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Abstract This paper presents some of the high-accuracy

and high-speed structured light 3D imaging methods

developed in the optical metrology community. These

advanced 3D optical imaging technologies could substan-

tially benefit the intelligent robotics community as another

sensing tool. This paper mainly focuses on one special 3D

imaging technique: the digital fringe projection (DFP)

method because of its numerous advantageous features

compared to other 3D optical imaging methods in terms of

accuracy, resolution, speed, and flexibility. We will discuss

technologies that enabled 3D data acquisition, reconstruc-

tion, and display at 30 Hz or higher with over 300,000

measurement points per frame. This paper intends to

introduce the DFP technologies to the intelligent robotics

community, and casts our perspectives on potential appli-

cations for which such sensing methods could be of value.

Keywords 3D optical sensing � 3D optical imaging �
Micro robotics � Human robotic interaction � Perception
and vision

1 Introduction

Advances in two-dimensional (2D) optical imaging and

machine/computer vision have provided integrated smart

sensing systems for numerous applications. By adding one

more dimension, advanced three-dimensional (3D) optical

imaging and vision technologies have much greater impact

on scientific research and industrial practices including

intelligent robotics.

3D optical imaging techniques do not require surface

contact and are thus suitable for remote sensing, where no

external force is applied to objects being tested. 3D optical

imaging can be broadly divided into two major categories:

passive methods and active methods. Passive methods rely

solely on naturally depicted information (e.g., texture,

color) to determine cues for 3D information recovery,

while active methods require active emission of signals to

find cues for 3D reconstruction. The most extensively

adopted passive methods in the robotics community are

probably the stereo vision methods (e.g., Bumblebee). A

stereo vision method (Dhond and Aggarwal 1989) recovers

3D information through triangulations by identifying the

corresponding pairs between camera images from different

perspectives through analysis of texture information. To

more accurately and more efficiently determine corre-

sponding paris, stereo vision methods often calibrate sys-

tem geometric constraints through epipolar

analysis (Scharstein and Szeliski 2002; Hartley and Zis-

serman 2000). A stereo vision system has the following

obvious advantages with its extensive adoption in many

different fields: (1) hardware design is compact and cost is

low since only two cameras are required for 3D recon-

struction; and (2) hardware integration and calibration are

fairly straightforward since camera calibration has been

well studied. However, the measurement accuracy is
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limited if the surface texture is not rich (e.g., variation is

slow from one point to another). For applications where

accuracy is not a primary concern (e.g., rough navigation

under controlled or complex environments), stereo vision is

an excellent option. However, for detecting the corre-

spondence pairs between images, the stereo vision method

fails if the image is close to being uniform or there are

naturally present repetitive textures.

Instead of relying on natural information, active meth-

ods require at least an optical emitter to send known signals

to the object surface to conquer the fundamental corre-

spondence problem of the stereo vision method. Basically,

the correspondence is established by finding the emission

information from camera images. Historically, researchers

have tried different types of active information including a

single dot, a line, even fixed, or a predefined structured

pattern(s) (Salvi et al. 2010). Laser scanning technol-

ogy (Keferstein and Marxer 1998; Sirikasemlert and Tao

2000; Manneberg et al. 2001) typically sweeps a laser dot

or a line (e.g., Intel RealSense) across the object surface,

and this technique recovers 3D information by finding

corresponding points from the laser dots or lines captured

by the camera. The accuracy of laser triangulation methods

can be high, albeit the speed is slow due to point or line

scanning. Therefore, laser triangulation methods are

mainly used in application areas where sensing speed is not

the primary concern. The first generation of Kinect

developed by Microsoft (Zhang 2012) uses a pre-defined

unique dot distribution for establishment of stereo corre-

spondence. This technique achieves a reasonably high

speed by using dedicated hardware and a limited number of

sensing points. As one may recognize, Kinect has a fairly

low spatial resolution and depth accuracy, making it good

for coarse gesture motion capture for applications like

human–computer interactions.

The availability and affordability of digital video pro-

jectors has enabled the structured light method, which is

nowadays among the most popular 3D imaging methods.

