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Abstract: This paper presents a novel method for absolute three-dimensional (3D) shape
measurement that does not require conventional temporal phase unwrapping. Our proposed
method uses a known object (i.e., a ping-pong ball) to provide cues for absolute phase unwrapping.
During the measurement, the ping-pong ball is positioned to be close to the nearest point from
the scene to the camera. We first segment ping-pong ball and spatially unwrap its phase, and then
determine the integer multiple of 2π to be added such that the recovered shape matches its actual
geometry. The nearest point of the ball provides zmin to generate the minimum phase Φmin

that is then used to unwrap phase of the entire scene pixel by pixel. Experiments demonstrated
that only three phase-shifted fringe patterns are required to measure absolute shapes of objects
moving along depth z direction.
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1. Introduction

High-speed three-dimensional (3D) shape measurement is increasingly used due to the ever-
growing computation capabilities of personal computers and even mobile devices nowadays.
Digital fringe projection (DFP) technique is one of the most popular methods for high-resolution
and high-speed 3D shape measurement because of its flexible fringe generation nature [1]; and
phase-shifting algorithms are extensively used due to its accuracy, speed, and robustness to noise.
However, a phase-shifting algorithm typically only provides phase values ranging from −π to
+π [2]. To perform 3D shape measurement, 2π discontinuities have to be removed by employing
a phase unwrapping algorithm.

Numerous phase unwrapping algorithms have been developed over the years. In general,
conventional phase unwrapping methods can be classified into two categories: spatial phase
unwrapping and temporal phase unwrapping. The former methods unwrap the phase of a point by
referring to phase values of other points through optimization, under the assumption that surface
geometry is smooth. The book edited by Ghiglia and Pritt [3] summarized a number of spatial
phase unwrapping methods; Su and Chen [4] reviewed a number of robust quality-guided spatial
phase unwrapping algorithms, and Zhao et al. [5] compared different strategies of generating a
quality map to guide a phase unwrapping path. Despite the robustness improvements of recently
developed spatial phase unwrapping algorithms, they are all fundamentally limited to measure
smooth surfaces: the object has to be smooth on at least one path such that the object surface
geometry will not introduce more than π phase changes between two successive points. In
general, spatial phase unwrapping only provides a relative phase map that depends on the starting
point of the unwrapping process. As a result, only relative 3D geometry can be recovered.

Temporal phase unwrapping method, in contrast, can retrieve absolute phase by acquiring
additional images at a different time. A typical temporal phase unwrapping algorithm unwraps
the phase of a point without using its neighboring phase values. Two and multi-wavelength
phase-shifting algorithms [6–8] have been developed for laser interferometry, and hybrid binary
coding with phase-shifting methods have been developed for DFP systems [9, 10]. They all work
well and are extensively employed. However, the requirement of additional images slows down
the entire measurement speed.

The nonconventional absolute phase retrieval methods include adding more camera(s) or
projector(s) to capture or project from more than two perspectives such that the geometric
constraints of the multi-view system can be used to determine absolute phase for each point
through optimization [11–17]; or performing hybrid stereo-vision for coarse measurement and
using the wrapped phase constraint for refinement or high-resolution measurement [18]. These
methods can work well if the computational framework is properly developed. However, due
to the requirement of more than two perspectives, the overall measurement area is reduced:
the point has to be seen from all perspectives. Furthermore, the complexity and cost of such a
hardware system increase due to the use of additional hardware components.

In short, spatial phase unwrapping methods do not require additional image acquisition or
hardware, yet they cannot recover absolute phase; the temporal phase unwrapping methods
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sacrifice the measurement speed for absolute phase recovery; and multi-view geometry based
approaches can recover absolute phase without acquiring additional images, yet they increase
system cost and complexity. To address the limitations associated with all existing absolute phase
recovery methods, An et al. [19] developed a geometric-constraint based phase unwrapping
method that only requires a single camera and a single projector without the need of capturing
additional images. This approach sets a distance zmin from the nearest point of object to the
camera to generate a minimum phase Φmin using the geometric constraints of the DFP system.
Φmin is then used to unwrap phase pixel by pixel; and details of this phase unwrapping method
will be presented in Sec. 2.2. However, this method is constrained to measure a limited depth
range of objects. To maximize sensing depth range, it is desirable to precisely know the closest
depth zmin value from the object to camera, making it difficult to be employed for applications
where the object moves along the z direction during measurement.

