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This paper presents a novel method that leverages the stereo geometric relationship between projector and camera
for absolute phase unwrapping on a standard one-projector and one-camera structured light system. Specifically,
we use only one additional binary random image and the epipolar geometric constraint to generate a
coarse correspondence map between projector and camera images. The coarse correspondence map is further
refined by using the wrapped phase as a constraint. We then use the refined correspondence map to determine
a fringe order for absolute phase unwrapping. Experimental results demonstrated the success of our proposed
method. © 2017 Optical Society of America
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1. INTRODUCTION

Three-dimensional (3D) shape measurement can be used in
many applications. For example, it can be used to do quality
control in manufacturing, disease diagnoses in medical practi-
ces, as well as others [1,2].

In general, phase-based methods are much more accurate
and more robust than intensity-based methods [3]. They
can achieve higher spatial resolution and provide denser 3D
points than intensity-based methods. The extensively employed
phase-retrieval methods include those using Fourier transform
[4–6] and phase-shifting-based fringe analysis algorithms [7].
The former methods can use sinusoidal grating [8], binary gra-
ting [9,10], or periodical lattice grid pattern [11–13] to carry
the desired phase information. The latter primarily uses binary
[14,15] or sinusoidal grating patterns [7] as the phase carrier.
Typically, these phase-retrieval methods can provide a wrapped
phase that ranges only from −π to π with a modulus of 2π due
to the use of an arctangent function. To obtain a continuous
phase map for 3D reconstruction, a phase-unwrapping method
is needed to remove those 2π discontinuities. In essence, phase
unwrapping is to determine an integer number (or a fringe
order) k�x; y� of 2π 0s for each pixel so that the problem of
2π discontinuities can be resolved.

Over the past many decades, many phase-unwrapping
methods have been developed. In general, they can be classified
into two categories: spatial and temporal phase unwrapping.
Spatial phase-unwrapping methods identify 2π discontinuous
locations on a wrapped-phase map and remove them by adding

or subtracting an integer number of 2π 0s. They determine the
fringe order k�x; y� of a point by analyzing the phase values of
its neighboring pixels on the wrapped-phase map. These meth-
ods typically yield only a relative phase because the unwrapped
phase is relative to the starting point of the unwrapping process.
The book edited by Ghiglia and Pritt [16] summarized many
spatial phase-unwrapping methods, and Su and Chen [8]
reviewed many robust quality-guided phase-unwrapping algo-
rithms. Despite these developments, spatial phase unwrapping
is fundamentally limited to measure “smooth” surfaces, i.e.,
they assume that there is no larger than π phase change intro-
duced by object surface geometry between two successive pixels
in at least one unwrapping path. Therefore, it is very challeng-
ing for spatial phase-unwrapping methods to be used if one
wants to measure objects with abrupt depth changes, or to
simultaneously measure absolute geometries of multiple
isolated objects.

Temporal phase-unwrapping methods overcome the diffi-
culties of spatial phase-unwrapping methods. Over the years,
many temporal phase-unwrapping methods have been devel-
oped, including two- or multi-wavelength phase shifting
[17–19], phase coding [20–22], and gray coding [23,24].
Unlike spatial phase-unwrapping methods where phase can
be directly unwrapped from the wrapped-phase map, temporal
phase-unwrapping methods require the acquisition of addi-
tional image(s). Therefore, temporal phase-unwrapping meth-
ods sacrifice measurement speed to resolve the fundamental
limitation of spatial phase-unwrapping methods.
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To alleviate the slowed measurement speed problem of tem-
poral phase-unwrapping methods, researchers attempted to re-
duce the number of additional image acquisitions for absolute
phase recovery. Li et al. [25] proposed a phase-unwrapping
method that uses a single additional image that consists of 6
types of slits. These slits form a pseudo random sequence,
and the fringe order is identified by the position of a sub-
sequence of those slits from an entire sequence. Zhang [26]
attempted to use a single-stair image where the stair changes
coincide with those 2π discontinuities, such that the fringe or-
der can be determined from the single-stair image. Zuo et al.
[27] attempted to encode wrapped phase and base phase into
four fringe patterns. All these attempts using one additional
image for absolute phase unwrapping work well under certain
conditions. However, they all require substantial subsequent
image processing in the intensity domain, making it difficult
for them to measure objects with rich texture.

