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One of the state-of-the-art methods for three-dimensional (3D) range geometry compression is to encode 3D data
within a regular 24-bit 2D color image. However, most existing methods use all three color channels to solely
encode 3D data, leaving no room to store other information (e.g., texture) within the same image. This paper
presents a novel method which utilizes geometric constraints, inherent to the structured light 3D scanning device,
to reduce the amount of data that need be stored within the output image. The proposed method thus only
requires two color channels to represent 3D data, leaving one channel free to store additional information (such
as a texture image). Experimental results verify the overall robustness of the proposed method. For example, a
compression ratio of 3038:1 can be achieved, versus the STL format, with a root-mean-square error of 0.47% if the
output image is compressed with JPEG 80%. © 2017 Optical Society of America

OCIS codes: (120.2650) Fringe analysis; (100.5070) Phase retrieval; (100.6890) Three-dimensional image processing.
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1. INTRODUCTION

Three-dimensional (3D) scanning technologies have the ability
to capture high-quality data at real-time speeds [1]. Such
abilities have led to an increased adoption of these technologies
within many various industries, such as medicine, communi-
cation, entertainment, and manufacturing. Given the large
amounts of data generated by 3D scanning technologies, the
real-time storage and transmission of such data becomes
important.

One way to represent 3D data is with a mesh format.
A mesh is described by a set of vertices (3D coordinates)
and a set of edges, which specify the structure of the mesh
(i.e., how the coordinates should be connected to one another).
Some additional attributes of the mesh may also be stored, such
as a normal map, vertex colors, or a texture image along with
texture image coordinates. Standard mesh file formats (e.g.,
OBJ, STL, PLY) are based on simple listings of the information
required to reconstruct a mesh with its attributes. In the past
several decades, much work has been done to try and represent
this information as efficiently as possible.

Researchers have sought new ways to efficiently encode a
mesh’s connectivity information in order to reduce the amount
of information needed overall to represent the mesh.
Connectivity information can be efficiently encoded using in-
telligent methods of traversing the vertices or structures
within the mesh. A well-designed encoding method reduces

redundancy within the connectivity information, thus reducing
overall file sizes, and many methods have been proposed
(e.g., triangle strip [2–4], spanning tree [5], valence encoding
[6,7], triangle traversal [8,9]). Once connectivity information
has been encoded, the actual positions of the vertices are then
encoded. This is typically done by following a three-step
procedure of quantization, prediction, and entropy encod-
ing [10,11].

The above methods are connectivity-driven, meaning that
the encoding of geometry information follows the order of
the connectivity encoder. Given that the data size for a 3D
mesh is generally more impacted by geometry (i.e., coordinate)
data [10,11], there have also been geometry-driven methods
developed for the compression of 3D meshes. Such methods
let the encoding be driven by what best encodes the coordinate
positions, even if it does not result in an optimal encoding of
the connectivity information. For example, Kronrod and
Gotsman [12] proposed a method which optimizes the predic-
tions between the positions of adjacent vertices. The connec-
tivity information would then be encoded by following the
optimized predictions. It was found that this optimization
could provide much more compact meshes overall while paying
only a small penalty for the non-optimal connectivity encoding
[12]. Mesh compression problems become more simple if pre-
cise restoration of a mesh’s connectivity is not required, or if the
data has an underlying structure that automatically carries the
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connectivity information. For example, a regular grid or pixel
structure is often assumed with range data captured by a
camera. In such cases, the encoding methods can primarily fo-
cus on how to precisely and efficiently encode 3D data itself.

In the field of phase-shifting interferometry digital hologra-
phy, 3D hologram information is encoded within a 2D com-
plex wavefront. Multiple phase-shifted interference, or fringe,
patterns are captured by a camera and these patterns can recover
both amplitude and phase information. Deformations of the
phase from a reference plane are related to deviations of the
object surface from the reference plane being captured.
Typically, the information within the fringe patterns are used
to derive a complex wavefront, or Fresnel field, which is used to
reconstruct the captured object. As these wavefronts consist of
complex, floating point values, methods for compressing the
data are desired.

