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Abstract: This paper presents a novel method to e�ectively store three-dimensional (3D)
data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert
space-�lling curve to map the normalized unwrapped phase map to two 8-bit color channels, and
saves the third color channel for 2D texture storage. By further leveraging existing 2D image and
video compression techniques, the proposed method can achieve high compression ratios while
e�ectively preserving data quality. Since the encoding and decoding processes can be applied to
most of the current 2D media platforms, this proposed compression method can make 3D data
storage and transmission available for many electrical devices without requiring special hardware
changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original
3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression
is used, only black-and-white or grayscale texture can be properly recovered, but much higher
compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of
3D geometry quality.
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1. Introduction

With the rapid development of three-dimensional (3D) measurement technique, high resolution
and high quality 3D range data can be acquired at real time [1]. The advances on 3D range
imaging have been accelerating in the past few years propelled by the availability of commercial
3D sensors (e.g., Microsoft Kinect, Intel RealSense). Yet, there is one fundamental issue that has
not been fully addressed: how can one e�ectively store and deliver such enormously large 3D
data?

Conventional 3D geometry representation methods including OBJ, PLY, and STL can represent
arbitrary 3D geometry and texture data. They typically store data as a sequence of vertices,
connectivity between vertices, and often ¹u; vº coordinate or direct color information to colorize
each vertex. These formats have been extensively used to store a single 3D geometry data, yet the
�le size is enormous (typically at least one order of magnitude larger than 2D counter parts) [2].
Therefore, it is challenging for these formats to represent high-resolution 3D geometry videos for
e�cient storage; thus it is extremely di�cult, if at all possible, to use these formats for 3D video
communication across the standard wireless networks that are currently available.

While 3D image data compression is still in its infancy, compression techniques for 2D images,
however, are quite mature. As a result, researchers have developed a variety of methods to store
3D data as standard 2D images such that 2D image compression techniques can be leveraged.
In the �eld of holography, 3D images can be reconstructed if both the amplitude and the phase
information of the wavefront re�ected by the object are recorded [3]. Inspired by a common 2D
image compression standard, JPEG2000, Alkholidi et al. [4] introduced a compression method of
holograms by implementing the 2D wavelet transform optically to simulate the �rst few stages of
JPEG2000 algorithms. The remaining step of compression (i.e., the entropy coding) is processed
digitally. The testing results show that the 3D holograms that are recovered from the 2D images
compressed by this method preserve high quality. As discussed by Alfalou and Brosseau [3] and
Dufaux et al. [5], the holography-based compression methods can successfully reduce data size
for data encryption and secure transmission. However, the compression methods based on digital
holograms have three major limitations: 1) the achieved compression ratio is not high (typically
less than 30:1) for high-quality 3D representation because the lossy 2D image compression
typically does not naturally work e�ectively for image with random speckle noise [3]; 2) the
recovered data has speckle noise even though they can be reduced by changing the compression
domain [6]; and 3) the computational cost is typically very high especially when the computer
generated hologram is used, albeit the speed can be signi�cantly improved by an advanced
graphics processing unit (GPU) [7�9].
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Another state-of-the-art conversion method from 3D data to 2D image is to build a virtual
structured light system, and project virtual fringe patterns onto the 3D object. Since the virtual
settings can be precisely determined, three 8-bit channels of a standard 2D color image are
su�cient to represent 3D range data. Karpinsky and Zhang [2] developed a method to encode two
channels with sine and cosine functions of the phase map, and a third channel with fringe order
information for pixel-by-pixel phase unwrapping. Later Karpinsky and Zhang [10,11] slightly
modi�ed this method by encoding the fringe order information in the third channel with smooth
cosine function to enable 3D range video compression. Wang et al. [12] developed a two-channel
method that utilized one channel to record the cosine function of the phase and a second channel
to store fringe order information, and they demonstrated the success of such an approach with
lossless formats. However, due to the sharp changes of the second channel, it is di�cult for this
approach to store the encoded 2D images in a lossy format. Hou et al. [13] developed a method to
directly encode the wrapped phase into one channel and the fringe order into the second channel.
Similarly, this method can only work for lossless 2D image representation approach because the
2� discontinuities of the wrapped phase map can cause problems if the information is slightly
lost. All these virtual structured light based 3D-to-2D conversion methods can work well, but
require the creation of another virtual structured light system that introduces additional problems
associated with resampling and triangulation (e.g., the points that cannot be �seen� by either the
virtual projector or the virtual camera). Furthermore, the spatial resolution of these methods is
typically limited by the resolution that a single video card can support, and thus the recovered 3D
data resolution may be lower than that of the original data.
To alleviate some of the aforementioned problems, Zhang [14] developed a direct depth