In general, the state-of-the-art temporal phase-unwrapping
methods ignore the inherent stereo geometric constraints [28]
between projector and camera images for fringe-order determi-
nation. This paper proposes a novel method that leverages the
stereo geometric relationship between projector and camera for
absolute phase unwrapping. In brief, we project a binary ran-
dom image onto an object using a projector and capture the
random pattern by camera. Based on the epipolar geometric
constraints and the additional binary random pattern, we
generate a coarse correspondence map between projector and
camera images. We then refine the coarse correspondence map
using wrapped phase as a constraint. The refined correspon-
dence map is then used to determine the fringe order k�x; y�
for phase unwrapping. Experimental results demonstrate the
success of our proposed method.

Section 2 explains the principles of the proposed method.
Section 3 presents experimental results to validate the proposed
method. Lastly, Section 4 summarizes this paper.

2. PRINCIPLE

In this section, we will thoroughly explain the principles behind
our proposed method. Specifically, we will briefly introduce
the three-step phase-shifting algorithm and then elucidate
the entire framework of our proposed method.

A. Three-Step Phase-Shifting Algorithm
Over the years, many fringe analysis methods have been devel-
oped, including phase-shifting-based fringe analysis methods
and Fourier transform-based fringe analysis methods. Among
all these fringe analysis methods, phase-shifting-based methods
are extensively adopted due to their robustness and accuracies.
The three-step phase-shifting algorithm is desirable for
high-speed measurement applications because it uses the least
number of fringe images for pixel-wise phase retrieval.

Mathematically, three phase-shifted fringe patterns with
equal phase shifts can be described as

I 1�x; y� � I 0�x; y� � I 0 0�x; y� cos�φ�x; y� − 2π∕3�; (1)

I2�x; y� � I 0�x; y� � I 0 0�x; y� cos�φ�x; y��; (2)

I3�x; y� � I 0�x; y� � I 0 0�x; y� cos�φ�x; y� � 2π∕3�; (3)

where I 0�x; y� is the average intensity, which is also texture (a
photograph of an object). I 0 0�x; y� is the intensity modulation,
and φ�x; y� is the phase that is used for 3D reconstruction. By
solving Eqs. (1)–(3), we can obtain

I 0�x; y� � I 1�x; y� � I 2�x; y� � I 3�x; y�
3

; (4)

φ�x; y� � tan−1
� ffiffiffi

3
p �I 1�x; y� − I3�x; y��

2I 2�x; y� − I 1�x; y� − I 3�x; y�

�
: (5)

Due to the use of an arctangent function, the phase obtained
from Eq. (5) is a wrapped phase whose value ranges from −π to
π with a modulus of 2π. To remove those 2π discontinuities
and obtain a continuous phase map, a phase-unwrapping
algorithm is needed. Mathematically, the relationship between
the wrapped phase φ and the unwrapped phase Φ can be
described as

Φ�x; y� � φ�x; y� � 2π × k�x; y�; (6)

where k�x; y� is often referred to as fringe order. The goal of
phase unwrapping is to obtain an integer number k�x; y� for
each pixel, such that the unwrapped phase obtained from
Eq. (6) is continuous without 2π discontinuities.

As discussed in Section 1, numerous spatial and temporal
phase-unwrapping methods have been developed. The spatial
phase unwrapping gives only relative phase and is limited to
measure “smooth” surfaces; and the temporal phase unwrap-
ping can be used to measure arbitrary surfaces and obtain
absolute phase, but requires additional image(s). To our knowl-
edge, none of the existing temporal phase-unwrapping methods
fully utilizes the geometric constraints of the structured light
system for fringe-order determination. In this paper, we pro-
pose a new absolute phase-unwrapping method that leverages
the inherent stereo constraints between projector and camera
images, which will be discussed next.