Since digital holograms have an inherent grid structure
(the wavefront is computed from data digitally recorded by
a camera), the 3D geometry compression problem is simplified
to a 2D compression problem. Furthermore, instead of com-
pressing the wavefront and its complex values, Darakis and
Soraghan [13] proposed a digital hologram compression
method which applies JPEG and JPEG 2000 compression di-
rectly to the camera captured interference patterns, from which
a complex wavefront can later be computed. This method is
flexible due to the ability to define and control the compression
rates (i.e., the JPEG quality level in use). However, to achieve
higher compression ratios, lower JPEG qualities are used,
which causes considerable error on the reconstructed wave-
front. Further, the data size is proportional to the number
of phase-shifted patterns captured by the camera. If this num-
ber is increased, compressing the wavefront and its complex
values may be more efficient.

Darakis and Soraghan [14] proposed a method for com-
pressing a complex wavefront—at the object’s reconstruction
plane—which first quantizes the complex data and then loss-
lessly encodes it using the Burrows–Wheeler transform [15].
This method outperforms the method directly compressing
the interference patterns using JPEG that the same team pro-
posed earlier [13]. It achieved reasonably good compression
ratios [e.g., approximately 26:1 for a normalized root-
mean-square (RMS) error of approximately 0.1], and retained
the hologram’s natural capability of being able to be recon-
structed at different depths and perspectives. More thorough
reviews of state-of-the-art compression methods using various
digital holography approaches are given by Alfalou and
Brosseau [16] and Dufaux et al. [17].

The physical properties of digital holography systems
(e.g., lighting conditions, surface texture, speckle noise) could
greatly affect the efficiency of hologram compression methods.
To alleviate such potential problem, a virtual digital holography
system can be used to create computer-generated holograms
(CGHs). These are generated by numerically simulating
how light reflects and propagates off of a virtual 3D object.
CGH methods are advantageous as they can both represent ar-
bitrary 3D objects and are computed within a completely ideal
environment. Recently, methods have been proposed for com-
pressing CGHs using JPEG [18] or even high efficiency video

coding (HEVC) [19]. Although these compression methods are
quite effective, generating the CGHs themselves is both a com-
putationally complex and memory expensive process [20].
Graphic processing units can be used to effectively reduce
the time of computing CGHs [21–23], yet such a method
is still limited by the amount of on-board memory for high-
resolution hologram generation. Moreover, since the viewing
angle of the reconstructed image is proportional to the
CGH size [23], the resulting CGHmay have a very large spatial
resolution compared to the number of points actually encoded.
In general, all the compression approaches based on digital
holograms suffer from the noise caused by speckle. The pres-
ence of speckle noise makes it difficult to fully leverage 2D lossy
image compression methods, hindering the ability to achieve
very high compression ratios while also preserving data quality
after compression.

Compared to holography-based 3D geometry compression
methods, digital fringe projection (DFP)-based 3D range data
compression methods typically have the advantages of (1) one-
to-one correspondence between a pixel on an image and one
encoded 3D geometry point; (2) the elimination of speckle
noise related problems; and (3) the ability to achieve much
higher compression ratios with standard 2D image compression
techniques (e.g., a magnitude higher for high-quality compres-
sion). Similar to the concept of using a virtual digital hologra-
phy system to calculate CGHs, a virtual DFP system can be
used to precisely and quickly encode 3D coordinates within
the three channels (RGB) of a regular 2D image using
phase-shifting techniques. Once 3D range geometry is encoded
into a 2D image, it can then be further compressed using well-
established image compression techniques, such as PNG or
JPEG, and saved to disk or transmitted over a network.

