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Abstract This paper presents some of the high-accuracy
and high-speed structured light 3D imaging methods
developed in the optical metrology community. These
advanced 3D optical imaging technologies could substan-
tially benefit the intelligent robotics community as another
sensing tool. This paper mainly focuses on one special 3D
imaging technique: the digital fringe projection (DFP)
method because of its numerous advantageous features
compared to other 3D optical imaging methods in terms of
accuracy, resolution, speed, and flexibility. We will discuss
technologies that enabled 3D data acquisition, reconstruc-
tion, and display at 30 Hz or higher with over 300,000
measurement points per frame. This paper intends to
introduce the DFP technologies to the intelligent robotics
community, and casts our perspectives on potential appli-
cations for which such sensing methods could be of value.

Keywords 3D optical sensing - 3D optical imaging -
Micro robotics - Human robotic interaction - Perception
and vision
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1 Introduction

Advances in two-dimensional (2D) optical imaging and
machine/computer vision have provided integrated smart
sensing systems for numerous applications. By adding one
more dimension, advanced three-dimensional (3D) optical
imaging and vision technologies have much greater impact
on scientific research and industrial practices including
intelligent robotics.

3D optical imaging techniques do not require surface
contact and are thus suitable for remote sensing, where no
external force is applied to objects being tested. 3D optical
imaging can be broadly divided into two major categories:
passive methods and active methods. Passive methods rely
solely on naturally depicted information (e.g., texture,
color) to determine cues for 3D information recovery,
while active methods require active emission of signals to
find cues for 3D reconstruction. The most extensively
adopted passive methods in the robotics community are
probably the stereo vision methods (e.g., Bumblebee). A
stereo vision method (Dhond and Aggarwal 1989) recovers
3D information through triangulations by identifying the
corresponding pairs between camera images from different
perspectives through analysis of texture information. To
more accurately and more efficiently determine corre-
sponding paris, stereo vision methods often calibrate sys-
tem geometric constraints through epipolar
analysis (Scharstein and Szeliski 2002; Hartley and Zis-
serman 2000). A stereo vision system has the following
obvious advantages with its extensive adoption in many
different fields: (1) hardware design is compact and cost is
low since only two cameras are required for 3D recon-
struction; and (2) hardware integration and calibration are
fairly straightforward since camera calibration has been
well studied. However, the measurement accuracy is
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limited if the surface texture is not rich (e.g., variation is
slow from one point to another). For applications where
accuracy is not a primary concern (e.g., rough navigation
under controlled or complex environments), stereo vision is
an excellent option. However, for detecting the corre-
spondence pairs between images, the stereo vision method
fails if the image is close to being uniform or there are
naturally present repetitive textures.

Instead of relying on natural information, active meth-
ods require at least an optical emitter to send known signals
to the object surface to conquer the fundamental corre-
spondence problem of the stereo vision method. Basically,
the correspondence is established by finding the emission
information from camera images. Historically, researchers
have tried different types of active information including a
single dot, a line, even fixed, or a predefined structured
pattern(s) (Salvi et al. 2010). Laser scanning technol-
ogy (Keferstein and Marxer 1998; Sirikasemlert and Tao
2000; Manneberg et al. 2001) typically sweeps a laser dot
or a line (e.g., Intel RealSense) across the object surface,
and this technique recovers 3D information by finding
corresponding points from the laser dots or lines captured
by the camera. The accuracy of laser triangulation methods
can be high, albeit the speed is slow due to point or line
scanning. Therefore, laser triangulation methods are
mainly used in application areas where sensing speed is not
the primary concern. The first generation of Kinect
developed by Microsoft (Zhang 2012) uses a pre-defined
unique dot distribution for establishment of stereo corre-
spondence. This technique achieves a reasonably high
speed by using dedicated hardware and a limited number of
sensing points. As one may recognize, Kinect has a fairly
low spatial resolution and depth accuracy, making it good
for coarse gesture motion capture for applications like
human—computer interactions.

The availability and affordability of digital video pro-
jectors has enabled the structured light method, which is
nowadays among the most popular 3D imaging methods.
The structured light method is very similar to a stereo
vision method since both use two devices, but they differ in
that the structured light method replaces one of the cameras
of a stereo vision system with a digital video projec-
tor (Salvi et al. 2010). Due to their flexibility and pro-
grammability, structured light systems allow versatile
emission patterns to simplify establishment of correspon-
dence. Over the years, researchers have attempted pseudo-
random patterns (Morano et al. 1998), speckle pat-
terns (Huang et al. 2013), binary coded structured pat-
terns (Salvi et al. 2010), multi-gray-level patterns (Pan
et al. 2004), triangular patterns (Jia et al. 2007), trape-
zoidal patterns (Huang et al. 2005), and sinusoidal pat-
terns (Zhang 2016), among others. Though all these
structured patterns have proven successful for 3D

reconstruction, using phase-shifted sinusoidal structured
patterns is overwhelmingly advantageous because such
patterns are continuous in both the horizontal and vertical
directions, and the correspondence can be established in
phase instead of in the intensity domain (Zhang 2010). In
the optics community, sinusoidal patterns are often called
fringe patterns and the structured light method using digital
fringe patterns for 3D imaging is often called digital fringe
projection (DFP).

This paper will explain thoroughly the differences
between two of the most extensively adopted binary
structured patterns and sinusoidal patterns to help readers
recognize the superiority of the DFP method, albeit it is not
easy to understand at the very beginning. The main pur-
poses of this paper are to (1) provide a “tutorial” for those
who have not had substantial experience in developing 3D
imaging system, (2) lay sufficient mathematical founda-
tions for 3D imaging system developments, and (3) cast our
perspectives on how high-speed and high-accuracy 3D
imaging technologies could be another sensing tool to
further advance intelligent robotics.