B. Proposed Method

1. Framework Overview
Figure 1 shows the overall framework of our proposed method.
We use four patterns in total: three phase-shifted patterns and
one random binary pattern. From three phase-shifted images,
we compute the texture I 0 using Eq. (4) and the wrapped phase
φc using Eq. (5). We then binarize the camera-captured ran-
dom image by comparing its gray values with the gray values of
the texture image I 0 pixel by pixel. Utilizing the binarized cam-
era random image I b and the original projector binary random
image, we generate a correspondence map between projector
and camera images through block matching based on stereo
geometric constraints. The correspondence map created in this
stage cannot achieve pixel-level accuracy due to the fundamen-
tal limitation of the correspondence calculation algorithm and
the quality of these two input random images, and we call this
level of correspondence as coarse correspondence. To generate a
precise correspondence map, we refine the coarse correspon-
dence map using the wrapped phase φ as a constraint to adjust
the corresponding point for each pixel. Once a precise corre-
sponding map is obtained, we can determine the precise cor-
responding projector pixel for each camera pixel and thus the
fringe order k�x; y� for each pixel. Finally, we unwrap the entire
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phase map for 3D reconstruction. The rest of this section
details the entire framework we proposed.

2. Epipolar Geometry
To understand our proposed method, the epipolar geometry of
the standard stereo-vision system has to be introduced first.
This subsection explains the general concepts of epipolar geom-
etry and how to use epipolar geometry as constraints for stereo
correspondence establishment.

For a standard stereo vision system that includes two cam-
eras, each camera can be mathematically modeled as a well-
established pinhole system [28]. If both cameras are calibrated
under the same coordinate system, the projection from the
world coordinates to each camera pixel coordinates can be es-
tablished. After calibration, there exists the inherent geometric
relationship between a point on one camera and all its possible
corresponding pixels on the other camera; the method to
establish the geometric constraints is often referred to as
epipolar geometry.

The epipolar geometry mainly constrains the corresponding
pixels of one camera image pixel to be a line on the other cam-
era image. Figure 2 illustrates the epipolar geometric con-
straints. Here Ol and Or , respectively, indicate the focal
point of the left camera lens and the focal point of the right
camera lens; the intersection points between line OlOr and
the image planes El and Er are called epipoles in the stereo sys-
tem. For a pixel Pl on the left camera image, it can correspond
to multiple points P1, P2, P3 at different depths in a 3D space.

Though these points are different in a 3D space, they all fall on
the same line on right camera image Lr , which is called the
epipolar line. From similar geometric relationships, all pixels on
line Ll on the left image can correspond only to points on line
Lr on the right camera image. More details about epipolar
geometry can be found in Ref. [28].

The advantage of using epipolar geometry is that it can:
(1) improve computational efficiency when searching for cor-
respondence between two images, and (2) reduce the chances of
finding false corresponding points. For a pair of images cap-
tured from different perspectives, the corresponding pixels of
one pixel on one camera image can lie only on the epipolar
line of the other camera image. Thus, the correspondence
searching is reduced to a simpler 1D problem instead of the
original complex 2D problem.

To facilitate the correspondence searching, we usually rotate
and translate the original images such that the corresponding
epilines are on the same row; this process is called image rec-
tification. Figure 3 illustrates the results after image rectifica-
tion. All epipolar lines in both images become horizontal, and
the corresponding pixels on one image can appear only on the
same row of the other image. Image rectification can be done by
using some well-established algorithms or toolboxes, such as
those provided by OpenCV. Because correspondence can hap-
pen only on the same row (or column) on a pair of rectified
images, searching for correspondence will be more efficient.

Fig. 1. Framework overview of the proposed phase-unwrapping method. We use three phase-shifted patterns and one binary random pattern.
From three phase-shifted images, we generate wrapped-phase φ, and texture I 0. Then we binarize the camera random image by comparing it with the
texture image. Based on the binarized camera random image and the original projector random pattern, we generate a coarse correspondence. The
wrapped-phase constraint is utilized to do refinement and get correspondence that is more precise. From the precise correspondence map, we
determine a fringe order, and it can be used for the final phase unwrapping.

lO rO

rElE

1P

2P

3P

lP rP

left camera right camera
lL rL

Fig. 2. Epipolar geometry constraint: one pixel on one image can
correspond to only one line (called epipolar line) on the other image.