Researchers have proposed different approaches to encode
3D geometry into a 2D image using the concept of a virtual
DFP system along with phase-shifting principles [24–26].
These methods use all three color channels of the output
RGB image to encode 3D data. Typically two of the three color
channels will be used to represent the 3D data. The third color
channel is used to store important fringe order information,
which is needed for the proper recovery of the phase-shifted
data within the first two channels. Although these methods
are successful, using all three color channels of the output image
limits the ability to save any additional information with the
3D data (e.g., a texture image). Given this, some methods have
focused on encoding 3D geometry in such a way that it only
uses two of the three color channels of the output 2D image.

Hou et al. [27] proposed a two-channel method which was
able to represent 3D geometry with one single channel of the
output image, still using a second channel to store the fringe
order information for decoding. Using one channel instead of
two to represent 3D geometry information then leaves one
channel free, either to be left empty or to store additional attrib-
utes of the data. Although efficient in this regard, this method
uses only a single 8-bit color channel to represent 3D geometry
limiting the precision of the encoding. Further, the data this
method encodes to represent 3D geometry contains very sharp
discontinuities, which results in rapid intensity changes be-
tween pixels of the output image. This limits the method’s
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potential extension to using lossy JPEG compression to further
reduce file sizes, as sharp intensity changes can cause
compression artifacts within the encoded data.

Wang et al. [28] also proposed a method which was able to
encode 3D geometry using only two color channels of an RGB
image, leaving one channel open for additional information.
This method also uses one channel to represent 3D geometry
information and another to store the fringe order information
needed for decoding. While successful, the method has the
same drawback that it only uses a single color channel to re-
present 3D geometry, limiting the precision of the encoding.
Further, it requires a post-processing error compensation
framework to alleviate decoding errors.

Karpinsky et al. [29] proposed a method which encoded 3D
geometry into three color channels and then performed
dithering on each one. Using this method, each 8-bit channel
could be represented with a single bit per pixel, allowing all
three color channels to be represented with only three bits
per pixel. This method is quite advantageous in terms of its
small file sizes and large amounts of remaining space within
the output image for the storage of additional information
(such as a texture image). In fact, the texture image itself
can be dithered along with the geometry information in order
to reduce data sizes even further. The main drawback of this
method was that it required the usage of a lossless image com-
pression technique (i.e., PNG) when storing the dithered chan-
nels. Ideally, lossy image compression techniques could be used
to further decrease file sizes; however, if a lossy method (i.e.,
JPEG) was used to store the dithered channels, the resulting
file sizes were larger than PNG. Since almost all of the widely
used video codecs (e.g., H.264) employ some sort of lossy
image compression, this would limit this encoding method’s
extension to 3D video applications.

One trait that is common in the methods that use phase-
shifting concepts to represent 3D data within a 2D image is
the need to encode the fringe order information. This is be-
cause the fringe order value for each 3D coordinate (or its as-
sociated 2D pixel) needs to be known in order to perform
proper decoding of the coordinate. If there were another means
to derive the fringe order information (instead of encoding it
directly within the output image), up to an entire channel could
be saved or used to store additional information.

This paper proposes a novel method for 3D range geometry
compression which utilizes the geometric constraints of the 3D
capture system itself to derive this fringe order information,
necessary for proper data decoding, in an on-demand fashion
using the system’s calibration parameters. The result of this is
that fringe order information no longer must be stored along
with the encoded 3D data within the output 2D image. This
freedom allows our method the ability to precisely represent
floating point 3D range geometry within two entire color chan-
nels while keeping the third color channel open for additional
data storage. Further, the encoding within the two color chan-
nels is continuous in nature (i.e., no sharp intensity changes),
which allows the proposed method to achieve extremely large
compression ratios (i.e., smaller file sizes) via lossy JPEG encod-
ing while maintaining very high reconstruction accuracies. For
example, compression ratios of 3038:1 were achieved versus the

STL format, with a RMS error of 0.47%, when the output
image was compressed with JPEG 80%.

The proposed 3D range geometry encoding method can
efficiently archive or transmit 3D range geometry data, which
could be valuable for applications such as entertainment,
security, and telecommunications. Further, given the method’s
ability to encode 3D range data within two color channels, a tex-
ture image can be stored in the third channel. This may be ben-
eficial, for example, to the area of telemedicine: remote physicians
could leverage both decoded 3D range geometry and 2D texture
image to perform simultaneous physical measurements and visual
assessments to make sound medical decisions.