encoding method that samples the depth map of captured 3D geometry by leveraging the OpenGL
rendering pipeline; the sampled data is further encoded as regular 2D images using sine and
cosine functions. This method allows the use of an arbitrary high resolution image for 3D data
representation, yet still requires a resampling process before encoding. Ou and Zhang [15]
developed a native compression method that encodes scaling factor (s) map of the structured light
with sine and cosine functions, achieving a resolution as high as the camera’s, without resampling.
However, this approach requires reconstructing 3D geometry point by point twice: the �rst time
is to obtain smap before encoding, and the second time is to reconstruct 3D geometry from the
decompressed smap. Overall, one common issue of all aforementioned compression methods is
that when the image is stored in lossy compression formats, substantial �ltering is required to
reduce phase unwrapping artifacts during the decoding process.
Recognizing this problem, Bell and Zhang [16] proposed a two-frequency depth encoding

method that stores two channels with sine and cosine functions of high-frequency phase map,
and a third channel with normalized low-frequency phase map for phase unwrapping. Since all
three channels are smooth, this method requires little to no �ltering even stored as lossy formats.
However, similar to the direct depth encoding method developed by Zhang [14], this method also
requires resampling before encoding.
All the 3D geometry compression methods mentioned so far ignore the image texture (i.e.,

2D photograph). To address such a problem, Karpinsky et al. [17] applied a dithering technique
to the encoded image such that only three bits are required to store 3D range data, and it saves
the rest bits for texture storage. This method demonstrated its success by using lossless image
formats (e.g., PNG) with a reasonably high compression ratio. However, the nature of dithering
is not suitable for the use of any lossy 2D image/video formats (e.g., JPEG, H.264) for further
compression.
This paper presents a novel method for representing both high-quality 3D range geometry

and 2D texture image within a regular 24-bit 2D color image. The proposed method uses the
Hilbert space-�lling curve [18] to map the normalized unwrapped phase map to two 8-bit color
channels, and saves the third color channel for 2D texture storage. Experiments demonstrated that
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if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can
be accurately recovered with high compression ratios (approximately 100:1 comparing against
ASCII OBJ format); when a lossy image/video format is used, higher compression ratios (e.g. over
1500:1 comparing against ASCII OBJ format) can be achieved with slight loss of 3D geometry
quality, albeit only black-and-white or grayscale texture can be properly recovered. Since the
encoding and decoding processes can be applied to most of the existing 2D media platforms, this
proposed compression method can make 3D data storage and transmission available for many
electrical devices without requiring hardware changes.

The rest of this paper is structured as follows: Section 2 explains the principles of the proposed
method. Section 3 shows some experimental data to verify the performance of the proposed
method. Section 4 discusses advantages and limitations of the proposed method, and �nally,
Section 5 summarizes this paper.

2. Principle

This section will introduce the pipeline and principles of the proposed compression method. We
will discuss the structured light system and phase-based 3D shape measurement �rst, and later
focus on how to encode the phase information into one or multiple channels.