Fig. 3. Image rectification process aligns the epipolar lines on the
same row to speed up the searching process. Green lines shown on the
image are epipolar lines, including all possible corresponding points for
those pixels.
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Since the transformation matrices from the original image to
rectified image coordinate systems are known, it is straightfor-
ward to determine the correspondence points on the original
images by inverting the transformation process.

The disparity between two corresponding pixels on different
images is related to the depth of an object point. Intuitively, the
disparity increases as the distance from an object to the system
decreases. As shown in Fig. 2, when an object point P moves
closer to the system from P1 to P3, length difference between
ElPl and ErPr increases. In other words, the disparity between
corresponding pixels Pl and Pr increases as the object point
moves closer to the system. Those apparent corresponding pixel
differences in a pair of images is often called a disparity map.
Similarly, if we have a disparity map between a pair of images,
we can infer the correspondence relationship between pixels on
those two images.

3. Coarse Correspondence Generation
The epipolar geometry concepts were primarily developed in
the computer vision field, and most open-source disparity
map generation algorithms were developed for a standard stereo
system: two cameras have the same sensor size, the same optics,
and the same pixel size, and the true corresponding points on
two camera images roughly follow the Lambertian model (i.e.,
an object has equal reflectance in different perspective angles).
However, a standard structured light system consisting of a pro-
jector and a camera usually does not conform to those assump-
tions for the standard stereovision system.

1. The sensor parameters are different. The projector and the
camera usually have different sensor sizes, different physical
pixel sizes, and different system lenses.

2. They have different image generation mechanisms.
Projector images are ideal computer-generated images that
are not affected by the lens, the object, the environment set-
tings, etc. In contrast, camera images are affected by all of these.

Those two major differences violate the basic assumptions of
many existing disparity map generation algorithms developed
for a standard stereovision system, and thus it is difficult to
directly adopt any of them without modifications.

For most intensively employed disparity map generation
algorithms developed in the field of stereovision, two input im-
ages are expected to have a similar field of view (FOV) and same
resolution. Yet, the difference in sensor parameters can cause
different FOVs and different resolutions between projector
and camera images. To mimic a standard stereovision system,
we crop and down sample (or up sample) either projector or
camera images to match the resolution for a similar FOV.
We first crop either projector or camera images to ensure that
their FOVs are similar for a designed working distance; and
then we down sample (or up sample) one of the images to match
the number of pixels between two cropped images. This prepro-
cessing step allows the use of many existing disparity map
generation algorithms to generate reasonable quality results.

The Lambertian surface assumption of the standard stereo-
vision system does not hold for a structured light system since
the projector image is computer generated while the camera
image is practically captured. One of the differences is that
the camera image could be distorted, depending on the location

of the object, while the projector image is not. For example,
part of the camera image could be blurred, as shown in
Fig. 4(a), while the projector image is always perfectly focused,
as shown in Fig. 4(c). Therefore, the correspondence searching
is very challenging. To address that problem, we propose to use
a random binary pattern and binarize the camera-captured
image to preserve the reliable features. The binary image is
suggested because of its robustness to variations of non-ideal
situations where the camera image is generated.

The binary random image is generated using band-limited
1∕f noise where 1

20 pixels ≤ f ≤ 1
5 pixels . The range of f controls

the granularity of the random pattern, and the selection of f is
optimized for each system, depending upon settings of the
hardware and configuration of the system.

Figure 4(c) shows the ideal random binary pattern, denoted
by I p, which is projected onto a flat, white board by the pro-
jector. Figure 4(a) shows the corresponding image captured by
the camera, denoted by I c. The non-ideal camera image shows
the nonuniform brightness and nonuniform focus level across
the entire image, while the projector image does not depict any
of these nonuniform issues. We binarize the camera image by
comparing the texture image, I 0, generated from phase-shifted
fringe images, with the camera-captured random image, I c

pixel by pixel:

I b�u; v� �
�
255; I c�u; v� > I 0�u; v�;
0; otherwise:

(7)

Figure 4(d) shows the binarized camera image shown in
Fig. 4(a). Clearly, the binarized camera visually appears closer
to the projector-projected image than the original camera image
appears. Therefore, intuitively, the binarization preprocess
can increase the success of conventional stereo disparity map
generation algorithms.

