generated. Then, the measurement system is reconfigured and
recalibrated. The target is measured by the system again, and MS)
is generated.

The SIFT feature descriptors are built for M and M{". Then, to
attain the scale factor between the two point clouds, the regis-
tration between them is performed by searching for corresponding
key points in M and M.

For two point clouds in different scales {Q} and {Q}, the
transformation between them is described as follows:

Q, = &'RQQ +to (12)

where Rg, to are the rotation matrix and the translation vector,
respectively, and € is the scale factor.

The registration process is as follows: for a set of corre-
spondences {q} and {q'}, first, the covariance matrices are built:

E = cov(q)E = cov(q) 13)

Second, the principal components analysis (PCA) for E and E is
performed, and {4;}, {4/}(i =1, 2, 3) are the eigenvalues for E and
E, respectively.

Finally, the scale factor € can be attained by:

e =4[k (14)

where J;, /{ are the maximum eigenvalues.
After € is attained, Rq, to can be calculated by using the con-
ventional rigid transformation estimation.

However, because there are many inaccurate matches, which
would lead to incorrect scale factor results, the RANSAC algorithm
is applied to enhance the robustness of the registration.

For all of the corresponding key points, a set of point pairs are
selected randomly, and the transformation matrix and the scale
factor between two point clouds are attained. Then, the registra-
tion error is calculated by computing the point distance between
the two point clouds. The processes are repeated a number of
times, and the registration with the smallest error is chosen as the
final registration, whose scale factor is taken as the final scale
factor.

After the point cloud registration, the scale factor between the
two point clouds € is attained. Furthermore, the scale factor 7 of
the recalibrated translation vector is attained, which means that
the physical relative position and the orientation of the camera
and the projector have been acquired, thus accomplishing the
entire self-recalibration. The result would be applied for the re-
configured measurement system.

5. Experiments and results

To verify the feasibility and accuracy of the proposed method, a
structured light measurement system is constructed. The system is
composed of a digital projector and a camera. The projector is a
DLP Pro 4500 produced by Texas Instruments (TI,Dallas Metroplex,
Texas, USA) with a resolution of 912 x 1140. The camera is a JAI
GO-5000 M-USB(JAI, Sakae-chou Kanagawa-ku, Yokohama, Japan),
with a resolution of 2560 x 2048.

First, the measurement system is calibrated statically with a
calibration board, as shown in Fig. 3. The board is composed of
9 x 11 circular dots, 5 of which are large dots with a diameter of
15 mm used for world coordinate system definition; the remaining
dots are small dots with a diameter of 7.5 mm as the calibration
features.

5.1. Static calibration procedure
The static calibration procedure is as follows:

(1) The calibration board is placed at different positions and or-
ientations, which are captured by the camera. The camera
image pixel coordinates of the reference dots are attained
using sub-pixel edge detection and ellipse fitting.

(2) The horizontal and vertical fringe patterns are successively

Fig. 3. Calibration board for static calibration.
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Fig. 4. Measured target object.

shot to the calibration board, and the projector image pixel
coordinates of the reference dots are attained by using dual-
frequency phase shifting decoding.

(3) The intrinsic parameters of the camera and the projector are
calibrated using the Zhangs method [22].

(4) The rotation matrix Ry and the translation vector t; between
the projector and the camera are attained using RANSAC
optimization.

After the static calibration, the target object, as shown in Fig. 4,
is measured. Then, the measurement system is reconfigured
where the position and the orientation of the camera are changed
to keep the target object in the FOV of the camera.

5.2. Self-recalibration procedure

The dynamic self-recalibration procedure is performed as
follows:

(1) The horizontal and vertical fringe patterns are successively
shot to the target object, and the corresponding camera and
projector image pixel coordinates {m.}, {m,} are attained.

(2) The rotation matrix Ry and the normalized translation vector f
are attained, using the method described in Section 3.

(3) The 3D point cloud {P;} of the displaced target object is cal-
culated using Ry and t,.

(4) The 2D distance matrices MY and M{" are generated.

(5) The scale invariant registration method based on SIFT is per-
formed. The correspondence search result is shown in Fig. 5,
and the scale factor # is acquired. The entire self-recalibration
process is shown in Fig. 6. Despite there being many inac-
curacies, the correct scale factor 7 is attained using the
RANSAC algorithm, where the correct correspondences are
found and used for calculation.