2.1. Phase-based 3D absolute shape measurement

Phase-based 3D absolute shape measurement is one of the most popular 3D measurement
methods because of its robustness and accuracy [19]. Phase-based method applies the structured
light techniques that usually contain one camera and one projector [20]. The pinhole camera
model [21], which describes the geometric relationship between camera pixel coordinates ¹u; vº
and 3D world coordinates ¹x; y; zº, can be mathematically represented as
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where ri j and ti are the rotational and translational transform parameters from the 3D world
coordinate to the camera coordinate relatively; fu and fv are the focal lengths along u and v
direction;  is the skew factor of the camera’s axes; ¹u0; v0º is called principle point where the
optical axis intersects the camera’s imaging plane. This equation can be further simpli�ed by
de�ning a projection matrix P:
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Since a projector is physically identical to a camera except that it projects, instead of capturing,
images. Thus the camera and the projector can be modeled by rewriting Eq. (1) as:

sc �
uc vc 1

� t
= Pc �

x y z 1
� t (3)

sp �
up vp 1

� t
= Pp �

x y z 1
� t (4)

Where superscript c denotes camera, and p denotes projector. From Eq. (2)�(4), we have 6
equations with 7 unknowns (x; y; z; sc; sp; up; vp) once the projection matrices are pre-calibrated
or known. Thus one additional equation is necessary to solve for ¹x; y; zº coordinates corresponding
to a camera pixel for 3D shape measurement [22]. In a phase-based 3D measurement method,
the absolute phase � ¹uc; vcº is often used to provide one additional constraint equation (i.e., a
mapping from one point on the camera plane to one line on the projector plane):

� ¹uc; vcº = up
uc ;vc (5)
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2.2. Phase normalization based on minimum and maximum phase

As an object to be measured is always within a certain depth range from the camera, we can
create a virtual plane at the smallest depth (z) value (i.e., z = zmin) to generate a corresponding
virtual phase map, denoted as � min¹uc; vcº [23]. From Eqs. (3)�(4), if z = zmin for each camera
pixel ¹uc; vcº is known, the corresponding coordinate ¹up; vpº on the projector plane is uniquely
determined. Thus we can calculate the corresponding minimum phase value � min¹uc; vcº that is
a function of depth plane zmin and the projection matrices Pc and Pp :

� min¹uc; vcº = f ¹zmin; Pc; Ppº (6)

Similarly, we can de�ne the maximum phase map for the object to be measured as at a virtual
plane where z = zmax:

� max¹uc; vcº = f ¹zmax; Pc; Ppº (7)

We then normalize the unwrapped phase map �¹ uc; vcº by mapping each phase value into a
real number between within the range of »0; 1¼:

� n ¹uc; vcº =
� ¹uc; vcº � � min ¹uc; vcº

� max¹uc; vcº � � min ¹uc; vcº
(8)

This normalized phase map can represent the original phase map for 3D reconstruction if it is
stored properly along with the calibration data of a structured light system, zmin, and zmax.

2.3. Proposed 3D geometry and texture encoding

As what has been discussed before, we need to �nd a way to e�ectively encode the normalized
phase map, � n ¹uc; vcº, for 3D data compression, and preferably as a 2D image. A standard 2D
color image usually has three color channels (R, G, B), each represented by an unsigned 8-bit
integer (0�255) for a single pixel. Meanwhile, to store the normalized phase in k-bit, a simple
conversion can be used to map the real number between 0 and 1 to an unsigned k-bit integer
linearly:

� n;k-bit ¹uc; vcº = Round
�
� n ¹uc; vcº � 2k �

; (9)

where Round(x) is the operator to obtain closely integer number for x.
Thus, if we encode the normalized phase in a single channel (e.g., the red channel), 8 bits

will be used. If we encode the data in two channels (e.g., the red and green channels), it will be
represented by a total of 16 bits. Using more bits naturally results in higher resolution; Table 1
provides an example of achievable depth resolution for an object with a depth range (zmin � zmax)
of 1,000 mm or 1 meter. This table indicates that if a scanner’s depth resolution is lower than
0.015 mm (or 15 � m), using more than 16 bits is not necessary. Therefore, in this paper, we
mainly use 16 bits for our 3D geometry storage since a typical structured light scanner with
1 meter depth sensing range cannot achieve a resolution higher than 0.015 mm. It should be
noted that it is possible to encode the phase map into three channels (24 bits), but it will not be
discussed in this paper since the resolution is excessively high for practical use, although such a
method is still valuable for 3D scanners with higher depth resolutions.