Fig. 4. Random pattern and preprocessing of the camera-captured
image. (a) Random image captured by a camera I c ; (b) texture I 0 com-
puted from phase-shifted fringe images; (c) binary random projector
pattern Ip; (d) binarized camera image I b from the camera image
shown in (a).
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In this research, we used the block-matching algorithm
[29,30] to generate a disparity map between the projector im-
age Ip and the binarized camera image I b. Basically, the block
matching divides one image into small rectangle blocks. For a
block of pixels on one image, blocking matching calculates a
cost function at each possible location in a search area (along
the epipolar lines) on the other image. The location with the
lowest cost is the best correspondence point.

Though block matching is commonly used because of its
simplicity, the sizes of image blocks and search areas have a
strong impact on its matching accuracy. A small block size gen-
erates more accurate matching, but produces redundancy and
can be easily affected by noise. A large block size can tolerate
more noise but results are less accurate since it is influenced by a
lot more surrounding pixels. The optimal block size varies for
different scenes and different parts of an object. Usually an op-
timal block size is determined by checking an overall disparity
map quality, but detail parts always contain many artifacts, such
as holes and missing boundary. In addition, block matching
usually cannot achieve pixel-level accuracy due to noise in
two input images and the use of a block of pixels for matching.
Figure 5(a) shows an example of the disparity map in the rec-
tified image coordinate system between Figs. 4(c) and 4(d) after
applying the block-matching algorithm. On this disparity map,
the gray value of each pixel represents the position difference
between corresponding camera and projector pixels. Obviously,
there are many holes, and the boundary is very rough. To
address these problems, a refinement stage is required, which
will be discussed next.

4. Refinement
To bring back the lost information (i.e., holes and some miss-
ing boundary) of a raw disparity map directly generated from
the block-matching algorithm, we perform cubic spline inter-
polation along both row and column directions. We call this
step hole filling. Taking a row of pixels as an example, we extract
all the indices of pixels that have reliable disparity values, such
as f�ik1 ; d k1�; �ik2 ; d k2�;…; �ikn ; d kn�g, where ikj is the index of
the pixel position in a row, and dkj represents the disparity value
of pixel ikj . We use points with reliable disparity values as
“knots” to interpolate missing points between a pair of knots,
�ikj ; d kj� and �ikj�1

; d kj�1
�, with cubic polynomials dk � qk�i�.

It is well known that the cubic function qk�i� is in the form
of ak � bki � cki2 � dki3, or dk � ak � bki � cki2 � dki3,
where ak, bk, ck, and dk are parameters of a cubic function.
To obtain these four unknown coefficient parameters, we fit
an initial cubic polynomial function q1 based on the first four
points on a row f�ik1 ; d k1�; �ik2 ; d k2�; �ik3 ; d k3�; �ik4 ; d k4�g, and
determine those four unknowns a1, b1, c1, d 1 by simultane-
ously solving four equations:

dkj � a1 � b1ikj � c1i2kj � d 1i3kj ; (8)

where j � 1;…; 4. For each following point �ikj ; d kj �, where
j � 5;…; n, we also fit a cubic polynomial function and denote
it as qj−3. The parameters of these new cubic polynomials are
determined by the following boundary conditions:

qj−3�ikj−1� � dkj−1 ; (9)

qj−3�ikj� � dkj ; (10)

d
d i

�qj−3�
����
i�ikj−1

� d
d i

�qj−4�
����
i�ikj−1

; (11)

d 2

d i2
�qj−3�

����
i�ikj−1

� d 2

d i2
�qj−4�

����
i�ikj−1

; (12)

where aj−3, bj−3, cj−3, d j−3 are four unknowns. Once the cubic
polynomial function is determined, the missing disparity point
im can be interpolated based on the cubic function. For
example, if im locates between two knots ikt and ikt�1

, then
the interpolated disparity value dm � qt−3�im�.