Section 2 explains the principles of the DFP technique
and its differences from stereo vision and binary coding, as
well as system calibration and 3D reconstruction. Section 3
shows some representative 3D imaging results captured by
DFP systems. Section 4 presents our thoughts on potential
applications, and Sect. 5 summarizes this paper.

2 Principle

This section explains the principles of structured light 3D
imaging techniques and how to achieve accurate high-
spatial and -temporal resolution with the same hardware
settings.

2.1 Basics of structured light
Structured light techniques evolved from a well-studied

stereo vision method (Dhond and Aggarwal 1989) which
imitates a human vision system for 3D information

Fig. 1 Schematic of a stereo vision system
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recovery. Figure 1 schematically shows a stereo vision
system that captures 2D images of a real world scene from
two different perspectives. The geometric relationships
between a real-world 3D point, P, and its projections on 2D
camera image planes, P, and P form a triangle, and thus
triangulation is used for the 3D reconstruction. In order to
use triangulation, one needs to know (1) the geometric
properties of two camera imaging systems, (2) the rela-
tionship between these two cameras, and (3) the precise
corresponding point on one camera to a point on the other
camera. The first two can be established through calibra-
tion, which will be discussed in Sect. 2.2. The correspon-
dence establishment is usually not easy solely from two
camera images.

To simplify the correspondence establishment problem,
the geometric relationship, the so-called epipolar geome-
try, is often used (Scharstein and Szeliski 2002; Hartley
and Zisserman 2000). The epipolar geometry essentially
constructs the single geometric system with two known
focal points O and Og of the lenses to which all image
points should converge. For a given point P in a 3D world,
its image point Py together with points O, and Og should
form a plane, called the epipolar plane. The intersection
line PxEy of this epipolar plane with the imaging plane of
the righthand camera is called the epipolar line (red line).
For point Pj, all possible corresponding points on the
righthand camera should lie on the epipolar line PzEg. By
establishing the epipolar constraint, the correspondence
point searching problem becomes 1D instead of 2D, and
thus more efficient and potentially more accurate. Yet,
even with this epipolar constraint, it is often difficult to find
a correspondence point if the object surface texture does
not vary drastically locally and appears random globally.
For example, if two cameras capture a polished metal plate,
images captured from two different cameras do not provide
enough cues to establish correspondence from one camera
image to the other.

Structured light techniques resolved the correspondence
finding problems of stereo vision techniques by replacing
one of the cameras with a projector (Salvi et al. 2010).
Instead of relying on the natural texture of the object sur-
face, the structured light method uses a projector to project
pre-designed structured patterns onto the scanned object,
and the correspondence is established by using the actively
projected pattern information. Figure 2a illustrates a typi-
cal structured light system using a phase-based method, in
which the projection unit (D), the image acquisition unit
(E), and the object (B) form a triangulation base. The
projector illuminates one-dimensional varying encoded
stripes onto the object. The object surface distorts the
straight stripe lines into curved lines. A camera captures
distorted fringe images from another perspective.

@ Springer

Following the same epipolar geometry as shown in Fig. 2b,
for a given point P in a 3D world, its projector image point
P, lies on a unique straight stripe line on the projector
sensor; on the camera image plane, the corresponding point
Pr is found at the intersecting point of the captured curved
stripe line with the epipolar line.

2.2 Structured light system calibration

The structured light illumination can be used to ease the
difficulty in detecting correspondence points. To recover
3D coordinates from the captured images through trian-
gulation, it is required to calibrate the structured light
system. The goal of system calibration is to model the
projection from a 3D world point (x,y",z") to its corre-
sponding image point (u, v) on the 2D sensor (e.g., cam-
era’s CCD or projector’s DMD).

Mathematically, such a projection usually uses a well-
known pinhole model if a non-telecentric lens is used (Z-
hang 2000). Figure 3 schematically shows an imaging
system. Practically, the projection can be described as
slu, v, 1] = ARIX",y", 2%, 1] (1)
Here, s stands for the scaling factor. [u, v, 1] denotes the
homogeneous image coordinate on the camera image
plane, T is the matrix transpose, and [RIf] represents the
extrinsic parameters

it riz2 ns
R=|rg rn 3|, (2)

I3 r3z 133
t=|1n|. (3)

The extrinsic parameters transform the 3D world coordi-
nate X = (x*,y",z%) to the camera lens coordinate
through a 3 x 3 rotation matrix R and a 3 x 1 translation
vector t. The lens coordinate is then projected to the 2D
imaging plane through the intrinsic matrix A,

Ju v uo
A= 0 fv Vo (4)
0O 0 1

/. and f, are the effective focal lengths of the camera along
the u and v axes; y models the skew factor of these two
axes; and (ug, vo) is the principal point (the intersection of
the optical axis with the image plane).

The camera calibration procedure is used to estimate the
intrinsic and extrinsic parameters to establish geometric
relationships from some known geometric points. Nowa-
days, the most popular camera calibration method is to use
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Fig. 2 Principles of the
structured light technique.

a Schematic of a structured light
system; b correspondence
detection through finding the
intersecting point between the
distorted phase line and the
epipolar line

Fig. 3 The pinhole camera model

a 2D calibration target, as developed by Zhang (2000), with
known feature points on the plane. After capturing a set of
images with different poses, the optimization software
algorithm can be applied to estimate the numerical
parameters. Zhang’s method is popular because of its
flexibility and the ease of the calibration target fabrication.

