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Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects.
Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of
the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with
the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following
major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the
camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve
absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models
are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex
objects with only three phase-shifted fringe images. © 2017 Optical Society of America

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (100.5088) Phase unwrapping; (110.5086) Phase unwrap-

ping; (100.5070) Phase retrieval.
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1. INTRODUCTION

Three-dimensional (3D) shape measurement technologies have
been exciting for a variety of applications, including industrial
inspection, entertainment, and medicine.

For decades, scientists have been conducting extensive re-
search on different types of 3D shape measurement methods.
In general, among different types of 3D shape measurement
techniques, phase analysis techniques have advantages over in-
tensity analysis techniques owing to their high spatial resolutions
and insensitiveness to surface reflectivity variations. Some popu-
lar phase analysis techniques include the Fourier transform
method [1], the Windowed Fourier transform method [2,3],
and the phase-shifting methods [4]. Typically, a phase analysis
technique produces a wrapped phase map with 2π discontinu-
ities. Then, a spatial [5] or temporal phase unwrapping algorithm
[6–14] is necessary to create a continuous phase map by deter-
mining the integer k (i.e., the fringe order) multiples of 2π to be
added at each phase’s discontinuous point.

Essentially, the phase analysis approaches accompanied by a
phase unwrapping algorithm can be generically applied to the
measurements of different types of objects. To achieve such gen-
erality, however, requires extra effort to increase the efficiency
and robustness of the algorithms. For instance, a typical spatial
phase unwrapping method locally searches for 2π discontinuities
from the phase map itself. Despite numerous efforts (e.g., using

a quality- [15] or reliability-guided method [16]) to increase
the robustness of spatial phase unwrapping, it is still challenging
for such methods to deal with cases with abrupt spatial dis-
continuities, not to mention that the generated phase map is
only relative to a point on a single connected component.
Although temporal phase unwrapping techniques are able to
address the aforementioned challenges, the projection of extra
images, such as multiple frequency patterns [11–14], or
intensity-coded [6,7] or phase-coded patterns [8–10], are typi-
cally inevitable to perform unwrapping pixel by pixel. An et al.
[17] has recently proposed a method based on geometric
constraints that does not require the projection of additional
images. However, such a method can recover only object
geometries within a depth range of 2π in phase domain, some-
thing undesirable when the period of projected patterns is
narrow [17].

Nowadays, computer-aided design (CAD) has been an
important mean to assist the building and optimization of a
design [18]. For an object that is produced by a modern manu-
facturing machine, its CAD model is typically available from
the designers. Such a valuable resource, however, has rarely
been utilized to assist 3D shape measurements in previous
research works. In fact, this preknowledge of object geometry,
as strong extra information, could bring about the potential to
develop more efficient 3D shape measurement algorithms.
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This paper thus proposes a novel adaptive algorithm that can
measure objects with a known CAD model. Using the pre-
knowledge of the object geometry from the CAD model, we
can recover absolute 3D geometry of the object with only three
phase-shifted patterns. In our proposed computational frame-
work, we first export the 3D point cloud data from the CAD
model, which is then transformed into the real camera perspec-
tive to assist phase unwrapping by segmenting the measured
object into different depth volumes. We will explain the prin-
ciples in details along with experimental validations to demon-
strate that such a method can well recover both simple and
complex 3D geometries given that the original CAD model
is available.

Section 2 introduces principles relevant to this research as well
as our proposed computational framework; Section 3 demon-
strates the experimental validations of our algorithm; and
Section 4 summarizes the contributions of our proposed research.

2. PRINCIPLES

This section introduces some theoretical background related to
this research. Specifically, we will explain the basics of a phase-
shifting algorithm, the modeling of a digital fringe projection
(DFP) system, and our proposed measurement method assisted
by CAD model.

A. Three-Step Phase-Shifting Algorithm
There are a variety of phase analysis techniques in optical
metrology. Within which, the phase-shifting algorithms have
the advantages of high accuracy and robustness. Among all
phase-shifting techniques, the three-step phase-shifting algo-
rithm requires the minimum number of images for phase
computation, making it preferable for high-speed applications.
The three phase-shifted patterns that have equal phase shifts
can be modeled as

I 1�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ − 2π∕3�; (1)

I 2�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ�; (2)

I 3�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ� 2π∕3�; (3)

where I 0�x; y� represents the average intensity, I 0 0�x; y� denotes
the intensity modulation, and ϕ is the phase to be extracted.
Simultaneously solving Eqs. (1)–(3), the phase ϕ can be com-
puted as follows:

ϕ�x; y� � tan−1
� ffiffiffi

3
p �I 1 − I 3�
2I 2 − I 1 − I 3

�
: (4)

The computed phase map ranges from −π to π owing to the
nature of an arctangent function. A phase unwrapping algo-
rithm is necessary to produce a continuous phase map by add-
ing integer k�x; y� multiples of 2π, as follows:

Φ�x; y� � ϕ�x; y� � 2π × k�x; y�: (5)

The integer k�x; y� is typically referred to as the fringe order.
Besides phase information, from Eqs. (1)–(3) we can also

compute the texture information I t�x; y� as follows:

I t�x; y� �
I1 � I 2 � I 3

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I 1 − I 3�2 � �2I 2 − I 1 − I 3�

p
3

:

(6)

The texture information looks like an actual photograph of
the imaged scene that can be used for applications such as
object recognition or feature extraction.

B. DFP System Model
The imaging lenses (e.g., camera lens, projector lens) in a DFP
system respect the well-known pinhole model [19], which de-
scribes the projection from 3D world coordinate �xw; yw; zw� to
2D image coordinate �u; v�, as follows:

s

"u
v
1

#
�

2
4f u γ u0

0 f v v0
0 0 1

3
5
2
4 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3
5
2
664
xw

yw

zw

1

3
775: (7)

In this model, s represents the scaling factor; f u and f v are,
respectively, the effective focal lengths of the lens along u and v
directions; γ stands for the skew of u and v axes; �u0; v0� de-
notes the principle point; and rij and t i, respectively, represent
the rotation and translation parameters. We then define a pro-
jection matrix P to simplify the expression

P �
2
4 f u γ u0

0 f v v0
0 0 1

3
5
2
4 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3
5; (8)

�
2
4 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3
5: (9)

This projection matrix P can be estimated using some well-
developed software toolboxes (e.g., MatLab, OpenCV, etc.).

The camera and the projector share the same pinhole model
despite their mutually inverted optics. We can physically cor-
relate the two imaging lenses under the same world coordinate
system �xw; yw; zw�, as follows:

sc � uc vc 1 �t � Pc� xw yw zw 1 �t ; (10)

sp� up vp 1 �t � Pp� xw yw zw 1 �t : (11)

Here, superscript p, c, and t , respectively, denote the pro-
jector, the camera, and the matrix transpose. For simplification,
we aligned the world coordinate with the camera lens coordi-
nate, and we used a linear model for both the camera and the
projector.

Since Eqs. (10) and (11) above provide six equations, yet
with seven unknowns �sc ; sp; xw; yw; zw; up; vp�, an additional
equation is necessary that can be provided by the linear con-
straint between phase Φ and a projector pixel line up assuming
fringe stripes vary along up direction, as follows:

up � Φ × T∕�2π�: (12)

Here T is the fringe period in projector pixels, and Φ is
required to be the absolute phase that is continuous in camera
image space. Given that the absolute phase Φ starts from 0 and
is monotonically increasing in projector space, Eq. (12) simply
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converts absolute phase into projector pixels. Once the absolute
phase Φ is obtained, by simultaneously solving Eqs. (10)–(12),
one can extract 3D coordinates �xw; yw; zw� for each camera
pixel �uc; vc�. However, 2π discontinuities are present on the
extracted phase ϕ from the phase-shifting algorithm. The next
two sections will introduce our proposed phase unwrapping
framework assisted by the CAD model.

C. Proposed Measurement Method Assisted
by CAD Model
Figure 1 shows the conceptual idea of our proposed method
assisted by CAD model. Suppose the measured object has a
known CAD model and can be transformed into the camera
perspective, we can uniformly segment the object by different
depth planes zi so that each Δz between two adjacent depth
planes will not exceed 2π in the phase domain. The details
of the determination of Δz can be found in the research
reported by An et al. [17]. The result of segmentation can
be stored in several mask images Mi correspondingly,

Mi�uc ; vc� �
�
1 zi < z�x; y� <� zi�1

0 otherwise
; (13)

where

zi � z1 � �i − 1� × Δz: (14)

Also, for a calibrated DFP system, any zi plane actually cor-
responds to an artificial absolute phase map Φi

min [17]. The
theoretical foundation lies in the following: the calibration
process for a DFP system has determined all parameters in pro-
jection matrices Pc and Pp. With a given zi, by simultaneously
solving Eqs. (10) and (11), we can compute xw and yw for each
camera pixel �uc; vc� �

xw

yw

�
� A−1b; (15)

where

A �
�
pc31u

c − pc11 pc32u
c − pc12

pc31v
c − pc21 pc32v

c − pc22

�
; (16)

b �
�
pc14 − p

c
34u

c − �pc33uc − pc13�zi
pc24 − p

c
34v

c − �pc33vc − pc23�zi

�
: (17)