This paper presents a novel method for absolute phase measurement to drastically enhance
the method developed by An et al. [19] by relaxing the constraint of determining zmin before
measurement. Our proposed method uses a known object (i.e., a ping-pong ball with a 20 mm
radius) to provide cues for dynamical zmin determination. In particular, during the measurement,
the ping-pong ball is captured with objects to be measured, and the ping-pong ball is positioned to
be close to the nearest point of an object to camera. We segment the ping-pong ball and spatially
unwrap its phase. Then we employ an optimization algorithm to determine the integer multiple
of 2π’s to be added such that the recovered geometry matches its actual shape. The nearest
point of the ball provides zmin to generate a minimum phase map Φmin that can be further used
to unwrap phase pixel by pixel for 3D absolute shape reconstruction. If the ping-pong ball is
moving with the object, zmin can be determined dynamically for moving object measurement.
Experiments demonstrated that only three phase-shifted fringe patterns are required to measure
an absolute shape of a dynamic object.

2. Principles

2.1. Three-step phase-shifting algorithm

Phase-shifting algorithms are extensively used in optical metrology because of its accuracy,
speed, and robustness to noise. Over years, numerous phase shifting algorithms have been
developed with some being more robust than others [2]. For high-speed applications, a three-step
phase-shifting algorithm is typically used since it uses the minimum number of patterns to
recover the phase pixel by pixel. For a three-step phase-shifting algorithm with equal phase
shifts, three fringe images can be described as

I1(x , y) = It (x , y) + I′′(x , y) cos(φ − 2π/3), (1)
I2(x , y) = It (x , y) + I′′(x , y) cos(φ), (2)
I3(x , y) = It (x , y) + I′′(x , y) cos(φ + 2π/3), (3)

where It (x , y) is the average intensity, I′′(x , y) is the intensity modulation, and φ is the phase to
be solved for. Solving Eqs. (1)-(3) simultaneously leads to

It (x , y) = [I1 + I2 + I3] /3, (4)

φ(x , y) = tan−1

 √3(I1 − I3)
2I2 − I1 − I3

 , (5)

where It (x , y) is also the texture, or a photograph of the object without fringe stripes. The phase
obtained from Eq. (5) ranges from −π to π with 2π discontinuities, and this phase is called
wrapped phase. The process of removing 2π discontinuities and obtaining a continuous phase
map is called phase unwrapping. Phase unwrapping is to determine 2π discontinuous locations,
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find the integer number k (x , y) of 2π’s to be added to wrapped phase, φ(x , y). Mathematically,
the relationship between the wrapped phase and the unwrapped phase Φ(x , y) can be described
as

Φ(x , y) = k (x , y) × 2π + φ(x , y). (6)

Here k (x , y) is an integer number and is often called fringe order. If the fringe order k (x , y)
can be uniquely determined based on a pre-defined value, then the unwrapped phase Φ(x , y)
is regarded as an absolute phase. As discussed in Sec. 1, fringe orders k (x , y) determined by
spatial phase unwrapping methods are typically relative to one point on the phase map, and thus
spatial methods cannot give an absolute phase. In contrast, temporal phase unwrapping methods
determine absolute fringe orders k (x , y) by referring to additional acquired information (e.g.,
additional images from the same or different perspectives), and that can lead to an absolute phase.