Section 2 will describe the novel 3D range geometry encod-
ing and decoding methods, specifically in how the geometric
constraints of the capture system can be used to help decode
geometry information stored within a 2D image. Section 3 will
present various experimental results of the proposed encoding
method, and Section 4 will summarize the paper.

2. PRINCIPLE

A. Phase Encoding for 3D Range Geometry
Compression
A generic structured light scanner consists of one camera and
one projector. The DFP technique is one of the structured light
methods which uses a projector to project phase-shifted, sinus-
oidal fringe images onto a 3D scene. The camera will then cap-
ture the distorted fringe images projected upon the scene and
can use these to compute distorted phase information. This
phase information can then be used pixel-by-pixel to recover
3D coordinates if the DFP system is properly calibrated [30].

The concepts of phase shifting can also be used to encode
3D geometry into a 2D RGB image. However, as discussed in
Section 1, the state-of-the-art methods require one of the three
output color channels to store the fringe order information
needed to properly decode the phase-shifted data. This paper
presents a novel method for encoding that can recover the
geometry without needing to store fringe order information.
Given this, the proposed method can use two data channels
to precisely encode data while having one channel free to store
additional data.

The proposed method directly encodes distorted phase in-
formation as captured by a DFP system, Φ, into two color
channels (e.g., red and green) of the output 2D image:

I r�i; j� � 0.5� 0.5 × sin�Φ�i; j�∕SF�; (1)

I g�i; j� � 0.5� 0.5 × cos�Φ�i; j�∕SF�; (2)

where �i; j� are image pixel indices and where SF is a scaling
factor. This encoding is advantageous as it retains the precision
of the phase map while remaining very straightforward to im-
plement. Once the phase has been encoded into the 2D image,
it can be further compressed using conventional methods, such
as PNG or JPEG.

B. Phase Decoding and Unwrapping Using
Geometric Constraints
To recover phase back from the 2D image, ϕ is computed from
the encoded data stored in the two channels:
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ϕ�i; j� � tan−1
�
I r�i; j� − 0.5
I g�i; j� − 0.5

�
: (3)

This recovered phase ϕ is bounded within the range �−π; π�.
The original unwrapped phase, Φ, can be recovered if the
2π discontinuities within ϕ can be identified, ordered, and cor-
rected. It is this fringe order information, denoted by K , which
existing encoding methods carry along within an additional
color channel. To save data and to avoid using a color channel
to carry along the fringe order information (either directly or
within some other encoding), the proposed method uses the
geometric constraints of the DFP system to generate an artifi-
cial phase map, Φmin. Then, for each pixel, Φmin can be refer-
enced to determine the proper K value for that pixel. The
following will describe the mathematical models governing
the system and how they are used, as proposed by An et al.
[31], to generate Φmin.

The camera and projector within a structured light system
can each be mathematically described using a pinhole model.
Using this model, real-world coordinates, �xw; yw; zw�, can be
projected onto the 2D plane, at the coordinate �u; v�, using the
equation

s� u v 1 �t � P� xw yw zw 1 �t ; (4)

where s is a scaling factor and P is the projection matrix. This
matrix can be described as

P �
2
4 f u γ u0

0 f v v0
0 0 1

3
5
2
4 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3
5; (5)

where f u and f v are the focal lengths along the u and v direc-
tions, respectively; γ is the skew factor of the two axes; rij and t i
are the rotation and translation parameters; and �u0; v0� is the
principle point. This projection matrix is often simplified into a
single 3 × 4 matrix:

P �
2
4 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3
5: (6)

If the camera and projector of a DFP structured light system
are properly calibrated, we know their respective projection ma-
trices, Pc and Pp. These matrices can be used to obtain two sets
of equations, one for the camera (denoted superscript c) and
one of the projector (denoted superscript p) describing the
DFP system:

sc � uc vc 1 �t � Pc � xw yw zw 1 �t ; (7)

sp� up vp 1 �t � Pp� xw yw zw 1 �t : (8)