The structured light calibration involves both camera
calibration and projector calibration. As discussed in
Sect. 2.1, a structured light system is constructed by
replacing one of the stereo cameras with a projector. In
fact, the projector and the camera share the same pinhole
model except that the optics are mutually inverted (the
projector projects images instead of capturing ima-
ges) (Zhang and Huang 2006). Therefore, we can model a
structured light system using the following two sets of
equations:

SC[MC,VC, ]]T: AC[RC‘ICHXW7))W,ZW,1]T, (5)
s"[u",vp,l]T: A"[R”|t”}[xw,yw,zw,1]T. (6)
Here, superscript © and ? respectively represent the camera
and the projector. The calibration of a projector can be quite

difficult given that a projector cannot capture images by
itself. The enabling technology, developed by Zhang and

rojector
pixel

Baseline

CCD images DMD images DMD plane

Fig. 4 One-to-one mapping establishment between a camera pixel
and a projector pixel by using two sets of structured patterns

Huang (2006), establishes one-to-one pixel correspondence
between the camera and projector sensor by using two sets
of structured patterns with different orientations (e.g., one
set of horizontal patterns and one of vertical patterns).

Figure 4 illustrates how to establish the one-to-one
mapping. The top row shows the scenario in which the
camera captures the vertical pattern illuminated by the
projector. Suppose we pick a pixel (blue) (u°,v°) on the
camera image; this changes if the pixel shifts horizontally
but does not change if it shifts vertically. The horizontal
shifts can be uniquely defined by using a set of continu-
ously coded structured patterns, to be discussed in
Sect. 2.4. Since the encoded information is the same from
the projector space, by using this set of coded patterns, one
can correlate one camera pixel (u°,v°) uniquely to one
vertical line on the projector sensor u”,

w’ = fr(u,v%), (7)

where f;, denotes a one-to-many correspondence function
of (u¢,v°) for given coded patterns. Similarly, if the camera
captures the horizontal pattern illuminated by the projector
as shown in the bottom row of Fig. 4, for the same camera
pixel, we can correlate that pixel with a horizontal line v’
on the projector’s DMD sensor,
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Fig. 5 Two different types of
binary coding methods. a Three
bits simple coding, and

b corresponding gray coding

I
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100 1 101 1110, 111

(a)

v :fv(uc’vc)' (8)

Combining these two one-to-many mappings, we can
find the unique corresponding point (#”,v?) for any
camera pixel (u°,v°). By this means, the camera can
assist the projector in capturing images, and since the
projector can capture images, the structured light system
calibration becomes a well-established stereo camera
system calibration. The camera and the stereo vision
system calibration can be readily carried out by capturing
a set of images of the calibration target, and it uses an
open-source camera calibration software toolbox (e.g.,
Matlab or OpenCV).

Once the system is calibrated, we have obtained the
intrinsic matrices A¢ and A” and the extrinsic matrices
[R°|¢°] and [RP|¢"] for the camera and the projector. A
simplified model can be obtained by combining the
intrinsic and extrinsic matrices:

M¢ = A°[R°|1], )
(10)

The 3D reconstruction process is used to obtain the 3D
coordinates (x",y",z") of a real object from each
camera pixel (u°,v°). Equations (5) and (6) provide six
equations yet with seven unknowns: the 3D coordinates
(x*,y",z"); the mapping projector pixel (#”,1”) for each
camera pixel; and the scaling factors s and s”. To
obtain an additional equation to solve for the 3D coor-
dinates, we only need to project one-directional (e.g.,
horizontal) patterns to establish one-dimensional map-
ping and use Eq. (7) to provide the last equation to
uniquely solve (x",y",z") coordinates for each camera
pixel (u¢,v¢) as,

M? = AP[RP|1).

miy — ums my, — ums;mi; — ums;

= | mg; — umsyms, — umsymyy — ums,

Z" iy — uPml my — uPmliymiy — uPml
ums, — miy

X | Vo, —miy | (11)

Pl P
Wty — Ny

@ Springer

(b)

where mj; and mg- denote the matrix parameters in M¢ and
MP in the i-th row and j-th column.

2.3 3D imaging with binary coding methods

As discussed in Sect. 2.1, in order to perform 3D recon-
struction through triangulation, at least one-dimensional
mapping (or correspondence) is required. Namely, we need
to map a point on the camera to a line (or a predefined
curve) on the projector. One straightforward method is to
assign a unique value to each unit (e.g., a stripe or a line)
that varies in one direction. The unique value here is often
regarded as the codeword. The codeword can be repre-
sented by a sequence of black (intensity 0) or white (in-
tensity 1) structured patterns through a certain coding
strategy (Salvi et al. 2010). There are two commonly used
binary coding methods: simple coding and gray coding.

Figure 5a illustrates a simple coding example. The
combination of a sequence of three patterns, as shown on
the left of Fig. 5a, produces a unique codeword for each
stripe made up of 1s and Os, (e.g.. 000, 001, ...), as shown
on the right of Fig. 5a. The projector sequentially projects
this set of patterns, and the camera captures the corre-
sponding patterns distorted by the object. If these three
captured patterns can be properly binarized (i.e., converting
camera grayscale images to Os and 1s), for each pixel, the
sequence of Os and 1s from these three images forms the
codeword which is defined from the projector space.
Therefore, by using these images, the one-to-many map-
ping can be established and thus 3D reconstruction can be
carried out.

Gray-coding is another way of encoding information.
Figure 5b illustrates an example of using three images to
represent the same amount of information as simple cod-
ing. The major difference between gray coding and simple
coding is that, at a given location, gray coding only allows
one bit of codeword status change (e.g., flip from 1 to O or
0 to 1 on one pattern), yet the simple coding method does
not have such a requirement. For the example illustrated in
the red bounding boxes of Fig. 5a and b, simple binary
coding has three bit changes while gray coding only has
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Fig. 6 1D correspondence
detection through binary
coding: one camera pixel maps
to multiple lines of projector
C

pixels sharing the same binary
codeword

Il

CD images

one. Fewer changes at a point means less chance of errors,
and thus gray coding tends to be more robust for codeword
recovery.