Table 1. Resolution of depth when using di�erent numbers of channels of a 24-bit 2D image,
when the depth range is 1,000 mm or 1 meter.

No. of 8-bit channels No. of bits Resolution of depth (mm)
1 n = 8 3:90
2 n = 16 0:015
3 n = 24 0:000060
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When only one channel is used to store the normalized phase map, the encoding is straight-
forward: to directly store � n;8-bit for each point (i.e., each pixel on the encoded 2D image).
However, storing the data in multiple channels requires a mapping from a one-dimensional
domain (� n;k-bit) to a multi-dimensional domain (i.e., ¹R; G; :::º in the case of color channels).
Taking 2-channel encoding as an example, if the red and the green channels are used, the following
one-to-one mapping needs to be established:

� n;16-bit 7! ¹R ; Gº (10)

where � n;16-bit is an unsigned 16-bit integer ranging 0�65535 and R, G are both unsigned 8-bit
integers ranging 0�255.
Space-�lling curves (SFCs) have been extensively adopted to create a mapping between a

one-dimensional domain and a multi-dimensional domain [24]. Essentially, a SFC goes through
all points in a multi-dimensional space for one and only one time each. When traversing a
multi-dimensional space along an SFC, one can generate a linear order of all points, based
on which the a mapping function can be established [25]. For example, to create a mapping
between a 4-bit one-dimensional space D to a 2-bit two-dimensional space ¹A; Bº, a 4 � 4 SFC is
necessary. The left part of Fig. 1 illustrates an example of such an SFC that travels along 0 !
1 ! 2 ! � � � . At point 0 , the 4-bit binary form of the integer number 0 is 00002, and the
corresponding 2-bit two-dimensional coordinate is ¹002; 002º. Therefore, the mapped value of 0 is
¹0; 0º. Similarly, take point 2 for another example, its two-dimensional coordinate is ¹012; 012º,
thus the mapped value of 2 is ¹1; 1º. By this means, we can obtain a one-to-one mapping between
one-dimensional 4-bit data and two-dimensional 2-bit data, i.e., D 7! ¹A ; Bº .

Fig. 1. A common two-dimensional space-�lling curve called the Hilbert curve that can
create mapping from one dimensional domain D to two-dimensional domain (A, B). The left
half illustrates a 4 � 4 Hilbert curve as an example, and the right half provides the mapping
table between one-dimensional 4-bit data and two-dimensional 2-bit data .

There are di�erent SFCs for di�erent purposes with their own merits and limitations. Figure 2
shows another two representative two-dimensional SFCs and the corresponding binary bit
conversation table. The sweep curve shown in Fig. 2(a) represents a simple mapping function
which is equivalent to putting the most signi�cant half of bits into the �rst channel and the least
signi�cant half of bits into the second channel. Figure 2(b) shows the Lebesgue curve [26] that
can be recursively constructed by dividing a big square into subsquares. This SFC is widely
employed since the corresponding one-dimensional value for a Lebesgue curve can be easily
calculated by interleaving the binary representation of two-dimensional coordinates [24], as
illustrated on the binary conversion table shown in Fig. 2(b). Figure 1 shows the Hilbert SFC
curve [18] that was introduced by Hilbert, who had many remarkable achievements in di�erent
areas of mathematics in late 19th century and early 20th century. He was the �rst person to
generalize a method to generate an entire class of SFCs geometrically [24]. The Hilbert curve can
also be recursively constructed, but the mapping can not be simply represented by bit operations
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like the two aforementioned SFCs. In practice, a look-up-table (LUT) can be conveniently created
to establish the one-to-one mapping. For example, to convert the 16-bit phase map into two
8-bit color channels, we generated a 256� 256LUT that only consumes 128 KB memory.
It is also possible to encode the normalized phase map into three color channels based on a
three-dimensional Hilbert curve [24], however it is not necessary because its resolution goes far
beyond standard 3D scanners can achieve, as discussed earlier.