The structured light method is very similar to a stereo

vision method since both use two devices, but they differ in

that the structured light method replaces one of the cameras

of a stereo vision system with a digital video projec-

tor (Salvi et al. 2010). Due to their flexibility and pro-

grammability, structured light systems allow versatile

emission patterns to simplify establishment of correspon-

dence. Over the years, researchers have attempted pseudo-

random patterns (Morano et al. 1998), speckle pat-

terns (Huang et al. 2013), binary coded structured pat-

terns (Salvi et al. 2010), multi-gray-level patterns (Pan

et al. 2004), triangular patterns (Jia et al. 2007), trape-

zoidal patterns (Huang et al. 2005), and sinusoidal pat-

terns (Zhang 2016), among others. Though all these

structured patterns have proven successful for 3D

reconstruction, using phase-shifted sinusoidal structured

patterns is overwhelmingly advantageous because such

patterns are continuous in both the horizontal and vertical

directions, and the correspondence can be established in

phase instead of in the intensity domain (Zhang 2010). In

the optics community, sinusoidal patterns are often called

fringe patterns and the structured light method using digital

fringe patterns for 3D imaging is often called digital fringe

projection (DFP).

This paper will explain thoroughly the differences

between two of the most extensively adopted binary

structured patterns and sinusoidal patterns to help readers

recognize the superiority of the DFP method, albeit it is not

easy to understand at the very beginning. The main pur-

poses of this paper are to (1) provide a ‘‘tutorial’’ for those

who have not had substantial experience in developing 3D

imaging system, (2) lay sufficient mathematical founda-

tions for 3D imaging system developments, and (3) cast our

perspectives on how high-speed and high-accuracy 3D

imaging technologies could be another sensing tool to

further advance intelligent robotics.

Section 2 explains the principles of the DFP technique

and its differences from stereo vision and binary coding, as

well as system calibration and 3D reconstruction. Section 3

shows some representative 3D imaging results captured by

DFP systems. Section 4 presents our thoughts on potential

applications, and Sect. 5 summarizes this paper.

2 Principle

This section explains the principles of structured light 3D

imaging techniques and how to achieve accurate high-

spatial and -temporal resolution with the same hardware

settings.

2.1 Basics of structured light

Structured light techniques evolved from a well-studied

stereo vision method (Dhond and Aggarwal 1989) which

imitates a human vision system for 3D information

P
P1

P2

P3

PL PR

EL ER

OL

Left Camera
OR

Right Camera

Fig. 1 Schematic of a stereo vision system
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recovery. Figure 1 schematically shows a stereo vision

system that captures 2D images of a real world scene from

two different perspectives. The geometric relationships

between a real-world 3D point, P, and its projections on 2D

camera image planes, PL and PR form a triangle, and thus

triangulation is used for the 3D reconstruction. In order to

use triangulation, one needs to know (1) the geometric

properties of two camera imaging systems, (2) the rela-

tionship between these two cameras, and (3) the precise

corresponding point on one camera to a point on the other

camera. The first two can be established through calibra-

tion, which will be discussed in Sect. 2.2. The correspon-

dence establishment is usually not easy solely from two

camera images.

To simplify the correspondence establishment problem,

the geometric relationship, the so-called epipolar geome-

try, is often used (Scharstein and Szeliski 2002; Hartley

and Zisserman 2000). The epipolar geometry essentially

constructs the single geometric system with two known

focal points OL and OR of the lenses to which all image

points should converge. For a given point P in a 3D world,

its image point PL together with points OL and OR should

form a plane, called the epipolar plane. The intersection

line PRER of this epipolar plane with the imaging plane of

the righthand camera is called the epipolar line (red line).

For point PL, all possible corresponding points on the

righthand camera should lie on the epipolar line PRER. By

establishing the epipolar constraint, the correspondence

point searching problem becomes 1D instead of 2D, and

thus more efficient and potentially more accurate. Yet,

even with this epipolar constraint, it is often difficult to find

a correspondence point if the object surface texture does

not vary drastically locally and appears random globally.