Here, pcij denotes the parameter in matrix Pc at the ith row
and jth column. Once �xw; yw� is computed, for each camera
pixel �uc; vc�, the corresponding projector pixel �up; vp� can be
solved by

sp� up vp 1 �t � Pp� xw yw zi 1 �t : (18)

Resultantly, suppose the intensity of projected fringe pat-
terns vary along up direction with a fringe period of T pixels,
the artificial absolute phase Φi

min defined on camera pixel can
be determined from

Φi
min�uc; vc� � up × 2π∕T : (19)

Since each of our segmented depth volume Δz does not ex-
ceed 2π in the phase domain, for each region marked byMi, we
can therefore determine the fringe order ki using the artificial
absolute phase map Φi

min corresponding to its lower bound
depth plane zi,

ki − 1 <
Φi

min − ϕ

2π
< ki; (20)

or explicitly

ki � ceil

�
Φi

min − ϕ

2π

�
; (21)

where the ceiling operator ceil[] rounds up a floating point
number to its closest upper integer.

Finally, the absolute phase map can be computed by sepa-
rately unwrapping the phase in different regions marked byMi,
and then merging all segments together. Suppose the entire ob-
ject is divided into n segments, the final absolute phase map can
be computed as follows:

Φ�uc; vc� �
Xn
i�1

��ϕ� 2π × ki� ×Mi�uc; vc��: (22)

This section has conceptually presented the entire computa-
tional framework. However, to make this conceptual idea a real
practice, one needs to develop detailed step-by-step procedures.
The next section will elaborate on the entire working pipeline
of our proposed method using a simple step-height object as an
example.

D. Procedures
In this section, we use a simple step-height object shown in
Fig. 2(a) as an example to step-by-step elucidate our proposed
computational framework assisted by the CAD model. The
detailed procedures as presented as follows:

• Step 1: 3D data exportation from the CAD model. The first
step is to extract x, y, and z coordinates for the entire CAD
model, denoted as �xCAD; yCAD; zCAD�. The CAD model of
the step-height object is shown in Fig. 2(b). The CAD model
is first rendered within OpenGL in shaded mode; this fills in all
the geometries between the CAD model’s points. The 3D co-
ordinates for each pixel on the rendered CAD model are then
encoded via the multiwavelength depth encoding method [20]
resulting in a 2D RGB image, as shown in Fig. 2(c). This 2D
image is then decoded to recover all the 3D coordinates for the
shaded CAD model. The decoded 3D point cloud geometry of

Fig. 1. Illustration of depth segmentation assisted by the CAD
model. The CAD model is transformed into the camera perspective
to be used as a reference to perform depth segmentation. The depth
interval Δz between each plane is less than 2π in the phase domain.
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the CAD model is shown in Fig. 2(d). Worth noting is that our
depth encoding adopts an orthographic projection model,
which makes the bottom plane invisible and thus cannot be
recovered in the decoded 3D geometry shown in Fig. 2(d).
Therefore, it should be noted that our algorithm cannot handle
those sides of the object that are invisible in the orthographic
projection.

• Step 2: Extraction of wrapped phase map and texture.
Figure 3(a) shows a representative captured fringe image.
Using the three-step phase-shifting algorithm as introduced
in Section 2.A, we can compute a wrapped phase map ϕ
and the texture image I t�x; y� as shown in Figs. 3(b) and 3(c).

• Step 3: Feature extraction. After obtaining the 3D point
cloud from the CAD model, the wrapped phase map, and
the texture image, we can then transform the CAD 3D data
into the real camera perspective to assist depth segmentation.
To perform this task, we can extract some feature points (cor-
ners, centers, etc.) both on the camera image (denoted as
�uf ; vf �) and on the CAD model (denoted as �xf ; yf ; zf �).
The camera image that we use is the texture image I t�x; y�
shown in Fig. 3(c) obtained from three-step phase shifting.

Figures 4(a) and 4(b), respectively, show the extracted feature
points both on the camera image and on the CAD model.
The feature extraction can be performed using some well-
established feature extraction algorithms (e.g., Harris corner
detection, Hough transform circle detection, etc.). In our ex-
perimental practices, we found that even a rough estimation
through manually selecting the feature points is sufficient
for the entire algorithm to succeed.