The binary coding methods are simple and rather robust
since only two binary states are used for any given point,
but the achievable spatial resolution is limited to be larger
than single camera and projector pixels. This is because the
narrowest stripes must be larger than one pixel from the
projector space to avoid sampling problems, and each
captured stripe width also needs to be larger than one
camera pixel to be able to properly find the binary state
from the captured image. Figure 6 illustrates that the
decoded codewords are not continuous, but discrete with a
stair width larger than one pixel. The smallest achievable
resolution is the stair width, since no finer correspondence
can be precisely established. The difficulty of achieving
pixel-level spatial resolution limits the use of binary coding
methods for high-resolution and high-accuracy measure-
ment needs.

2.4 3D imaging using digital fringe projection (DFP)

Digital fringe projection (DFP) methods resolve the
limitation of the binary coding method and achieve
camera pixel spatial resolution by using continuously
varying structured patterns instead of binary patterns.
Specifically, sinusoidally varying structured patterns are
used in the DFP system, and these sinusoidal patterns are
often regarded as fringe patterns. Therefore, the DFP
technique is a special kind of structured light techniques
by using sinusoidal or fringe patterns. The major dif-
ference of the DFP technique lies in the fact that it does
not use intensity for coding but rather uses phase. And
one of the most popular methods to recover phase is the
phase-shifting-based fringe analysis technique (Malacara
2007). For example, a three-step phase-shifting algo-
rithm with equal phase shifts can be mathematically
formulated as

Li(x,y) =I'(x,y) +1I"(x,y) cos(¢ — 2m/3), (12)
L(x,y) =1I'(x,y) +1I"(x,y) cos(¢), (13)
Lix,y) =TI'(x,y) +1"(x,y) cos(¢p + 2m/3). (14)

[ 1]

DMD images

podeword
111 —

DMD plane

Here I'(x,y) denotes the average intensity, I”(x,y) stands
for the intensity modulation and ¢ is the phase to be
extracted. The phase can be computed by simultaneously
solving Eq. (12)-(14):

9(x,y) = tan! [V3(l — 1)/ — 1 — 1)|. (15)

The extracted phase ¢ ranges from —n to +n with 2n
discontinuities due to the nature of the arctangent function.
To remove the 27 discontinuities, a spatial (Ghiglia and
Pritt 1998) or temporal phase unwrapping algorithm is
necessary which detects 27 discontinuities and removes
them by adding or subtracting the integer k(x, y) of 2m, e.g.,

D(x,y) = d(x,y) + k(x,y) x 2m. (16)

Here, the integer k(x, y) is often called the fringe order, and
@ is the unwrapped phase.

A spatial phase unwrapping algorithm determines fringe
order k(x, y) relative to the starting point within a con-
nected component, and thus only generates a continuous
phase map relative to that pixel, called the relative phase.
The relative phase cannot be used for correspondence
establishment since it cannot be used to uniquely determine
the phase on the projector space. Therefore, additional
information is required to rectify the relative phase to be
absolute such that it can then be uniquely defined.

A temporal phase unwrapping algorithm retrieves the
absolute fringe order k(x, y) per pixel by acquiring addi-
tional information, and therefore generates the absolute
phase. One of the commonly adopted temporal phase
unwrapping methods is by means of encoding the fringe
order k(x, y) with binary coded patterns, discussed in
Sect. 2.3. Such a temporal phase unwrapping method
recovers the absolute phase by capturing additional binary
patterns in addition to the sinusoidal patterns.

Figure 7 illustrates the procedures for absolute phase
recovery. First, the wrapped phase map ¢ with 2x dis-
continuities is obtained by applying the phase-shifting
algorithm; then the fringe order k(x, y) is recovered by
analyzing the binary coded fringe patterns, and finally, the
absolute phase @ is recovered by applying Eq. (16). The
red line in Fig. 7 shows the unwrapped phase without 2n
discontinuities.
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Fig. 7 Absolute phase recovery
combining phase shifting with
binary coding; the phase-
shifting method extracts the
wrapped phase ¢ with 27
discontinuities; the binary coded
patterns encodes the fringe
order k; the phase is finally
unwrapped by adding integer k
multiples of 2n to the wrapped
phase ¢ to remove 271
discontinuities

Fringe
patterns
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There are other temporal phase unwrapping methods
developed in optical metrology fields, such as multi-fre-
quency (or multi-wavelength) phase-shifting meth-
ods (Cheng and Wyant 1984, 1985; Towers et al. 2003;
Wang and Zhang 2011). The multi-frequency phase-shift-
ing methods essentially capture fringe patterns with dif-
ferent frequencies and uses phases from all frequencies to
determine absolute fringe order k(x, y).

The absolute phase map can be used as the codeword to
establish one-to-many mapping in the same way as binary
coding methods. However, since the phase map obtained
here is continuous NOT discrete, the mapping (or corre-
spondence) can be established at camera pixel level. Fig-
ure 8 illustrates the concept of pixel level correspondence
using phase-shifting methods. For a selected camera pixel
(uf,v°), its absolute phase value ®(u°, v*) uniquely maps to
the projector’s line «” with exactly the same phase value on
the projector space. If horizontal sinusoidal patterns are
used, Eq. (7) becomes

W =0u ) x P/(2n), (17)

where P is the number of pixels for a single period of
sinusoids which corresponds to 27 in phase. The scaling
factor P/(2n) simply converts the phase to the projector
line in pixels. The continuous and differentiable nature of

CCD images

Absolute phase
(camera)

Absolute phase
(projector)

.