For example, if two cameras capture a polished metal plate,

images captured from two different cameras do not provide

enough cues to establish correspondence from one camera

image to the other.

Structured light techniques resolved the correspondence

finding problems of stereo vision techniques by replacing

one of the cameras with a projector (Salvi et al. 2010).

Instead of relying on the natural texture of the object sur-

face, the structured light method uses a projector to project

pre-designed structured patterns onto the scanned object,

and the correspondence is established by using the actively

projected pattern information. Figure 2a illustrates a typi-

cal structured light system using a phase-based method, in

which the projection unit (D), the image acquisition unit

(E), and the object (B) form a triangulation base. The

projector illuminates one-dimensional varying encoded

stripes onto the object. The object surface distorts the

straight stripe lines into curved lines. A camera captures

distorted fringe images from another perspective.

Following the same epipolar geometry as shown in Fig. 2b,

for a given point P in a 3D world, its projector image point

PL lies on a unique straight stripe line on the projector

sensor; on the camera image plane, the corresponding point

PR is found at the intersecting point of the captured curved

stripe line with the epipolar line.

2.2 Structured light system calibration

The structured light illumination can be used to ease the

difficulty in detecting correspondence points. To recover

3D coordinates from the captured images through trian-

gulation, it is required to calibrate the structured light

system. The goal of system calibration is to model the

projection from a 3D world point ðxw; yw; zwÞ to its corre-

sponding image point (u, v) on the 2D sensor (e.g., cam-

era’s CCD or projector’s DMD).

Mathematically, such a projection usually uses a well-

known pinhole model if a non-telecentric lens is used (Z-

hang 2000). Figure 3 schematically shows an imaging

system. Practically, the projection can be described as

s u; v; 1½ �T¼ A½Rjt� xw; yw; zw; 1½ �T : ð1Þ

Here, s stands for the scaling factor. ½u; v; 1�T denotes the

homogeneous image coordinate on the camera image

plane, T is the matrix transpose, and [R|t] represents the

extrinsic parameters

R ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75; ð2Þ

t ¼
t1

t2

t3

2
64

3
75: ð3Þ

The extrinsic parameters transform the 3D world coordi-

nate Xw ¼ ðxw; yw; zwÞ to the camera lens coordinate

through a 3� 3 rotation matrix R and a 3� 1 translation

vector t. The lens coordinate is then projected to the 2D

imaging plane through the intrinsic matrix A,

A ¼
fu c u0
0 fv v0
0 0 1

2
4

3
5 ð4Þ

fu and fv are the effective focal lengths of the camera along

the u and v axes; c models the skew factor of these two

axes; and ðu0; v0Þ is the principal point (the intersection of

the optical axis with the image plane).

The camera calibration procedure is used to estimate the

intrinsic and extrinsic parameters to establish geometric

relationships from some known geometric points. Nowa-

days, the most popular camera calibration method is to use

88 B. Li et al.
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a 2D calibration target, as developed by Zhang (2000), with

known feature points on the plane. After capturing a set of

images with different poses, the optimization software

algorithm can be applied to estimate the numerical

parameters. Zhang’s method is popular because of its

flexibility and the ease of the calibration target fabrication.

The structured light calibration involves both camera

calibration and projector calibration. As discussed in

Sect. 2.1, a structured light system is constructed by

replacing one of the stereo cameras with a projector. In

fact, the projector and the camera share the same pinhole

model except that the optics are mutually inverted (the

projector projects images instead of capturing ima-

ges) (Zhang and Huang 2006). Therefore, we can model a

structured light system using the following two sets of

equations:

sc uc; vc; 1½ �T¼ Ac Rcjtc½ � xw; yw; zw; 1½ �T ; ð5Þ

sp up; vp; 1½ �T¼ Ap Rpjtp½ � xw; yw; zw; 1½ �T : ð6Þ

Here, superscript c and p respectively represent the camera

and the projector. The calibration of a projector can be quite

difficult given that a projector cannot capture images by

itself. The enabling technology, developed by Zhang and

Huang (2006), establishes one-to-one pixel correspondence

between the camera and projector sensor by using two sets

of structured patterns with different orientations (e.g., one

set of horizontal patterns and one of vertical patterns).