Not only for each row, we also do cubic spline interpolation
for each column. Therefore, those points inside holes are inter-
polated twice: along row and column directions, and we take
the average of these two interpolation results. For boundary
missing disparities, usually they are interpolated only in either
row or column direction, and thus we directly take one direc-
tion interpolation result. Figure 5(b) shows the result after
hole filling.

Meanwhile, as mentioned in Section B.3, a disparity map
can provide only a coarse correspondence, but not a precise
correspondence. To achieve higher correspondence accuracy,
we use the wrapped-phase value as the constraint for refine-
ment. This is because if the correspondence is precise, the cor-
responding pixels should have the same wrapped-phase values
as from the camera and the projector. This constraint is used to
adjust pixel correspondence between projector and camera
images, and we call it phase constraint for the rest of this paper;
the step of using phase constraint to refine the correspondence
determination is called refinement.

Specifically, the process to refine a correspondence map
based on the phase constraint works as follows. Suppose there
is a pixel �uc; vc� on a camera image; the corresponding projec-
tor pixel is �up; vp�, according to a coarse disparity map gener-
ated from block matching. For the coarse correspondence given
by a disparity map, it is possible that φ�uc; vc� ≠ φ�up; vp�, and
thus we should slightly adjust the value of up or vp to make sure

Fig. 5. Disparity map generation and refinements. (a) Raw disparity
map directly generated from block matching; (b) disparity map after
hole filling; (c) refined disparity map based on phase constraint; (d) un-
wrapped phase from (b); (e) unwrapped phase after extrapolation;
(f ) final unwrapped phase map. The difference between the first-
row and second-row images is that (a)–(c) are in the rectified image
coordinate system, and (d)–(f ) are in the original camera image
coordinate system.
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that φ�uc ; vc� � φ�up�; vp��, where �up�; vp�� is the refined
corresponding projector pixel around �up; vp�. By enforcing
the phase constraint, we can make sure that �up�; vp�� on
the projector is the precisely corresponding pixel for the camera
pixel �uc; vc�.

Figure 5(c) shows the disparity map after filling missing
holes and refining the coarse corresponding map with phase
constraint. It is clearly much smoother than the coarse disparity
map shown in Fig. 5(b), as expected. However, it still shows
missing areas on the boundaries, comparing the texture image
shown in Fig. 4(b). The reason for this problem is that the
boundary information on the original disparity map does
not present, and the hole-filling step cannot fill them either.
Figure 5(d) shows the unwrapped phase in the original camera
image coordinate system based on the refined disparity map
shown in Fig. 5(c). The missing boundaries on a disparity
map can lead to the zigzag boundaries on the unwrapped-phase
map. A straightforward way to solve this problem is to extrapo-
late the disparity map to fill those values. However, from our
experience, extrapolation on a disparity map is quite challeng-
ing because disparity values have no clear property that we can
utilize. In contrast, an unwrapped phase is guaranteed to be
monotonous in either row or column direction. Thus, we pro-
pose to do extrapolation on the unwrapped phase to fill those
still missing boundary points.

Specifically, we use a linear or low-order polynomial fitting to
fill the missing boundary unwrapped-phase values. Take a row
from the unwrapped phase map as an example; we
extract all pixels that have an unwrapped phase, such as
f�im;Φm�; �im�1;Φm�1�;…; �ik;Φk�g, where m is the starting
point, and k is the ending point of a segment on which we have
unwrapped-phase information. To fill the unwrapped phase val-
ues for boundary pixels i1; i2;…; im−1 and ik�1; ik�2;…; in,
we fit a linear or low-order polynomial function based on
pixels from im to ik and their unwrapped phase values
Φm;Φm�1;…;Φk. Based on the fitted polynomial function,
we then predict the missing boundary unwrapped-phase values
Φ1;Φ2;…;Φm−1 and Φk�1;Φk�2;…;Φn. Since the predicted
unwrapped-phase values could be slightly different from the
truth, we again refine the unwrapping result using the phase con-
straint that guarantees the same wrapped-phase values. Finally,
we calculate fringe orders k based on those extrapolated un-
wrapped-phase values, and unwrap the entire phase. Figure 5(e)
shows the results after extrapolation, and Fig. 5(f ) shows the final
unwrapped phase that can be used for 3D reconstruction.