10

100 101 '110 111

Pixel

010 "011

an absolute phase map makes it possible to achieve pixel-
level correspondence between the camera and the projec-
tor. Once the correspondence is known, (x,y",z") can be
computed using Eq. (11).

Besides recovering 3D geometry, Egs. (12)-(14) can
also generate texture information 7,

2
L +5L+1 (L —L)" + 2L -1 — k)
I(x,y) = 3 + \/ 3 .

(18)

The texture information, which appears like an actual
photograph of the imaged scene, can be used for object
recognition and feature detection purposes.

Figure 9 shows an example of measuring a complex
statue with the gray coding method. Figure 9a shows a
photograph of the object to be measured. A sequence of
nine gray-coded binary patterns are captured to recover the
codeword map. Figure 9b—f shows five of these images
from the wider to denser structured patterns. From this
sequence of patterns, the codeword map is then recovered,
shown in Fig. 9g. This binary coded map can then be used
to recover the 3D shape of the object, and Fig. 9h shows
the result.

The same object is then measured again by the DFP
method; Fig. 10a—c shows three phase-shifted fringe

\

p
u DMD plane

Fig. 8 1D correspondence detection through DFP: one camera pixel map has a unique absolute phase value, which maps to a unique phase line
on the projector absolute phase, and a pixel line on the projector DMD plane

@ Springer
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Fig. 9 Example of measuring a
complex statue with the gray
coding method. a Photograph of
the measured object; b—f gray
coded binary patterns from
wider to denser stripes;

g recovered codeword map;

h 3D recovered geometry

Fig. 10 The same object as in
Fig. 9 measured by the DFP
method. a—c¢ Three phase-
shifted fringe images;

d wrapped phase map; e fringe
order map; f unwrapped phase
map; g 3D recovered geometry;
h texture image

patterns. Applying Eq. 15 to these phase-shifted fringe
patterns will generate the wrapped phase map, shown in
Fig. 10d. In the meantime, we use six gray coded binary
patterns captured for the binary coding method to generate
a fringe order map k(x, y), as shown in Fig. 10e. The
unwrapped phase can then be obtained pixel by pixel by

f) ’ (h)

applying Eq. 16. Figure 10f shows the unwrapped phase.
Once the unwrapped phase is known, the 3D shape can be
recovered pixel by pixel. Figure 10g shows the resultant
3D geometry. In addition to 3D geometry, the same three
phase-shifted fringe patterns shown in Fig.10a—c can be
used to generate the texture image using Eq. 18. Figure 10h

@ Springer
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Fig. 11 Comparing results from
binary coding and DFP
methods. a Zoom-in view of 3D
geometry, shown in Fig. 9h, by
the binary coding method;

b zoom-in view of 3D
geometry, shown in Fig. 10g, by
the DFP method

shows the texture image which is perfectly aligned with 3D
geometry point by point.

To better visualize the difference between these binary
coding methods and the phase-shifting method, Fig. 11 shows
the zoom-in view of the same region of the recovered 3D
geometry. Clearly, 3D geometry recovered from the DFP
method has a lot more detail than that using the binary coding
method, yet it requires fewer acquired images, demonstrating
the merits of using the DFP method for 3D imaging.

In summary, compared with binary coding methods, the
DFP technique based on phase-shifting algorithms has the
following advantages:

e High spatial resolution From Egs. (12)—(15), one can
see that the phase value of each camera pixel can be
independently computed, and thus 3D measurement can
be performed at camera pixel spatial resolution.

e Less sensitive to ambient light The phase computation
numerator and denominator take the differences of the
captured images, and the ambient light embedded in
I'(x,y) is automatically cancelled out. In theory,
ambient light does not affect phase at all, albeit it will
affect the signal-to-noise ratio (SNR) of the camera
image and thus may reduce the measurement quality.

e Less sensitive to surface reflectivity variations Since
surface reflectivity affects all three fringe patterns at the
same scale for each pixel, the pixel-by-pixel phase
computation (Eq. (15)) also cancels out the influence of
reflectivity.

e Perfectly aligned geometry and texture Since pixel-
wise 3D geometry and texture are obtained from
exactly the same set of fringe patterns, they are
perfectly aligned without any disparities.

2.5 High-speed 3D imaging

Real-time 3D imaging includes three major components:
3D image acquisition, reconstruction and visualization,
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which are all done simultaneously in real time. Real-time
3D imaging can be applied to numerous areas, including
manufacturing, entertainment, and security. For intelligent
robotics, real-time 3D imaging technology is also of great
value as a non-contact optical sensing tool. DFP techniques
have been one of the best available methods due their
advantageous properties, discussed in Sect. 2.4.

The advancement of real-time 3D imaging using DFP
methods has evolved with hardware improvements. Earlier
technologies (Zhang and Huang 2006) mainly used the
single-chip DLP technology and encoded three phase-
shifted fringe patterns into the three primary color channels
of the DLP projector. Due to its unique projection mech-
anism, the single-chip DLP projection system allows the
camera to capture three primary color channels separately
and sequentially. Figure 12 shows the layout of such a real-
time 3D imaging system. The single-chip DLP projector
projects three phase-shifted patterns rapidly and sequen-
tially in grayscale (when color filters are removed), and the
camera, when precisely synchronized with the projector,
captures each individual channel for 3D reconstruction.
Since a DLP projector typically projects fringe patterns at
120 Hz, such a technology allows 3D shape measurement
at a speed of up to 120 Hz.

Being limited to encoding three primary color channels,
only three phase-shifted fringe patterns can be used for
such a real-time 3D imaging technology, and thus absolute
phase recovery has to be realized by encoding a marker on
these fringe patterns (Zhang and Yau 2006), while only
single smooth geometry can be measured. This method also
requires substantial projector modifications, and sometimes
these modifications are impossible without the projector
manufacturer’s involvement (Bell and Zhang 2014).
Although DLP Discovery platforms have been available for
a long time, they have been too expensive for wide adop-
tion in academia or industry.