Equations (7) and (8) provide six equations yet there are
seven unknowns: sc , sp, xw, yw, zw, up, and vp. To solve for
the unknowns, one more equation is needed; typically, the lin-
ear relationship between some known absolute phase value, Φ,
and a projector line is used to resolve this by providing an addi-
tional equation to solve for up or vp (depending on the direction
of Φ ). At this point, the unknowns can be solved for, and a 3D
coordinate for each camera pixel can be derived.

Similarly, consider if the absolute phase value is unknown
yet the depth value zw is known for a pixel. For a given zw

then, an artificial phase value can be determined. Further, if
zw � zmin, the artificial phase map is a minimum phase
map, denoted Φmin. This map can formally be defined by a
function taking inputs zmin, the minimum z value; T , the
fringe width on the projector used to capture the original data;
and the respective projection matrices for the camera and pro-
jector, Pc and Pp. Based on the fringe width T used by the DFP
system, the minimum phase map may have a limited working
depth range [31]. To ensure that Φmin can be used to properly
unwrap the decoded ϕ, T s is used to derive Φmin, and it is
defined as T × SF; thus,

Φmin�uc ; vc� � f �zmin; T s;Pc;Pp�; (9)

is of a function of zmin; T s;Pc and Pp.
To actually determine Φmin, xw and yw are first computed

for each camera pixel �uc ; vc� via
� xw yw �t � A−1b; (10)

where

A �
�
pc31u

c − pc11 pc32u
c − pc12

pc31v
c − pc21 pc32v

c − pc22

�
; (11)

b �
�
pc14 − p

c
34u

c − �pc33uc − pc13�zmin

pc24 − p
c
34v

c − �pc33vc − pc23�zmin

�
: (12)

Knowing xw and yw, �up; vp� can be found for each camera
pixel, similar to Eq. (8):

sp� up vp 1 �t � Pp� xw yw zmin 1 �t : (13)

Finally, the artificial phase value, Φmin can be determined via

Φmin�uc; vc� � up × 2π∕T s: (14)

This specific equation will provide phase assuming the
fringe patterns are projected along the vp direction; to obtain
phase along the other direction, the up and vp values can simply
be swapped.

Once the artificial phase map has been derived, it can be
used to determine the fringe order information, K , as

K �i; j� � Ceil

�
Φmin�i; j� − ϕ�i; j�

2π

�
: (15)

The fringe order information is then used to unwrap ϕ in
order to recover the originally encoded phase information, Φ,
via

Φ�i; j� � �ϕ�i; j� � 2π × K �i; j�� × SF: (16)

Now that the originally encoded phase,Φ, has been decoded
and recovered, �xw; yw; zw� coordinates can be reconstructed
with Eqs. (7) and (8) as described above.

3. EXPERIMENTS

To test the proposed method, several different objects were cap-
tured with a DFP system. Comparisons made were between the
3D geometry reconstructed from the original unwrapped phase
versus the 3D geometry reconstructed from the decoded, recov-
ered unwrapped phase. The hardware system included a digital
light processing projector (Texas Instruments LightCrafter
4500) and a camera (PointGrey Flea3 FL3-U3-13Y3M-C)
with an 8 mm lens (Computar M0814-MP2). The resolutions
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of the camera and projector were 480 × 640 and 912 × 1140,
respectively. For all mentioned experiments, the fringe width
used was T � 36 pixels. The system was calibrated following
the method proposed by Li et al. [30], and only 553 bytes were
required to store the resulting calibration parameters.