2.2. Geometric constraint-based phase unwrapping algorithm

An et al. [19] developed the absolute fringe order determination method using inherent geometric
constraints of a standard DFP system (i.e., a single camera and a singe projector). For simplicity,
let us assume both camera and projector are calibrated under the same coordinate system based
on a linear pinhole model. The projections from 3D world coordinates to 2D sensor planes can
be described as,

sc
[

uc vc 1
] t

= Pc
[

xw yw zw 1
] t
, (7)

sp
[

up vp 1
] t

= Pp
[

xw yw zw 1
] t

(8)

where P denotes a 3 × 4 projection matrix from world coordinates (xw , yw , zw ) to 2D image
coordinates (u, v), superscript p represents projector, superscript c represents camera, and t

denotes the transpose operation of a matrix. The projection matrices Pc and Pp can be estimated
by a standard structured light system calibration method [20]. Once Pc and Pp are determined,
Equations (7)-(8) become 6 equations with 7 unknowns (sc , sp , xw , yw , zw , up , vp) for a camera
pixel (uc , vc ). Thus only one additional constraint equation is needed to solve all unknowns
uniquely. For 3D shape measurement, the absolute phase Φ(x , y) can provide that necessary
constraint to calculate (xw , yw , zw ) coordinates.

Alternatively, if we define a virtual plane at z = zw , each camera pixel (uc , vc ) can have
a unique corresponding projector pixel coordinates (up , vp ) by solving Eqs. (7)-(8). The cor-
responding phase can be determined by referring to (up , vp ) on the projector sensor plane.
Therefore, for a given plane with constant z, an entire phase map of the camera image can be
created for that virtual plane. If z = zmin , we call the virtually created phase map the minimum
phase map, or Φmin . Apparently, Φmin is a function of the distance zmin , fringe period T , and
projection matrices Pc and Pp,

Φmin (uc , vc ) = f (zmin ; T, Pc , Pp ). (9)

Figure (1) illustrates the basic idea of using the minimum phase for phase unwrapping. Assume
the red dashed window shows the mapped projector region that the camera captures if an ideal
plane is positioned at z = zmin . Since Φmin is defined on the projector space, it is continuous
without requiring any phase unwrapping, as shown in Fig. 1(b). For a plane at a depth z > zmin ,
the wrapped phase φ, captured by the camera, is mapped to the region on the projector marked
as the solid blue window. Figure 1(c) shows the cross sections of these phase maps. Clearly, if
φ < Φmin , 2π should be added to unwrap the phase φ. An et al. [19] showed that the fringe order
k (x , y) can be determined by

k (x , y) = ceil
[
Φmin − φ

2π

]
. (10)

Here, ceil[] is an operator that gives the nearest upper integer value.
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Fig. 1. Concept of phase unwrapping using Φmin [19]. (a) Red dashed window shows
camera captured area when the virtual plane is at z = zmin and the solid blue window shows
the mapped region the virtual plane is at z > zmin ; (b) corresponding Φmin and Φ on the
projector; (c) cross sections of Φmin and Φ and the wrapped phase maps for the case of
only one single 2π discontinuous.

2.3. Proposed absolute phase recovery method

The geometric constraint-based phase unwrapping method discussed in Sec. 2.2 has two major
advantages [21]: 1) it does not require any additional image acquisition, and thus it is more
suitable for high-speed applications; and 2) it is robust to noise because it determines fringe
order by referring to an artificially generated ideal absolute phase map Φmin that is noise free.

However, this phase unwrapping method has the major limitation of confined measurement
depth range. The maximum depth range is approximately

∆zmax = zmax − zmin = ∆Ts/ tan θ, (11)

where θ is the angle between projection direction and capture direction, and ∆Ts is the spatial
span of one fringe period on the object space. This constraint limits the furthest measurable
distance away from the plane at zmin that the approach is applicable. To maximize depth sensing
range, zmin should be the closest point on the object surface, which is usually not precisely
known before measurement. One practice that we use is to estimate zmin by rough measurement.
This practice can work if the relative position between the object and the DFP system does not
change. Unfortunately, for dynamically moving objects, it will be challenging for this geometric
constraint based phase unwrapping method.