It is important to note the visualization difference between
the first-row images and the second-row of images in Fig. 5.
The perspective difference is a result of showing them in differ-
ent coordinate systems where images shown in Figs. 5(a)–5(c)
are in the rectified image coordinate system, and Figs. 5(d)–5(f )
show images in the original camera image coordinate system.

3. EXPERIMENT

We built a structured light system to experimentally verify the
capability of our proposed method. The system consists of one
charge-coupled device (CCD) camera (Model: The Imaging
Source DMK 23U618) and one digital-light processing (DLP)
projector (Model: DELL M115HD). The camera resolution is

640 × 480, and it is attached with a 12-mm-focal-length lens
(Model: Computar M1214-MP2). The projector’s native res-
olution is 1280 × 800 with a 14.95-mm-fixed-focal-length lens.
The baseline between the projector and camera is approxi-
mately 60 mm, and the distance between the measured objects
and the structured light system is approximately 460 mm. We
adopted the method proposed by Zhang and Huang [31] to
calibrate our structured light system.

We first measured a single sphere. The images are pre-proc-
essed to address the problems associated with different resolu-
tions, pixel sizes, and FOVs between projector and camera
images. We cropped the projector image to be 640 × 480 pixels
for this experiment, such that the camera and projector have
similar FOV and the same resolution at the location of the
sphere. On the cropped projector image area, we project three
phase-shifted patterns and one binary random pattern. The
fringe period of phase-shifted patterns is 18 pixels. Figure 6(a)
shows one of the three fringe images. The random binary
pattern we used is the same as the one shown in Fig. 4(c).
Figure 6(b) shows the random pattern image captured by
the camera. From three phase-shifted fringe images, we can
obtain the texture and wrapped-phase map, which are shown
in Figs. 6(c) and 6(d), respectively.

We generated a coarse correspondence map between the bi-
narized camera random image and projector random pattern by
applying the block-matching algorithm. As discussed in
Section B.3, we binarize the random image by comparing it
with the texture using Eq. (7). Figure 7(a) shows the binarized
image. Figure 7(b) shows the original projector binary random
pattern. Both the camera and projector binary images are rec-
tified so that the correspondences are on the same row, such as
pixels on the green lines in Figs. 7(a) and 7(b). Through block
matching, we generated a coarse disparity map, which is shown
in Fig. 7(c). On this disparity map, the gray value of each pixel

Fig. 6. Experiment on a sphere. (a) One of the three fringe images;
(b) random pattern captured by the camera; (c) texture computed from
fringe images; (d) wrapped phase from fringe images.

Fig. 7. Coarse correspondence generation. (a) Rectified binarization
result of camera random image; (b) rectified projector binary random
pattern; (c) rough disparity map generated by block matching.
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represents the position difference between corresponding cam-
era and projector pixels.

The coarse disparity map shown in Fig. 7(c) is not precise
and has artifacts (e.g., holes, missing boundary). We filled holes
on the disparity map using the cubic spline interpolation along
both row and column directions. Figure 8(a) shows the dispar-
ity map after hole filling. Since the coarse disparity map cannot

achieve pixel-level accuracy, the phase constraint was used to
refine the correspondence map. Figure 8(b) shows the unwrap-
ping result after applying the phase constraint to the coarse dis-
parity map after hole filling. The unwrapped-phase map shown
in Fig. 8(b) is accurate, but some boundary areas are still
missing, as expected. We fitted a 2-order polynomial on each
row and column to extrapolate those missing boundary areas,
and again refined the extrapolated unwrapped-phase map using
the phase constraint. Figure 8(c) shows the final unwrapped
phase map after refinement. Figure 8(d) shows the final 3D
reconstruction result based on the unwrapping phase. Clearly,
the reconstructed geometry is continuous and smooth, sug-
gesting our proposed method works well for a single object.