First, a matte white spherical object with a 4 in.
(101.60 mm) diameter was captured by a DFP system and
had its phase encoded into a 480 × 640 lossless PNG image
using the proposed method. From this 2D image, the phase
was decoded and used to reconstructed 3D coordinates. In this
first experiment, no additional texture information was stored
in the output 2D image: the phase was encoded into the red
and green channels and the blue channel remained empty.
Figure 1 illustrates this entire process: Fig. 1(a) shows a texture
image of the sphere, Fig. 1(b) shows the original absolute phase,
and Fig. 1(c) shows the sphere’s 3D geometry. The phase from
Fig. 1(b) was then encoded into a PNG image (cropped for
visualization), shown in Fig. 1(d). Figures 1(e) and 1(f ), respec-
tively, show the red and green color channels of the PNG
image, which contain encoded phase information. These
channels are then decoded to recover the absolute phase data,
displayed in Fig. 1(g), which is used to recover the 3D sphere,
shown in Fig. 1(h).

Figure 2 shows the reconstructed results when the output
image shown in Fig. 1(d) was stored with different lossy image
qualities (JPEG 100%, 80%, 60%, and 20%) using MATLAB
2014b. One may notice that the reconstructed 3D geometry
quality is fairly high if the JPEG 100% was used, as shown
in Fig. 2(e), and the associated phase RMS error is small
(0.17 mm or 0.35%). Even if JPEG 20% was used the quality
of the reconstructed 3D geometry is still reasonably good, and
the error is still pretty small (0.85%).

It is important to note that these results were obtained with-
out a kernel-based, post-processing filter or error compensation
framework. The only post-processing performed was a simple
threshold to remove significant boundary outliers.

The original 3D capture of the 4 in. (101.60 mm) diameter
sphere required 65.0 MB, 9.0 MB, and 8.4 MB to store in the
common mesh formats STL, OBJ, and PLY, respectively, in
their ASCII formats. When storing the encoded sphere into
a PNG image, the proposed method was capable of approxi-
mately a 688:1 compression ratio, with an RMS error of
0.02 mm (0.033%), versus the original geometry stored in
the STL format. To obtain higher compression ratios, lossy
JPEG was used to store the output image. For example, when
JPEG 80% was used, a 3038.3:1 compression ratio was
achieved with an RMS error of 0.23 mm (0.466%). Even when
saving out the encoded sphere at the low image quality of JPEG
20%, the RMS error was only 0.42 mm (0.854%) and achieved
a 6241.9:1 compression ratio versus STL. Table 1 shows the
overall compression ratios when Fig. 1(d) was encoded into
different image qualities and compared against the common
mesh formats.

Another experiment was performed to evaluate the proposed
method’s ability to properly encode phase of multiple, more
complex, geometries. In this experiment, a scene consisting
of a cat sculpture and a dog sculpture was captured and had
its phase encoded into a PNG image. This PNG image was
then decoded to recover the phase from which 3D coordinates
were reconstructed. Figure 3 demonstrates that the proposed
method was indeed able to properly encode and decode phase
containing multiple, complex, geometries. Figure 3(a) shows
the original 3D geometry and Fig. 3(b) shows the 3D geometry

Fig. 1. Experimental results of capturing, encoding, and decoding a
4 in. (101.60 mm) diameter sphere. (a) A 2D texture image of the
sphere; (b) original absolute phase of the sphere; (c) original 3D geom-
etry reconstructed from (b); (d) encoded phase stored in a lossless
PNG image via the proposed method, cropped for visualization from
its original 480 × 640 resolution; (e) the red channel of (d); (f ) the
green channel of (d); (g) the decoded absolute phase from (d); (h)
recovered 3D geometry reconstructed from the decoded (g).
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Fig. 2. Results of the sphere’s phase being encoded into two 2D
color channels and saved with different JPEG qualities (using
MATLAB 2014b). (a)–(d) 3D reconstructed results using the decoded
phase from JPEG qualities 100%, 80%, 60%, and 20%, respectively;
(e)–(h) Difference in zw between the original sphere and the recovered
sphere for a cross section. RMS errors for (e)–(h) are 0.17 mm
(0.35%), 0.23 mm (0.47%), 0.31 mm (0.61%), and 0.43 mm
(0.85%), respectively, after removing boundary outliers with a simple
threshold.