To address this problem, we proposed a novel approach to dynamically determine proper zmin

value by simultaneously capturing a known-size object (e.g., a ping-pong ball for our case) that
is moving along with the object.

Figure 2 explains the pipeline of our proposed absolute phase unwrapping method. Three
phase-shifted fringe images are captured by the camera, and they include the object(s) to be
measured along with a known size object (e.g., a ping-pong ball). Wrapped phase φ(x , y) can be
obtained by applying Eq. (5), and the texture image It (x , y) can also be extracted by Eq. (4). We
then employ an image segmentation algorithm to detect the ping-pong ball from the texture image
and separate the ping-pong ball from the rest scene. Since the texture image and the wrapped
phase map come from the same phase-shifted fringe patterns, the corresponding wrapped phase
φb (x , y) for the ping-pong ball can also been extracted. Because the ping-pong ball surface is
smooth, we apply a spatial phase unwrapping algorithm [22] to unwrap the phase. Here we can
only obtain a relative unwrapped phaseΦr

b
(x , y) for the ping-pong ball. This spatially unwrapped

phase could have an offset k0 × 2π (k0 is an integer for the entire phase map) from the absolute
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phase, i.e.,
Φ

a
b (x , y) = Φr

b (x , y) + k0 × 2π. (12)

To extract the constant number k0 for the ping-pong ball, we developed an optimization approach.
From the projected fringe patterns, we know that k0 is bounded by

0 ≤ k0 ≤ N,

where N is the total number of fringe stripes used. Then we search the entire domain to determine
the actual value of k0. For each k ∈ [0, N], we reconstruct a 3D shape for the ping-pong ball, fit
a sphere with the reconstructed point cloud data, and determine the radius of the sphere. The k
value that gives the closest radius value to the actual ping-pong ball radius is the k0 that we are
looking for, i.e., k0 = k.

Fringe patterns Texture 

Wrapped phase 

Segmented  
ball 

Wrapped 
phase 

3D 
geometry 

zmin 

Φmin Unwrapped 
phase Unwrapped 

phase 

3D shape 

Fig. 2. Our proposed absolute phase unwrapping pipeline. Three phase-shifted fringe patterns
are used to obtain wrapped phase map φ(x , y) and texture image It (x , y). The ping-pong
ball is segmented from the texture image and its phase map is extracted from the wrapped
phase map φ(x , y). Since the spatially unwrapped phase map of the ping-pong ball is shifted
by 2k0π from absolute phase, an optimization algorithm is employed to determine k0 such
that reconstructed 3D geometry matches the actual geometry of the ping-pong ball. The
reconstructed ping-pong ball is then used to extract zmin for Φmin computation. The entire
phase map (excluding the sphere) is unwrapped pixel by pixel by referring to Φmin map.
The final unwrapped phase map can be used to reconstruct 3D geometry directly.

Once k0 is determined, we can recover 3D geometry of the sphere, and determine the minimum
z=zmin for Φmin generation. Typically, if the ping-pong ball is slightly closer to the camera
than the object, the minimum z value on the sphere can be used as zmin directly. The computed
Φmin map is then used to unwrap the object surface pixel by pixel by using Eq. (10). Finally, the
unwrapped phase is used to recover the entire 3D surface geometry.

It should be noted that in this research, we use a ping-pong ball as an example for this proposed
pipeline because its surface geometry is simple and uniform; and it is very inexpensive and very
easy to obtain. In practice, one can use any known object to replace the ping-pong ball and the
entire pipeline can still be adapted to determine k0. If the object surface is complex, one may
measure the object in advance and determine k0 by solving the following minimization problem:

karg min|So(x , y) − Sk(x , y) |, (13)

where So is the pre-measured surface geometry, and Sk the reconstructed 3D geometry for fringe
order with an offset of k. Measuring the distance between two arbitrary surfaces is often com-
plex, involving surface registration and complex discrete point distance to surface computation.
Fortunately, the open source software package such as MeshLab (http://meshlab.sourceforge.net)
offers the iterative closest point (ICP) for surface registration, the root-mean-square (rms) value
of two registered point cloud data sets can be used to evaluate the closeness of two surfaces.