We further experimentally verified the phase quality by
comparison with a traditional temporal phase-unwrapping
method. Instead of using one random pattern, we use seven
gray-coded binary patterns to determine fringe order k and
temporally unwrap the wrapped phase [32]. Figure 9(a) shows
the unwrapped-phase map for the sphere, and Fig. 9(b) shows
the 3D reconstruction result.

We took a cross section of the unwrapped phase and 3D
geometry and compared them with the results obtained from
our proposed method. Figures 10(a) and 10(b) show the
results. Clearly, our results perfectly overlap with the results
obtained from the gray-coding method, confirming that our
unwrapping result is correct and accurate. The gray-coding
method is a well-known temporal phase-unwrapping method,
and the recovered phase is absolute. Thus, our approach also
generates an absolute phase map.

Since ourmethod can obtain absolute phase, it can be used to
simultaneously measure multiple isolated objects. To verify this
capability, we measured two isolated objects, as shown in
Fig. 11(a). These two objects were at a similar position as the
sphere, and we did the same preprocessing of cropping to make
sure the projector and camera had the same resolution and
similar FOVs. Figure 11(b) shows the wrapped phase, and
Fig. 11(c) shows the random image captured by the camera.
We used block matching to generate a disparity map, and then
applied the same hole filling, refinement, unwrapped-phase
extrapolation, and refinement procedures as the sphere experi-
ment. The final unwrapping phase is shown in Fig. 11(d), and
Fig. 11(e) shows the 3D reconstruction result using our
proposed method.

Once again, we compared our proposed method with the
gray-coding method. The unwrapped phase through gray cod-
ing is shown in Fig. 12(a), and the reconstructed 3D geometry
is shown in Fig. 12(b). They appear the same as the results
we obtained from our proposed method. We then took cross

Fig. 8. Experiment results of a sphere. (a) Refined disparity map;
(b) unwrapped phase using the refined disparity map and phase con-
straint; (c) boundary filling result using polynomial fitting and phase
constraint; (d) 3D reconstruction result.

Fig. 9. Measurement result of the sphere using the gray-coding
method. (a) Unwrapped phase map; (b) 3D reconstructed geometry
reconstructed.

(a) (b)

Fig. 10. Comparison between the results from the gray-coding
method and our proposed method for the single sphere measurements.
(a) Cross sections comparison on the unwrapped phase shown in Fig. 8(c),
marked as the solid blue line, and Fig. 9(a), marked as the dashed red line;
(b) cross sections comparison on the unwrapped phase shown in Fig. 8(d),
marked as the solid blue line, and Fig. 9(d), marked as the dashed red line.

Fig. 11. Experiment result on two isolated objects. (a) Texture of the two isolated objects to be measured; (b) wrapped phase; (c) random pattern
captured by the camera; (d) unwrapped-phase map using our proposed method; (e) 3D reconstruction result.
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sections of the unwrapped phase and 3D geometry and
compared the results of our proposed method with the gray-
coding results. Figures 13(a) and 13(b) show the results. Once
again, our results perfectly overlap with the results from gray
coding. All these experiments demonstrated the success of our
proposed method for absolute phase unwrapping. Compared
with gray coding, we use only one additional pattern instead
of seven, thus our method is more applicable for high-speed
measurement conditions.

4. SUMMARY

This paper has presented a new absolute phase-unwrapping
method that utilizes the inherent stereo geometric relationship
between projector and camera. The proposed method requires
only one additional binary random image. Based on the epipolar
geometric constraint and one additional binary random image,
we generate a coarse correspondence map between projector
and camera images. The coarse correspondence map is further
refined by using the wrapped-phase constraint. We then use
the refined correspondence map to determine the fringe order
for absolute phase unwrapping. Experiments demonstrated

the success of our proposed method through measuring both
a single object andmultiple isolated objects. Since only one addi-
tional pattern is required to generate an absolute phase map, it
has advantages for high-speed measurement applications.
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