Table 1. Compression Ratios of the Encoded Sphere
Using PNG and Different JPEG Levels Versus Common
3D Mesh Formats

PNG JPG100 JPG80 JPG60 JPG40 JPG20

STL 688.0: 1 856.5: 1 3038.3: 1 3983.6: 1 4795.6: 1 6241.9: 1
OBJ 99.9: 1 124.3: 1 441.0: 1 578.2: 1 696.0: 1 905.9: 1
PLY 88.6: 1 110.2: 1 391.1: 1 512.7: 1 617.3: 1 803.4: 1
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reconstructed from a PNG image. Figure 3(c) is a rendered im-
age that overlaps the two geometries together, showing that the
difference between them is very small. Figure 3(d) provides an
error map between the two reconstructions. The RMS error for
this geometry reconstructed from a PNG image was 0.02 mm.

In the previous experiments, the encoded phase data was
stored in the red and green channels; this would allow the blue
channel to store texture information when desired. If the 2D
RGB image is stored with a lossless compression method
(e.g., PNG), it does not matter which respective channels
the data and texture reside within. However, due to how most
JPEG encoders typically perform their image encoding,
different color channels end up being encoded at varying levels
of fidelity.

During JPEG encoding, an image’s RGB values are trans-
formed into Y 0CBCR color values, where Y 0 represents the
luma component and where CB and CR represent the blue
and red chroma components, respectively. The human visual
system (HVS) typically is more sensitive to changes in lumi-
nance as opposed to changes in color [32]. Given this,
JPEG encoders maintain high fidelity in the Y 0 component
and usually downsample the CB and CR components in aims
to reduce the file size while minimizing impact on the percep-
tual quality of the reconstructed image. In the RGB to
Y 0CBCR transformation used by JPEG, the highly preserved
Y 0 component is primarily influenced by the green channel,
followed by the red and then blue channel values [33]. This
is done to further mimic the HVS as humans are typically more
sensitive to green, red, and then blue light, respectively.

Another experiment was conducted to evaluate the impact
this color JPEG encoding has on the proposed phase encoding
method. In this experiment, the same 4 in. (101.60 mm)
sphere from the previous experiments was used. The sphere’s

phase was encoded into the different channel arrangements
(red and green, red and blue, green and blue) while storing
the sphere’s grayscale texture image in the remaining channel
(blue, green, red, respectively). The RGB images were then
stored using MATLAB’s JPEG encoder, which uses chroma
subsampling, at various compression levels. From the com-
pressed JPEG images, phase and geometries were reconstructed
and compared against the original 3D capture of the sphere.

Figure 4(a) compares the file sizes across the various color
channel arrangements. When JPEG 100% was used to store
the 480 × 640 2D image, file sizes of 76 KB were obtained
when encoding the phase into the red and green channels
(leaving the blue channel empty); 81 KB when encoding into
the red and green channels (storing texture in the blue chan-
nel); 90 KB when encoding into the red and blue channels
(storing texture in the green channel); and 87 KB when encod-
ing into the green and blue channels (storing texture in the red
channel). Overall, the selection of which color channels to store
data and textures does not drastically affect the resulting file size
of the 2D image, especially when using higher levels of JPEG
compression, as the file sizes all become near equivalent.

Figure 4(b) compares reconstructed 3D geometry accura-
cies, versus the original sphere, when the different color channel
arrangements are used. When JPEG 100% was used, the
reconstruction errors were 0.346% when encoding phase data
into the red and green channels (leaving the blue channel
empty); 0.342% when encoding into the red and green chan-
nels (texture in the blue channel); 0.412% when encoding into
the red and blue channels (texture in the green channel); and
0.394% when encoding into the green and blue channels
(texture in the red channel). The overall trend was that the
lowest errors could be achieved by encoding phase data into
the red and green channels, storing texture in the blue channel,
if desired.