3. Experiment

We developed a 3D shape measurement system to test the performance of our proposed method.
The hardware system includes a single charge-coupled device (CCD) camera (Model: Pointgray



Grasshopper3) and a digital light processing (DLP) projector (Model: LightCrafter 4500). The
camera is attached with a 25 mm focal length lens (Model: Fujinon CF25HA-1). The camera
resolution was set as 1280 × 960 pixels and the projector’s resolution is 1140 × 912 pixels.
The projector projects binary structured patterns at 100 Hz, and the camera captures simultane-
ously with external trigger signals generated by Arduino. The entire system was calibrated by
employing the structured light system calibration method developed by Li et al. [23].

We first verified that our optimization algorithm can generate absolute phase by measuring
ping-pong balls. Figure 3 shows a single ping-pong ball measurement results. Figure 3(a) shows
one of the three phase-shifted fringe patterns, and Figure 3(b) shows the wrapped phase. Since
the sphere surface is smooth, we employed a spatial phase unwrapping algorithm [22] to unwrap
the phase, and Fig. 3(c) shows the spatially unwrapped phase map.

(a) (b) (c)

Fig. 3. Measurement result of a single sphere. (a) One of there phase-shifted fringe patterns;
(b) wrapped phase; (c) spatially unwrapped phase.

Since the spatially unwrapped phase is a relative phase, the phase map has to be properly
shifted by 2π × k0 to recover an absolute 3D shape. We employed our optimization algorithm on
the relative phase by adding different number of 2π’s. Figure 4 shows three 3D frames during
the optimization process with different k values. As one can see, when k changes, the size of the
reconstructed sphere changes accordingly. Figures 4(a)-4(c) show 3D results when k = 15, 16,
and 17, respectively. Figures 4(d)-4(f) show the cross sections of Fig. 4(a)-4(c). Visually, when
k = 16, the reconstructed sphere matches with the ideal sphere fairly well.

To automatically determine a proper number of 2π to shift relative phase vlaues, we fitted a
sphere for each 3D geometry reconstructured, and find the radius of each fitted sphere. Figure 5
shows the fitted sphere radius with respect to the changes of k. This figure shows that the
relationship between estimated radius and k are monotonic; and k = 16 gives the radius that is
closest to 20 mm. So we use k0 = 16 for absolute phase recovery.

Once k0 is obtained, the absolute phase can be obtained, and further 3D shape can be recovered.
Figure 6(a) and 6(b) respectively shows unwrapped absolute phase and 3D reconstructed shape.
We then compared the result obtained from our proposed method with that obtained from
the conventional temporal phase unwrapping method [10]. Figure 6(c) shows the reconstructed
absolute phase by the temporal phase unwrapping method; and Fig. 6(d) shows the corresponding
3D shape; they appear identical.

We then plotted the same cross sections of the unwrapped phase, as shown in Fig. 7(a).
From Fig. 7(a), we can find that the unwrapped phase maps perfectly overlap with each other.
Similarly, we plotted the same cross sections of the reconstructed 3D shapes, and Figure 7(b)
shows the result. Once again, they are identical. This experiment demonstrated that our proposed
method can successfully measure a known-size ping-pong ball. Our result is consistent with
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Fig. 4. 3D reconstruction examples with different number of 2π offsets for the spatially
unwrapped phase map shown in Fig. 3(c). Sphere in red is the ideal sphere with a radius
of 20 mm. (a) 3D result when k = 15; (b) 3D result when k = 16; (c) 3D result when
k = 17; (d) one cross section of reconstructed sphere and the ideal sphere for (a); (e) one
cross section of reconstructed sphere and the ideal sphere for (b); (f) one cross section of
reconstructed sphere and the ideal sphere for (c).
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Fig. 5. Changes of fitted sphere radius with different number k of 2π added to the spatially
unwrapped phase map for 3D reconstruction.