• Step 4: Transforming the CAD 3D data into the real camera
perspective. Once we have extracted the feature points, the next
step is to transform the CAD 3D data into the real camera per-
spective. Given that the world coordinate is aligned with the
camera lens coordinate, the key to this step is to estimate the
transformation �R; t� from CAD 3D data �xCAD; yCAD; zCAD�
to the world coordinate �xw; yw; zw�,

2
664
xw

yw

zw

1

3
775 � �R; t�

2
664
xCAD

yCAD

zCAD

1

3
775; (23)

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation
vector. This transformation matrix �R; t� can be estimated using
the extracted feature points �uf ; vf � and �xf ; yf ; zf � from the
previous step. This 3D to 2D point correspondence can be esti-
mated using an OpenCV function solvePnP. It inherently uses an
iterative Levenberg–Marquardt optimization to estimate the
transformation �R; t� with the following functional:

Fig. 2. Three-dimensional data exportation from the CAD model.
(a) A photograph of a 3D printed step-height object; (b) the CAD
model of the object; (c) the compressed image of the CAD model with
multiwavelength depth encoding; (d) the decoded 3D geometry from
the CAD model.

Fig. 3. Computation of wrapped phase ϕ and texture image I t�x; y�
using a three-step phase-shifting approach. (a) One of the captured
fringe images; (b) the computed wrapped phase ϕ; (c) the computed
texture image I t�x; y�.

Fig. 4. Feature extraction on both the 2D texture image I t�x; y�
and the 3D CAD model. (a) Extracted 2D feature points on texture
image I t�x; y�; (b) extracted feature points on the 3D CAD model;
(c) transformed CAD model under world coordinate.

Fig. 5. Object mask images obtained by depth z segmentation of
the transformed 3D data shown in Fig. 4(c); all units are in mm.
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min
R; t

��������
sc

2
4 uf

vf

1

3
5 − Pc �R; t�

2
664
xf

yf

zf

1

3
775
��������
: (24)

Once the transformation �R; t� is estimated, we transform
the CAD 3D data �xCAD; yCAD; zCAD� into the world coordi-
nate �xw; yw; zw� using Eq. (23). The transformed CAD model
is shown in Fig. 4(c).

• Step 5: Using the transformed CAD data to perform depth
segmentation. The transformed CAD 3D data in Fig. 4(c) can
then be used to perform depth segmentation. Figure 5 shows
the created mask images M1−M6 for the measured object ac-
cording to the object depth z�x; y� in Fig. 4(c). In this specific
case, we set the depth interval Δz as 5 mm, which is within 2π
in the phase domain. In total, there are n � 6 segmented depth
ranges by six different depth planes.

• Step 6: Phase unwrapping and 3D reconstruction. After
depth segmentation, for the ith region labeled by Mi, we first
find its lower bound depth plane at zi � z1 � �i − 1� × Δz.
Following the principles described in Section C, we create
an artificial absolute phase map Φi

min at zi. Then, following
Eq. (21), we can unwrap the phase for each segment in Mi
by finding the corresponding fringe order ki. Figure 6 shows
an example unwrapping procedure for the region labeled in
M 1. Figures 6(b)–6(c), respectively, show the wrapped and un-
wrapped phase map inside of M 1. The same unwrapping pro-
cedure is also applicable to other regions (i.e.,M 2−M 6) as well.
Figure 7 shows all the unwrapped phase maps within M 1−M 6,
respectively, clearly indicating that the unwrapping is successful
for the phases in all different regions. Finally, following
Eq. (22), we can merge all segments in Fig. 7 into a complete
absolute phase map. The final absolute phase map Φ�uc; vc� is
shown in Fig. 8(a), from which we can reconstruct the 3D
geometry of the object, and the 3D result is shown in
Fig. 8(b).

3. EXPERIMENT

We set up a DFP system to further verify the performance of
our proposed phase unwrapping framework. A digital CCD
camera (the Imaging Source DMK 23UX174) with a resolu-
tion of 1280 × 1024 pixels is used as the image acquisition de-
vice, and a digital light processing projector (Dell M115HD)
with a resolution of 1280 × 800 pixels is used for pattern pro-
jection. The camera is attached with a 16 mm focal length lens
(Fujinon HF16HA-1B).

To validate the performance of our proposed algorithm,
we measured a complex mechanical part as shown in Fig. 9(a).

Fig. 6. Example of phase unwrapping inside ofM 1. (a) The artificial
absolute phase map Φ1

min extracted at the depth plane z1 for the seg-
mented regionM 1 in Fig. 5; (b) the wrapped phase map inside ofM 1;
(c) the unwrapped phase map of (b) inside of M 1.