Fortunately, with more than a decade of effort on high-
speed 3D imaging from our research community, projector
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Fig. 12 Layout of a real-time
3D imaging system using a
single-chip DLP projector.
Three phase-shifted fringe
patterns are encoded into R,

G and B color channels of the
projector are sequentially and
repeatedly projected onto the
object surface. The high-speed
camera used to capturethe
images which is precisely
synchronized with each
individual 8-bit pattern
projection. A three-step phase-
shifting algorithm is applied to
the combined channel images to 1
compute the phase for 3D
reconstruction. The projector
refreshes typically at 120 Hz in
color, 360 Hz for individual
channels

DLP
projector

manufacturers are finally recognizing the opportunities in
industry for producing affordable specialized projectors for
this field: for example, LogicPD has produced the
LightCommander, and WinTech Digital the LightCrafter
series. With such specialized DLP projectors, it is much
easier to employ more robust algorithms for real-time 3D
imaging, such as those absolute phase recovery methods
discussed in Sect. 2.4.

Once data acquisition becomes fast enough and ready
for use, the second challenge is to speed up data process-
ing. High-speed 3D data processing starts with fast phase-
shifting algorithms including phase wrapping (Huang and
Zhang 2006) and unwrapping (Zhang et al. 2007) coupled
with advanced graphics processing unit (GPU) technology
developments. GPU is a dedicated graphics rendering
device for a personal computer or games console. Current
GPUs are not only very efficient at manipulating and dis-
playing computer graphics but their highly parallel struc-
ture also makes them more effective than typical CPUs for
a range of complex algorithms. Although CPUs have been
increasing their performance over time, they have
encountered severe bottlenecks for progressing since
increasing the clock frequency has fundamental physics
limitations. GPUs boost the performance of the CPU by
employing a massive number of lower-frequency simple
processors in parallel. Due to the simpler architecture, the
fabrication cost is much lower, making them available now
for almost all graphics cards. Naturally, researchers have
endeavored to bring GPU technologies to the optical
imaging field, such as Zhang et al. (2006), Liu et al. (2010)
and Karpinsky et al. (2014). Faster than real-time (e.g., 30

fringe

3D W/
Texture

CCD
camera

Wrapped
l1 phase map

Hz) 3D data processing speeds have been successfully
achieved even with an integrated graphics card on a laptop.
With advanced GPU technologies, real-time 3D image
visualization becomes straightforward since all data are
readily available on the graphics card, and so can be dis-
played immediately on the screen. It is important to note
that the amount of data to be visualized is very large since
DFP techniques recover 3D coordinates and texture for
each camera pixel. Therefore, the deciding factors of real-
time 3D imaging efficiency are the number of pixels on the
camera sensor and the processing power of the computer.
For all obtained data points, it is very challenging to send
them directly to a graphics card through the data bus
between the video card and the computer, and thus, in order
to achieve real-time visualization, 3D reconstruction typi-
cally has to be done on the graphics card with GPU.

It is always desirable to achieve higher-speed 3D image
acquisition to reduce motion artifacts and to more rapidly
capture changing scenes. Lei and Zhang (2009) developed
the 1-bit binary defocusing method to break the speed
bottleneck of high-speed 3D imaging methods. Using 1-bit
binary patterns reduces the data transfer rate and thus
making it possible to achieve a 3D imaging rate faster than
120 Hz with the same DLP technology. For example, the
DLP Discovery platform introduced by Texas Instruments
can switch binary images at a rate up to over 30,000 Hz,
and thus kHz 3D imaging is feasible (Li et al. 2014). This
method is based on the nature of defocusing: evenly
squared binary patterns appear to be sinusoidal if the pro-
jector lens is properly defocused. Therefore, instead of
directly projecting 8-bit sinusoidal patterns, we can
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Fig. 13 Sinusoidal fringe generation by defocusing binary structured patterns. a When the projector is in focus; b—f gradual resultant fringe

patterns when the projector’s amount of defocusing increases

(b)

Fig. 14 3D imaging of a complex mechanical part. a The captured part; b one of the fringe patterns; ¢ 3D reconstruction

approximate sinusoidal profiles through projecting 1-bit
binary patterns and properly defocusing the projector.

Figure 13 shows some captured fringe images with the
projector at different defocusing levels. As one can see,
when the projector is in focus, as shown in Fig. 13a, it
preserves apparent squared binary structures, but when the
projector is properly defocused (see Fig 13c), the squared
binary structure will appear to have an approximately
sinusoidal profile. Without a doubt, the sinusoidal struc-
tures will gradually diminish if the projector is overly
defocused, which results in low fringe quality. Once
sinusoidal patterns are generated, a phase-shifting algo-
rithm can be applied to compute the phase and thus 3D
geometry after system calibration.

3 Measurement examples

This section shows some representative 3D measurement
results using DFP techniques, ranging from static to high
speed, and from micro- to macro- and to large-scale scene
captures.

3.1 Complex 3D mechanical part measurement
Figure 14 shows the result of measuring the static
mechanical part. Figure 14a shows that the part has a

variety of different shapes, blocks, and color on its surface.
Figure 14b and c respectively show one of the captured
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fringe patterns and the reconstructed 3D geometry. The 3D
result clearly shows that the fine details are well recovered
under our 3D shape measurement system. The system
includes a digital CCD camera (Imaging Source DMK
23UX174) with a resolution of 1280 x 1024 pixels, and a
DLP projector (Dell M115HD) with a resolution of 1280 x
800 pixels. The camera has a lens with 25-mm focal length
(Fujinon HF25SA-1).