(a)

(b)

Fig. 2. Two other common two-dimensional space-�lling curves demonstrated by a 4 � 4
grid. (a) Sweep curve; (b) Lebesgue curve.

We used di�erent SFCs to convert the normalized phase map of a complex statue into two
channels for comparison. Figure 3 shows the result. Figure 3(e) shows the original 3D geometry
and Fig. 3(a) shows the normalized phase map to be encoded. The normalized phase map is
then mapped to the red and the green channels of a regular color image using di�erent SFCs.
Figure 3(b) shows the resultant image of the sweep curve, depicting many random structures. The
random structures are inherent to this method since it simply encodes the most signi�cant 8 bits
into the red channel and the least signi�cant 8 bits into the green channel. In comparison, when
the Lebesgue curve is used, the encoded image has much fewer random structures, as shown in
Fig. 3(c), albeit there are still some sharp edges. Figure 3(d) shows the encoded image for the
Hilbert curve, which is apparently the smoothest among these three di�erent SFCs. The choice
of SFC does not matter when using a lossless image format such as PNG, since the exact same
phase value can be accurately recovered for 3D reconstruction, as shown in Figs. 3(f)�3(h).
To further compress the data, lossy compression methods (e.g., JPEG) are necessary. In this

case, however, the choice of SFC a�ects the quality of recovered 3D geometry. The di�erences
can be signi�cant especially when highly lossy compression is applied. Figure 4(a)�4(c) show
the 3D reconstruction result after lossy compression with the sweep, Lebesgue, and Hilbert
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Encoded phase map and recovered 3D geometry of a statue using di�erent SFCs.
(a) Original normalized phase map; (b)�(d) normalized phase map encoded in the red and
the green channels using sweep, Lebesgue, and Hilbert curves respectively; (e) original 3D
geometry; (f)�(h) recovered 3D geometry from (b)�(d) when stored in lossless PNG format.

curves respectively, and Figs. 4(d)�4(f) show the corresponding close-up views. Clearly, due to
the random structures, the quality of the reconstructed 3D geometry is very low for the sweep
curve; in contrast, the recovered data has the highest quality when the Hilbert curve is employed.
The image encoding and compression in this paper are processed by MATLAB 2017a, where a
‘JPG85’ (e.g.) format stands for JPEG encoding with a quality factor of 85%. (It is worth noting
that a JPEG image of 100% quality is still a lossy compression format.) From the comparison,
we can conclude that the Hilbert curve has the best performance in term of �delity. Consequently,
we choose the Hilbert curve to convert the normalized phase map to 16-bit data stored in two
channels for the proposed compression method.
Since only two color channels are used to encode 3D geometry, the third color channel can

be used to store additional information such as texture. For a lossless compression (e.g., PNG),
the third channel can be used to store the Bayer-coded color texture. The Bayer-coding [27] is
extensively employed on single-chip image sensors. It uses four local pixels to represent one
color pixel. Essentially, each pixel has a color �lter on top of the photo sensor such that the
sensor only responds to one speci�c color spectrum of light (red, green, or blue). For example,



(a) (b) (c)

(d) (e) (f)

Fig. 4. Raw 3D geometry recovered from the encoded images shown in Figs. 3(b)�3(d) when
stored in lossy JPG85 format. (a)�(c) 3D reconstruction using sweep, Lebesgue, and Hilbert
curves, respectively; (d)�(f) corresponding zoom-in view of the 3D reconstruction above.

for an 8-bit camera, only one 8-bit image is created, from which a 24-bit color image can be
reconstructed through the debayering/demosaicing process. However, lossy formats (e.g., JPEG)
typically cannot preserve Bayer-coded color texture information when the intensities of three
color components are drastically di�erent. This is because the local2� 2 pixels of the Bayer-coded
intensity image contains sharp edges (i.e., high frequency components in frequency domain)
that are typically smoothed out by the lossy compression algorithm (i.e., the high frequency
components are reduced). As a result, the color information is partially and sometimes completely
lost depending on the level of lossy compression. Therefore, only grayscale texture can be stored
and properly recovered when a lossy format is used to compress the encoded image.