(a) (b) (c) (d)

Fig. 6. Comparing results between our proposed method and the conventional temporal phase
unwrapping method. (a) Unwrapped phase from our method; (b) 3D reconstructed geometry
from our method; (c) unwrapped phase from conventional temporal phase unwrapping
method; (d) 3D reconstructed geometry from conventional temporal phase unwrapping
method.
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the conventional absolute shape measurement technique, albeit it requires a lot less number of
images.
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Fig. 7. Cross sections of the results from our proposed method and the conventional temporal
phase unwrapping method. (a) Unwrapped phase maps; (b) 3D shapes.

To further verify that our proposed method can work well for multiple known size objects
at different depths z. We simultaneously measured five ping-pong balls. Figure 8 shows the
measurement results. Once again, we compared the results between our method and the con-
ventional temporal phase unwrapping method. Figure 8 shows that they are identical to our
results. This experiment further demonstrated that our proposed optimization method can indeed
recover an absolute phase map of multiple isolated known objects (e.g., ping-pong balls) without
capturing additional images.

(a) (b) (c)

Fig. 8. Measurement results of multiple isolated known size ping-pong balls. (a) One of three
phase-shifted fringe patterns; (b) 3D reconstruction from our method; (c) 3D reconstruction
from a conventional temporal phase unwrapping method.

After proving that our proposed optimization method can be used to recover absolute shape of
the ping-pong ball at different depths and different spatial locations, we can use that to assist
absolute phase unwrapping for arbitrary objects. We simultaneously measured one ping-pong
ball and two sculptures. The ping-pong ball was positioned slightly closer to the camera than the
sculptures. Figure 9 shows the result. Figure 9(a) shows one of three phase-shifted fringe patterns.
From three phase-shifted fringe patterns, we can obtain the texture image and the wrapped
phase map, as shown in Fig. 9(b) and 9(c) respectively. From the texture image, we segment the
ping-pong ball and obtain the wrapped phase accordingly, as shown in Fig. 9(d) and Fig. 9(e).
Figure 9(f) shows the spatially unwrapped phase of the segmented ball. After employing our
proposed optimization algorithm, absolute shape of the ping-pong ball can be obtained, as shown
in Fig. 9(g). Finally, we reconstructed the 3D absolute shape and the result is shown in Fig. 9(h).

The reconstructed 3D geometry of the ping-pong ball gives the zmin value to generate the
minimum phase map, Φmin , as discussed in Sec. 2.2. After Φmin is obtained, the entire phase
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(d) (e) (f) (g) (h)

Fig. 9. Measurement of two isolated complex sculptures using a known-size ping-pong
ball. (a) One of the three phase-shifted fringe patterns; (b) texture image; (c) wrapped
phase map; (d) segmented ping-pong ball; (e) wrapped phase map of the ping-pong ball; (f)
spatial unwrapped phase map of the ping-pong ball; (g) unwrapped phase after our proposed
optimization algorithm; (h) 3D absolute shape of the ping-pong ball.

map can be unwrapped pixel by pixel. Figure 10(a) shows the unwrapped phase map, from
which we can recover 3D geometry of the entire scene. The 3D result is shown in Fig. 10(b).
As before, we compared our measurement result with that obtained from the temporal phase
unwrapping method [10]. Figure 10(c) shows the unwrapped phase and Fig. 10(d) shows the the
corresponding 3D reconstruction. Once again, they are identical to the results obtained from our
proposed method.