3.2 Real-time 3D shape measurement

Figure 15a shows the result captured by a system devel-
oped more than 10 years ago (Zhang et al. 2006). The right
part of the image shows a subject and the left side shows
the simultaneously recovered 3D geometry on the com-
puter screen. Recently, the laptop computer has proven
powerful enough to perform real-time 3D imag-
ing (Karpinsky et al. 2014). Figure 15b shows a recently
developed system that used a laptop computer (IBM Len-
ovo laptop with a Intel i5 3320M 2.6 GHz CPU and
NVIDIA Quadro NVS5400M GPU) to achieve 800 x 600
image resolution (or 480,000 points per frame) at 60 Hz.
The entire system cost is also fairly low due to the reduced
hardware component cost.

Facial expressions carry a lot of information including
emotions, and thus the capability of capturing facial
expression details is of great interest to different commu-
nities potentially including robotics. Figure 16 shows a few
example frames captured by our real-time 3D shape
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Fig. 15 Real-time 3D imaging.
a Real-time 3D imaging system
on a desktop computer
developed over a decade ago;
b real-time 3D imaging on a
laptop computer developed
recently

(h)

(b)

Fig. 16 Capturing different facial expressions. The first row shows the 3D geometry and the second row shows the corresponding texture that is

perfectly aligned with the 3D geometry

measurement system. This system includes a USB3.0
camera (Point Grey Grasshopper3) and a LightCrafter 4500
projector. The acquisition speed was chosen to be 50 Hz,
and the image resolution was set at 640 x 480. As dis-
cussed earlier, the same set of fringe patterns can also be
used to recover texture (or a photograph of the object). The
second row of Fig. 16 shows the corresponding color tex-
ture that is perfectly aligned with the 3D geometry shown
above.

Hands are very important parts of the human body for
interactions, manipulations, and communications. We have
used the same system shown in Fig. 16 for facial data
acquisition to capture hands. Figure 17 shows the results of
different hand gesture in 3D; and, similarly, color texture is
also available for immediate use. The color texture was not
included in this paper because it is straightforward to
understand.

Human body gesture motion dynamics also provide rich
information for communication. Figure 18 shows that the
DFP system can also be used to measure the human body.

This system includes a USB3.0 camera (Point Grey
Grasshopper3) and a LightCrafter 4500 projector. The
acquisition speed was 33 Hz, the image resolution was
1280 x 960, and the pixel size is approximately 1 mm at
the object space. As discussed earlier, the same set of
fringe patterns can also be used to recover texture (or a
photograph of the object).

3.3 Superfast 3D imaging

Figure 19 shows an example of using a kHz 3D imaging
system (Li and Zhang 2016) to capture object deformation,
in which three sample frames of a fluid flow surface
topological deformation process are shown. As one can see,
the geometric deformation of the imaged droplet is well
recovered with the kHz binary defocusing technique, which
could potentially bring additional information for fluid
mechanics analysis. This superfast 3D imaging technique is
also applicable to other applications, such as vibration
analysis (Zhang et al. 2010) in mechanical engineering or
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Fig. 17 Capturing different
hand gestures. First row shows
single hand examples, and the
bottom row shows two hands
examples

Fig. 18 Capturing different
poses of the human body
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(d)

10 vy (mm)

Fig. 19 Superfast 3D imaging of fluid surface dynamics. a—¢ Three sample frames of texture; d—f three frames of the 3D geometry

Fig. 20 3D imaging of micro-
structures. a 3D result of a PCB
board; b 3D result of a
mechanical part; ¢ cross-section
of (a); d cross-section of (b)

(b)
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cardiac mechanics analysis (Wang etal. 2013) in  examples. For this system setup, the measurement accuracy

biomedical science.
3.4 3D Microstructure measurement

The real-time to superfast 3D imaging techniques can also
be used to measure micro-structures by different optics. For
example, we have developed micro-scale 3D imaging with
dual telecentric lenses, and achieved pm measurement
accuracy (Li and Zhang 2016). This system used the
Wintech PRO4500 for pattern projection and the Imaging
Source DMK 23U274 camera for data acquisition. The
camera resolution was 1600 x 1200, and the pixel size is
approximately 16 um. Figure 20 shows two measurement

was found to be approximately +5 pm for a volume of
10(H) mm x8(W) mm x5(D) mm.

4 Potential applications

With the development of computer data analysis, high-
resolution and high-accuracy 3D data captured by these
optical 3D imaging techniques could be an integrated part
of future intelligent robots. In this section, we cast our view
over potential applications of the high-accuracy and high-
speed 3D optical imaging techniques in the field of intel-
ligent robotics.
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4.1 Robot manipulation and navigation

The intelligent robot has the capability of performing some
tasks autonomously without any teaching or programming.
The prerequisite of autonomous action is to know the
environment around the robot by sensors, followed by
decision making and dynamic planning. The visual sensors
are commonly employed to reconstruct the 3D environ-
ment for robot manipulation and navigation. To reconstruct
the 3D environment, the corresponding matching always
relies on the optical properties of the environment, such as
texture, reflectance, and illumination, resulting in
decreased reliability. To address this problem, structured
light-based visual sensors have increasingly been used in
the field of robotics because they can provide a high-ac-
curacy, high-speed, and high-reliability 3D environment.
For example, with integrated advanced 3D imaging sen-
sors, intelligent robots could figure out a complex and
unknown assembly task by a single one or a team after a
certain level of training. Of course, to be able to do that,
advanced machine learning techniques have to be devel-
oped, and the miniaturized 3D imaging techniques have to
be embedded onto the robot itself.