The decoding process is rather straightforward: an encoded 2D color image is �rst used to
recover the normalized phase map and the texture image; then the normalized phase is converted
to the absolute unwrapped phase; �nally we are able to compute the¹x; y; zº coordinates of
objects point by point from the unwrapped phase map (the same as a standard 3D reconstruction
process of the phase-based 3D shape measurement technique).

3. Experimental results

The proposed method was tested with both ideal 3D data and several di�erent 3D objects captured
by a real-time phase-based structured light system developed in our laboratory. First, an ideal
sphere model with a 100 mm diameter was used to quantify errors and to compare between
encoding phase into one channel and two channels with lossless and lossy compression. The



one-channel encoding uses the red channel to store the phase map and the blue channel to
store the gray scale texture image, which leaves the green channel empty. Figure 5(a) shows
the encoded image. The two-channel encoding uses both the red and the green channels to
store the phase map encoded by the Hilbert curve and the blue channel to store texture, and its
encoded image is shown in Fig. 5(e). From these encoded images, 3D geometry and texture can
be recovered. Figures 5(b) and 5(c) show the 3D geometry recovered from Fig. 5(a) when it is
compressed as lossless PNG and lossy JPG85 format respectively. Figure 5(d) shows the texture
image decoded from Fig. 5(a) stored in JPG85 format. Figures 5(f)�5(h) are the corresponding
recovered geometries and texture from Fig. 5(e). These results show that for lossless compression,
there are some small but noticeable artifacts on the reconstructed surface when only one channel
is used to store the phase map. The low resolution of 8-bit data causes these artifacts, and using
2 channels with 16-bit representation is su�cient to eliminate them. When the coded image is
stored in lossy format, the two-channel encoding preserves evidently higher quality in term of 3D
geometry, while there is slight di�erence in the recovered texture images. It should be noted that
some post-processing techniques were applied on the phase map to improve the visual quality
of the geometry recovered from lossy images: a3 � 3 median �lter and a3 � 3 Gaussian �lter
were used to alleviate spikes and random noise, and a Laplace �lter was applied to detect abrupt
surface changes of small bumpy artifacts that were further removed by interpolation. For all the
data presented in the rest of this paper, the same post-processing procedures were employed for
reconstructions from lossy compression formats.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results when an ideal sphere of 100 mm diameter is encoded with texture using
one or two channels storing its geometry and further compressed in PNG or JPG85 format.
(a) Encoded color image with one channel storing geometry; (b) recovered 3D geometry
from (a) compressed in PNG; (c) recovered 3D geometry from (a) compressed in JPG85; (d)
recovered texture from (a) compressed in JPG85; (e) encoded color image with two-channel
geometry encoding using the Hilbert curve; (f) recovered 3D geometry from (e) compressed
in PNG; (g) recovered 3D geometry from (e) compressed in JPG85; (h) recovered texture
from (e) compressed in JPG85.

We then calculated the compression error of the reconstructed 3D geometry (an ideal sphere



in this case). We calculated the root-mean-square (RMS) error of the depth value between the
original and the reconstructed 3D data. Table 2 summarizes the RMS percent error for di�erent
image formats with one or two channels storing the phase map. The data shown on the table
clearly demonstrate that the two-channel encoding preserves higher data quality regardless of the
image format. One can see that even with a low-quality JPEG compression (e.g., JPG50), only
0.027% RMS error is introduced for the two-channel encoding method. Notably, when lossless
PNG format is used, the two-channel encoding can achieve high precision with only an RMS
error of 0.000037% (almost 100% accurate). Therefore, for the rest of this paper, we encode our
data with two channels storing 3D geometries.