Fig. 7. Unwrapped phases for different depth ranges using the cor-
responding Φi

min map for each region in Fig. 5. (a)–(f ) Unwrapped
phases for the region inside of M 1−M 6.

Fig. 8. Final result after merging all phase maps in Fig. 7. (a) Final
absolute phase map; (b) reconstructed 3D result.

Fig. 9. Measurement of a mechanical part with complex 3D geometry. (a) A photograph of the part; (b) the texture image with feature extraction;
(c) the original CAD 3D data with feature extraction; (d) the CAD 3D transformed into camera perspective; (e) reconstructed 3D geometry using
the proposed method; (f ) reconstructed 3D geometry using conventional temporal phase unwrapping (gray coding [6]) method.
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As aforementioned, before implementing our proposed compu-
tational framework, the exported CAD 3D data needs to be
transformed into the camera perspective by extracting feature
points. Figures 9(b) and 9(c) show the extracted feature points
(i.e., corners, circle centers) on both the 2D texture image and
the CAD 3D data, respectively. Figure 9(d) shows the CAD 3D

geometry that has been transformed into the camera perspec-
tive using the previously introduced method in Section 2.D. To
demonstrate that our method can indeed recover absolute
3D geometry, we reconstructed the 3D geometry using both
our proposed method and a conventional temporal phase
unwrapping method (i.e., the gray coding [6] method).

(a) (b) (c)
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Fig. 10. Verification of absolute 3D recovery by comparing to conventional temporal unwrapping (gray coding [6]) method. (a) Reconstructed
3D using proposed method; (b) reconstructed 3D using gray coding unwrapping method; (c) overlay of 3D geometries in (a) and (b); (d) difference
map of (a) and (b) (mean, 0.03 mm; RMS, 0.93 mm); (e) corresponding cross-sections (marked in red) of (c); (f ) a cross-section of (d).
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Fig. 11. Comparing reconstructed 3D geometry to the CAD model. (a) Reconstructed 3D geometry using proposed method; (b) geometry
exported from CAD model; (c) overlay of 3D geometries in (a) and (b); (d) difference map of (a) and (b) (mean, 0.26 mm; RMS,
0.63 mm); (e) corresponding cross-sections (marked in red) of (c); (f ) a cross-section of (d).
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Figures 9(e) and 9(f ), respectively, show the reconstructed 3D
geometry from our proposed method and the conventional gray
coding method. To visualize their difference, we rendered the
two geometries using different shading colors in Figs. 10(a) and
10(b). The two geometries are overlaid in Fig. 10(c) and their
difference map in shown in Fig. 10(d). For better visualization,
we also plotted their corresponding cross-sections in Figs. 10(e)
and 10(f ), from which we can see that the two methods can
generate almost identical results. The majority values on the
difference map are exactly 0. Worth noting is that there are
some differences on the boundaries of some sharp changing
geometries caused by the different pixel resolutions and sam-
pling between the camera and the CAD model data.

To further validate our proposed method, we also performed
similar analysis by comparing our reconstructed 3D geometry
with the transformed CAD 3D geometry under camera perspec-
tive, and the result is shown in Fig. 11. From the result, we can
see that our reconstructed 3D geometry overall aligns well with
the object CADmodel with a mean difference of 0.26 mm and a
root-mean-square (RMS) difference of 0.63 mm, further proving
that our method indeed recovers absolute 3D geometry. The dif-
ference may come from several sources. First, manufacturing un-
certainties would introduce some difference between the actual
manufactured part and the CAD model. Second, the transfor-
mation of the CAD model with respect to camera perspective
is estimated by a finite number of feature points, possibly still
leaving room for making a much more accurate estimation.
However, our method does not actually require a perfect align-
ment between the CAD model and the actual object. In fact, as
long as the difference does not yield an incorrect fringe order
determination in Eq. (21) (i.e., the difference does not exceed
π in the phase domain), we can still reconstruct absolute 3D
geometry with high quality.

4. CONCLUSION

We presented a novel absolute 3D shape measurement frame-
work assisted by the CADmodel of the measured objects. With
the assistance of the CAD model, our proposed method uses
only three phase-shifted fringe images to recover the absolute
phase map and thus absolute 3D geometry of the measured
object. Our method is different from existing methods in that
it adaptively performs 3D reconstruction according to the pre-
knowledge of the object geometry provided by the CADmodel.
Experimental results have demonstrated the success of our pro-
posed framework in recovering 3D geometries of both a simple
step-height object and a complex mechanical part with rich
geometric variations.
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