For robot manipulation, a geometry-based Xpoint
primitive can be designed to achieve high-accuracy loca-
tion regardless of invariant surface reflectivity (Xu et al.
2012). Commercial sensor such as Kinect, RealSense, and
Tango have started being used, albeit their accuracy is still
limited for precision manipulations. Structured light system
has proven to be able to achieve um measurement accu-
racy (Li and Zhang 2016), making it possible to precisely
tell where a particular object is as well as the geometry of
those features. Figure 14 shows an example of part mea-
surement at tens of um accuracy. Once these accurately
measured 3D data are available, one can measure the dis-
tance between two holes for inspection, and also precisely
tell the layout of the features on the surface.

With such high-accuracy measurement and further data
analytics tools for feature detection and path planning, we
believe that future robots will be able to use such high-
accuracy 3D imaging techniques to learn unknown parts
and then precisely manipulate those parts. For mobile robot
navigation, a wide field of view (FOV) is preferred to avoid
obstacle, especially in a narrow space. Thus, extending
real-time structure light techniques to be omnidirectional
(e.g., Zhang et al. 2012) would add more value.

4.2 Human robot interaction
Extremely high-resolution and high-accuracy 3D imaging
could also potentially help robots to understand humans,

allowing humans and robots to interact with each other
naturally and thus collaborate more seamlessly. In modern,
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especially smart, factories, where humans and robots typ-
ically coexist, the safety of persons working in such
industrial settings is a major concern. If smart sensors can
precisely measure where people are close by, they can send
signals to the robots to avoid accidents.

Human body language can tell a lot about the current
emotional and physical status of a person. Thus, under-
standing human facial expressions could infer whether a
person is happy or sad; understanding the gesture motion
dynamics (e.g., walking) could provide information about
the physical strength of an aged person; and understanding
the hand and arm dynamics of a worker could give cues
about their reliability. By sensing such cues of human
partners, robots could make decisions about whether they
should provide assistance to them (e.g., support an aged
person before s/he falls).

4.3 Mobile microrobotics

High-accuracy, and high-speed 3D imaging also has a great
potential to conquer some fundamental challenges in the
microrobotics field. Robots with the size of several microns
have numerous applications in medicine, biology, and
manufacturing (Diller et al. 2013; Abbott et al. 2007).
Simultaneous independent locomotion of multiple robots
and their end-effectors at this scale is difficult since the
robot itself is too small to carry power, communication,
and control on board. However, high-accuracy, high-speed
3D structured light imaging may be the key to unlocking
the potential of these systems. Mobile microrobots have an
overall size (footprint) of less than a millimeter, and their
motions are no longer dominated by inertial (gravitational)
forces (Chowdhury et al. 2015a). Thus, microrobots have
to overcome the size restrictions that do not allow for on-
board actuation, power, and control, and due to the unique
interaction forces, the conventional actuation principles
utilizing the gravitational forces typically do not work.
Researchers typically rely on off-board or external
global fields for power and actuation of mobile micro-
robots (Kummer et al. 2010; Steager et al. 2013; Floyd
et al. 2008; Jing et al. 2011, 2012, 2013a, b). Using an
external magnetic field is a popular actuation method due
to its high actuation force, compact system size, and low
cost. Researchers have long been trying to control multiple
microrobots independently using these global magnetic
fields. However, it has primarily resulted in coupled
movements of the robots in the workspace (Pawashe et al.
2009a, b; Diller et al. 2012; Frutiger et al. 2010; DeVon
and Bretl 2009; Cheang et al. 2014). Recently, researchers
have developed a specialized substrate with an array of
planar microcoils to generate local magnetic fields for
independent actuation of multiple microrobots (Cappelleri
et al. 2014; Chowdhury et al. 2015¢, b). While some new
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microrobot designs are emerging with soft end-effec-
tors (Jing and Cappelleri 2014a, b, c), they are passive, and
current man-made microrobots cannot actively deform.
Another control modality is needed if one is to control an
active end-effector, i.e., a micro-gripper, at the end of the
magnetic microrobot. This is an opportunity for 3D struc-
tured light techniques.

By taking advantage of the wireless, scalable and spa-
tiotemporally selective capabilities that light allows, Palagi
et al. (2016) show that soft microrobots consisting of
photoactive liquid-crystal elastomers can be driven by
structured light to perform sophisticated biomimetic
motions. Selectively addressable artificial microswimmers
that generate travelling-wave motions to self-propel, as
well as microrobots capable of versatile locomotion
behaviors on demand, have been realized. The structured
light fields allow for the low-level control over the local
actuation dynamics within the body of microrobots made
of soft active materials. This same technique can be applied
to actuate end-effectors made from similar materials
attached to a magnetic microrobot body, like the ones
in Jing and Cappelleri (2014a, b, c). Magnetic fields can be
used for position and orientation control while the struc-
tured light can be used for end-effector actuation control.

Structured light exposure can also be used for shape-
shifting soft microrobots (Fusco et al. 2015) into different
configurations. Huang et al. (2016) demonstrated that
individual microrobots can be selectively addressed by
NIR light and activated for shape transformation, yielding
the microrobot’s “shape” as an extra degree of freedom for
control. Thus, the principle of using structured light has
great potential in the mobile microrobotics community, and
it can be extended to other microrobotic applications that
require  microscale actuation with spatiotemporal
coordination.

5 Summary

This paper has presented the high-speed and high accuracy
3D imaging techniques using the digital fringe projection
method, a special yet advantageous structured light
method. We have elucidated the details of these techniques
to help beginners to understand how to implement such
techniques for their applications. We have also presented
some representative measurement results to demonstrate
the capabilities of the DFP techniques for different scale
and resolution measurements. Finally, we cast our per-
spective over potential applications of the DFP techniques
in the robotics field. We hope that this paper is a good
introduction of DFP techniques mainly developed in the
optical metrology community to the intelligent robotics
community.
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