Table 2. RMS percent error of the depth value between the original and the reconstructed
ideal sphere when the coded images are compressed in di�erent image formats, using one or
two channels to store the geometry.

PNG JPG100 JPG85 JPG70 JPG50
1-channel (%) 0.0089 0.020 0.042 0.059 0.078
2-channel (%) 0.000037 0.013 0.017 0.021 0.027

To further test the proposed compression method's ability to preserve complex 3D geometries,
a plaster statue was captured and compressed in di�erent formats. The hardware system includes
a digital light processing (DLP) projector (Texas Instruments LightCrafter 4500) and a camera
(Point Grey Research Flea3 FL3-U3-13Y3M-C) with an 8 mm lens (Computar M0814-MP2).
The resolutions of the camera and the projector are480� 640and912� 1140, respectively. For
all captured data, the enhanced two-frequency phase-shifting method [23] was employed for 3D
reconstruction; and we used a fringe period of 24 pixels for the higher frequency fringe pattern,
and a fringe period of 240 pixels for the lower frequency fringe patterns. Figure 6 shows the
reconstructed 3D geometry using the lossless PNG format and di�erent levels of lossy JPEG
formats. One can see that a higher quality image has less random noise, less noticeable artifacts,
and more detailed 3D geometry, yet no severe issues are visually detected even for high-level
lossy compression.

(a) (b) (c) (d) (e)

Fig. 6. Results when the a complex plaster statue is encoded with the proposed method and
stored in di�erent image formats. (a)�(e) 3D reconstruction from encoded 2D images stored
in PNG, JPG100, JPG85, JPG70, and JPG50 respectively.

We then computed the compression ratios by comparing the sizes of images stored in di�erent
formats against common 3D mesh formats (i.e., STL, OBJ, and PLY). Table 3 summarizes the
data. All these meshes store the data in ASCII �les including colorization information (UV
coordinates and color for each pixel). The compression ratio are very high even for the lossless



PNG format. The lossy JPEG formats drastically increase the compression ratios. For example,
the encoded output image has a size of only 59.3 KB for JPG85 format, while the original OBJ
mesh �le occupies 36.6 MB space, leading to a compression ratio of 618:1.

Table 3. Compression ratios of the proposed method when the coded images are stored in
di�erent image formats versus some standard mesh formats for the captured statue shown in
Fig. 3(e)

PNG JPG100 JPG85 JPG70 JPG50
STL 283:1 438:1 1589:1 2430:1 3308:1
OBJ 98:1 170:1 618:1 944:1 1285:1
PLY 42:1 74:1 269:1 411:1 559:1

Furthermore, another statue with complex colorful texture was captured to examine whether
the proposed method can well preserve the texture data. Figure 7 shows the results. For lossless
PNG compression, the exact pixel value of the raw Bayer-coded texture captured by the image
sensor can be directly recorded in the third channel, and the full color image can be recovered after
the debayering/demosaicing process. However, lossy JPEG formats cannot preserve Bayer-coded
color information in only one channel, and the recovered texture appears to be grayscale texture
as shown in Figs. 7(d) and 7(h). It is important to note that texture does not have any obvious
impacts on recovered 3D geometry though they are compressed together in the same color images.

We also evaluated the performance of the proposed method with two separate statues. Figure 8
shows the result after lossy JPG85 compression. Obviously, both 3D geometry and texture can be
properly recovered, verifying that the proposed method can work well for multiple objects.