A final experiment used the proposed phase encoding
method to compress a dynamic sequence of 3D data frames
along with their associated color textures. For this experiment,
a color camera (PointGrey Grasshopper3 GS3-U3-23S6C) was
used. Each captured frame’s phase was encoded into the red
and green channels of an output 2D image with the proposed
method. Each frame’s associated texture—before color

Fig. 3. Visual demonstration of reconstruction results when the
scene contains multiple, complex geometries. (a) Original 3D geom-
etry; (b) 3D geometry recovered from decoded phase in the red and
green channels of a PNG image; (c) overlay of the original and recon-
structed 3D geometries (gray color represents recovered geometry, red
represents the original geometry); (d) error map, in mm, between the
original and recovered geometry (RMS error of 0.02 mm).
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Fig. 4. Storing encoded phase data and texture in different channels
for various levels of JPEG compression. (a) Comparison of JPEG file
sizes when the texture is not used or stored in the blue, green, or red
channels; (b) comparison of reconstructed 3D geometry error (versus
the original sphere) when phase data is encoded into various color
channels, potentially along with a texture image in the remaining
channel.
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demosaicing—was placed in the blue channel of its respective
output image. Each output RGB image was then compressed
using various levels of image compression: PNG, JPEG 100%,
JPEG 95%, JPEG 90%, and JPEG 85%. It should be noted
that chroma subsampling was not used for the JPEG encodings
in this experiment.

Figure 5 shows reconstructions from the encoded images for
one of the dynamic frames stored using various levels of 2D im-
age compression: PNG, JPEG 100%, JPEG 95%, JPEG 90%,
and JPEG 85%, from left to right. Visualization 1 shows several
seconds of the decoded dynamic sequence. The first row shows
the reconstructed 3D geometry without any post-processing or
filtering. The second row shows the same reconstructed 3D with
small median and Gaussian filters applied to remove noise
around the edges and to reduce blocking artifacts imposed by
JPEG. The third row shows the filtered reconstructed 3D geom-
etry with color texture mapping applied. Color texture maps
were obtained by demosaicing the texture stored within the blue
channel of the encoded output images.

It is important to know that there is a trade-off between
accuracy and depth range. As previously mentioned in
Section 2, the minimum phase unwrapping method has a
limited working depth range [31] that was ensured by using
a scaling factor, SF, in our proposed method. Increasing the

SF extends the depth range but reduces its accuracy.
Conversely, decreasing the scaling factor increases the accuracy
but reduces the effective depth range of the encoding.
Therefore, in practice, the selection of SF should be tailored
for a given application where the depth range can be
pre-defined.

4. SUMMARY

This paper presented a novel method for the compression of
3D range geometry into a regular 24-bit 2D RGB image which
utilized geometric constraints of the 3D scanning device itself
to reduce the amount of data that need be stored. The proposed
method used two color channels to precisely represent 3D
geometry information while leaving one channel free to store
additional attributes about the data (such as a texture image).
Our experiments demonstrated the overall efficiency and ro-
bustness of the proposed method. When PNG was used to
store the encoded output image, compression ratios of
approximately 688:1 were achieved versus the STL format with
an RMS error of only 0.033%. Additional experiments high-
lighted the proposed method’s resiliency to lossy JPEG image
compression. For example, compression ratios of 3038:1 were
achieved versus STL with an RMS error of 0.47% when the

Fig. 5. Reconstructions of 3D data from a dynamic sequence (associated with Visualization 1). Each column, from left to right respectively,
represents reconstructions from various levels of compression used to store the output 2D image: PNG, JPEG 100%, JPEG 95%, JPEG
90%, and JPEG 85%. First row: reconstructed 3D geometry from the compressed images. Second row: reconstructed 3D geometry with small
median and Gaussian filters applied. Third row: filtered reconstructed 3D geometry with color texture mapping applied.
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encoded image was compressed with JPEG 80%. Lastly, it was
shown that the proposed method could reconstruct complex
3D geometry and color texture information from a single,
JPEG compressed 2D RGB image, which may be useful within
applications such as communications and telemedicine.
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