After the self-recalibration, the new transformation matrix M;
between the camera and the projector is generated:

M, = [R1 ﬂfl]
01 (15)

which can be used for the reconfigured measurement system.
5.3. Experimental results

In order to demonstrate the robustness and accuracy of the
proposed method, the system has been reconfigured 30 times by
using different target objects, and for each configuration it is dy-
namically self-recalibrated without any calibration gauge and
statically calibrated with the calibration gauge.

First, the direction deviations of translation matrix and rotation
vector between static calibration and proposed self-recalibration
are measured in radians. The deviation angle for the rotation
matrix is defined as [23]:

1
aer =5 D, acos((Re)'Re)
i=1.23 (16)

where e(i =1, 2, 3) represents the unit vector for three axes.

And the statics are shown in Tablel.

Second, the scale factors are compared. The mean error is
1.605%, with a standard deviation of 0.74%.

A brick with 5 stairs as shown in Fig. 7 is measured by the
reconfigured system, and the reconstruction results are shown in
Fig. 8. The measurement results are given in Table 2, where d;
represents the distance between plane i and plane j. The mean
error is 2.34%, which is smaller than 3.31% in [24]. Then a statue is
measured and the reconstruction results obtained by the proposed
method and the static calibration method are shown in Fig. 9.

The comparison and measurement results demonstrate that
the proposed self-recalibration method can lead to accurate
results.

5.4. Discussion

The recalibration accuracy is composed of two parts: the ac-
curacy of the rotation matrix and the translation vector, and the
accuracy of scale factor. First, the accuracy of the rotation matrix
and the translation vector depends on the fundamental matrix
calculation, which is determined by the decoding accuracy of

Fig. 5. Correspondence search result.



80 R. Chen et al. / Optics and Lasers in Engineering 88 (2017) 75-81

Original Reconfigured
measurement measurement
system system

v
v Calibration of
rotation
Static matrix and
calibration normalized
translation
vector
Y v
Object 1
) Mi))
measurement )
Mg]) generaﬁon generatlon
I l ]
SIFT
correspondence
search
Scale factor
acquision
Fig. 6. Self-recalibration process.
Table 1
Direction deviation of translation and rotation.
Calibration Results Mean Std. var.
R (rad) 0.0166 1.76e—4
T (rad) 0.1370 0.0030

Fig. 7. Test brick.

fringe patterns. Thus, a dual-frequency phase shifting method with
a large phase shift number like 19 is applied to eliminate the in-
fluence of ambient light and improve the decoding accuracy. Fur-
thermore, the RANSAC strategy is used to exclude the outliner
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Fig. 8. Reconstruction results of the brick.
Table 2

The measurement distance between planes.

Distance Real va-  Static calibra- Self-recalibration  Self-recalibration

lue (mm) tion (mm) (mm) error (%)
diy 15.00 15.38 15.51 34
das 19.88 20.40 20.31 2.67
dsq 25.16 25.42 25.76 2.38
dss 30.17 30.51 30.37 0.66

points.

Second, for the scale factor acquisition, because the final result
is chosen by comparing the registration error, when the calculated
scale factors are close to the real scale factor, the registration er-
rors are close and the scale factor closest to the real one may not
be chosen. According to experimental results, the distance be-
tween camera and projector would not influence the recalibration
accuracy. For the orientation of the target object, the accuracy is
not influenced when there are enough correct corresponding
keypoints for registration.

6. Conclusions

Accounting for fast speed, low cost, and high accuracy, the
structured light measurement has been widely studied and ap-
plied in industrial manufacturing. However, in some practical ap-
plications, the measurement system has to be reconfigured fre-
quently to track the target object, and the recalibration has to be
performed online. The conventional calibration method is time-
consuming, and an accurate equipment is needed. In this paper, a
rapid and autonomous self-recalibration method is proposed to
overcome this problem. In the proposed method, first, the rotation
matrix and the normalized translation vector are attained through
the encoded pattern projection; second, the scale factor is acquired
by using a scale-invariant point cloud registration method. Ex-
perimental results demonstrate the effectiveness and accuracy of
our proposed method. The proposed method can be applied in the
structured light measurement with varied extrinsic parameters.
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Fig. 9. Comparison of reconstruction results: (a) measurement object, (b) proposed
method, (c) static calibration method.
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