Finally, we extended our proposed compression method to video encoding. We captured a
video sequence of a hand with di�erent gestures and another video sequence of various face
expressions. Each frame of the encoded video contains 3D geometry and grayscale texture, and
all encoded frames were stacked to generate a standard video using the H.264 codec. Figure 9
and the associatedVisualization 1andVisualization 2show the rendered 3D results from the
encoded H.264 video. The video compression normally has a better performance than plain
image sequence and it has more adjustable parameters which can be optimized for this proposed
method. For example, the video of human face achieves an additional compression ratio of 22.3:1
against frame-by-frame lossless PNG format (1543:1 against OBJ mesh sequence); the �le size
of this H.264 video is also 57% smaller than that of frame-by-frame JPG85 image sequence, yet
the video has higher data quality as it features better compression algorithms for consecutive
frames and uses a 4:4:4 instead of a 4:2:0 chroma sub-sampling.

4. Discussion

Compared with other state-of-the-art 2D image based 3D range data compression methods, the
proposed method has the following merits:

ˆ High-quality geometry and texture representation.The proposed method can represent
high-quality and high-resolution 3D geometry and 2D texture within a regular 24-bit color
image.

ˆ Fast implementation.The proposed method only requires simple computation: phase
normalization and one-to-one mapping based on LUT. This allows compression and
decompression to be processed at a high frame rate.

ˆ No phase unwrapping.The proposed method directly encodes unwrapped phase, and the
decoding stage does not require the often complex phase unwrapping and time-consuming



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Results when a colorful statue is encoded in lossless PNG and lossy JPG85 format,
with two channels representing its geometry and one channel representing its texture. (a)
Recovered 3D geometry from the encoded PNG image; (b) recovered color texture from
the encoded PNG image; (c) recovered 3D geometry from the encoded JPG85 image;
(d) recovered texture from the encoded JPG85 image; (e)�(h) zoomed-in view of (a)�(d)
respectively.

(a) (b) (c)

Fig. 8. Results when a scene of two objects is encoded in JPG85 format. (a) Encoded output
image; (b) recovered 3D geometry from (a); (c) recovered texture from (a).



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Several representative frames of the reconstructed 3D geometry from the H.264
videos (AssociatedVisualization 1andVisualization 2). The video is encoded by FFmpeg
codec as a `.mp4' �le, with the quality factor (CRF) equal to 18 and the frame rate equal to
24 frame per second. (a)�(d) Frames of 3D reconstruction from a video of di�erent human
hand gestures; (e)�(h) frames of 3D reconstruction from a video of various human facial
expressions.

arctangent function calculations. Moreover, this method eliminates any artifacts introduced
by incorrect phase unwrapping.

ˆ Versatility.The proposed method can be extended to using any number of channels or bits
to store 3D coordinates depending on the data precision requirements. For example, if the
texture is not useful, one can use all three channels to encode 3D geometry for even higher
resolution data representation with a three-dimensional Hilbert curve.

ˆ Standard video compression.Unlike any of the previous methods, the proposed method
allows the use of standard video compression techniques (e.g., H.264 codec) to encode a
3D video with grayscale textures and does not need to make any additional changes to the
frames. Thus, this method enables direct 3D video/image conversion.

However, the proposed method still is limited to encode grayscale texture when using a lossy
image or video compression method.

5. Summary

This paper has presented a method to e�ectively store three-dimensional (3D) data and 2D
texture data into a regular 24-bit image. The one-to-one mapping from the normalized unwrapped
phase into two 8-bit color channels is established by space-�lling curves (SFCs), and thus leaves
one channel for 2D texture storage. We have successfully demonstrated that high compression
ratios can be achieved by leveraging leveraging existing 2D image and video compression
techniques. For example, by using a JPG85 compression provided by MATLAB, we can achieve
a compression ratio of 618:1 comparing against the standard ASCII OBJ �le format, and a



compression ratio of 1543:1 compression ratio can be achieved without apparent compression
artifacts if a H.264 codec is used. Furthermore, our experiments demonstrated that if a lossless
2D image/video format is used, both original 3D geometry and 2D color texture can be accurately
recovered; and if a lossy image/video format is used, higher compression ratios can be achieved
with slight loss of data quality, albeit only black-and-white or grayscale texture can be properly
recovered.
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