Furthermore, we measured two isolated objects at distinct depth z, as shown in Fig. 11. Since
the depth span of these two objects is larger than the maximum sensing range that the Φmin

can handle, two ping-pong balls are required with each being positioned close to one object.
Figure 11(a) shows one fringe image of the captured scene. We segment each ping-pong ball and
its associated with the object, and separate them into two sub images and process each sub image
following the same procedures as we used before. The top half images of Figs. 11(b) and 11(c)
show the segmented sub-images; and the bottom half images of Figs. 11(b) and 11(c) show the
recover 3D shape for each sub image.

We combine two separately recovered 3D shapes into one entire 3D object. Figure 12 shows
the complete measurement result. Again, we measured the same object using gray coding, and
the result is shown in Fig. 12(b). Figure 12(c) shows two cross sections of the measurement
results using our proposed method and the gray coding method. Once again, they are identical.

Lastly, we experimentally verified that our proposed method can be used to measure objects
moving along the depth z direction. In this experiment, we measured a ping-pong ball moving
along with a hand. We projected two different frequency fringe patterns that allow us to recover
absolute phase using the enhanced two frequency method [24] for absolute phase unwrapping.
Our method only uses three higher frequency fringe patterns for 3D shape recovery. Figure 13 as
well as the associated videos Visualization 1 and Visualization 2 show the measurement results.
Figure 13(a) shows one frame of the 3D result obtained from our proposed method using the
three high-frequency fringe patterns. Figure 13(b) shows the result of the same frame using
the enhanced two-frequency phase-shifting method using 6 fringe patterns. This experiment
successfully demonstrated that our proposed method can be used to measure dynamic object
moving along depth z direction, enhancing the geometric-constraint based phase unwrapping
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(a) (b)

(c) (d)

Fig. 10. Comparing results between our proposed method and the conventional temporal
phase unwrapping method. (a) Unwrapped phase map from our method; (b) 3D reconstruc-
tion using phase map shown in (a); (c) unwrapped phase map from conventional temporal
phase unwrapping method; (d) 3D reconstruction from the phase map shown in (c).

(a) (b) (c)

Fig. 11. Measurement result of two isolated objects with large depth differences. (a) One
of the fringe images; (b) segmented image and 3D reconstruction for the near objects; (c)
segmented image and 3D reconstruction for the far object.

method developed by An et al. [19]. Since only three fringe patterns are used, this proposed
method is very suitable for high-speed measurement applications.

It is important to note that, on these two visualizations, one may notice some periodical error
on those reconstructed 3D data. The periodical error was a result of motion artifacts due to
the “slow” 2D fringe image acquisition speed (i.e., 100 Hz). It takes approximately 33 ms to
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Fig. 12. 3D result of the entire scene. (a) 3D result by combining result for Figs. 11(b) and
11(c); (b) 3D reconstruction from the gray-coding method; (c) two different cross sections
of the 3D results.

(a) (b)

Fig. 13. Measurement result of moving object along depth direction (associated with Vi-
sualization 1 and Visualization 2). (a) Result from our proposed method; (b) result from
enhanced two-frequency phase unwrapping method.

capture three phase-shifted fringe patterns to reconstruct one 3D frame. For slowly moving hand
portion, 33 ms is short enough without introducing any problems. However, for some portion of
the video recording, the hand moves faster and 33 ms is too long. As one can clearly see, the
motion-introduced artifacts appears similarly on the results reconstructed from our method and
the results from the two-frequency phase-shifting method.

4. Summary

This paper has presented a novel method for absolute three-dimensional (3D) shape measurement
that uses a known-size object (i.e., a ping-pong ball with a radius of 20 mm) to provide cues
for absolute phase unwrapping. The phase of segment ping-pong ball is spatially unwrapped to
retrieve relative phase, and the integer multiple of 2π to be added for absolute phase recovery is
obtained through an optimization process. The nearest point of the reconstructed 3D ball provides
zmin to generate the minimum phase Φmin for pixel-by-pixel phase unwrapping of the entire
wrapped phase map. Experimental results demonstrated the success of our proposed method to
measure absolute shape of moving objects using only three phase-shifted fringe patterns.
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