Figure 4 illustrates how to establish the one-to-one

mapping. The top row shows the scenario in which the

camera captures the vertical pattern illuminated by the

projector. Suppose we pick a pixel (blue) ðuc; vcÞ on the

camera image; this changes if the pixel shifts horizontally

but does not change if it shifts vertically. The horizontal

shifts can be uniquely defined by using a set of continu-

ously coded structured patterns, to be discussed in

Sect. 2.4. Since the encoded information is the same from

the projector space, by using this set of coded patterns, one

can correlate one camera pixel ðuc; vcÞ uniquely to one

vertical line on the projector sensor up,

up ¼ fhðuc; vcÞ; ð7Þ

where fh denotes a one-to-many correspondence function

of ðuc; vcÞ for given coded patterns. Similarly, if the camera

captures the horizontal pattern illuminated by the projector

as shown in the bottom row of Fig. 4, for the same camera

pixel, we can correlate that pixel with a horizontal line vp

on the projector’s DMD sensor,

Object

Projector
fringe

Camera
image

Phase line

Projector
pixel

Camera
pixel

Object
point

Phase line

Baseline

C A

B

ED

Z

(a)
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EL ER

OL

Projector
OR

(b)

Fig. 2 Principles of the

structured light technique.

a Schematic of a structured light

system; b correspondence

detection through finding the

intersecting point between the

distorted phase line and the

epipolar line

uv

o
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zc
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Fig. 3 The pinhole camera model

planeDMDimagesCCD DMD images

Fig. 4 One-to-one mapping establishment between a camera pixel

and a projector pixel by using two sets of structured patterns
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vp ¼ fvðuc; vcÞ: ð8Þ

Combining these two one-to-many mappings, we can

find the unique corresponding point ðup; vpÞ for any

camera pixel ðuc; vcÞ. By this means, the camera can

assist the projector in capturing images, and since the

projector can capture images, the structured light system

calibration becomes a well-established stereo camera

system calibration. The camera and the stereo vision

system calibration can be readily carried out by capturing

a set of images of the calibration target, and it uses an

open-source camera calibration software toolbox (e.g.,

Matlab or OpenCV).

Once the system is calibrated, we have obtained the

intrinsic matrices Ac and Ap and the extrinsic matrices

Rcjtc½ � and Rpjtp½ � for the camera and the projector. A

simplified model can be obtained by combining the

intrinsic and extrinsic matrices:

Mc ¼ Ac Rcjtc½ �; ð9Þ

Mp ¼ Ap Rpjtp½ �: ð10Þ

The 3D reconstruction process is used to obtain the 3D

coordinates ðxw; yw; zwÞ of a real object from each

camera pixel ðuc; vcÞ. Equations (5) and (6) provide six

equations yet with seven unknowns: the 3D coordinates

ðxw; yw; zwÞ; the mapping projector pixel ðup; vpÞ for each
camera pixel; and the scaling factors sc and sp. To

obtain an additional equation to solve for the 3D coor-

dinates, we only need to project one-directional (e.g.,

horizontal) patterns to establish one-dimensional map-

ping and use Eq. (7) to provide the last equation to

uniquely solve ðxw; yw; zwÞ coordinates for each camera

pixel ðuc; vcÞ as,

xw

yw

zw

2
64

3
75 ¼

mc
11 � ucmc

31m
c
12 � ucmc

32m
c
13 � ucmc

33

mc
21 � ucmc

31m
c
22 � ucmc

32m
c
23 � ucmc

33

m
p
11 � upm

p
31m

p
12 � upm

p
32m

p
13 � upm

p
33

2
64

3
75
�1

�
ucmc

34 � mc
14

vcmc
34 � mc

24

upm
p
34 � m

p
14

2
64

3
75; ð11Þ

where mc
ij and m

p
ij denote the matrix parameters in Mc and

Mp in the i-th row and j-th column.

2.3 3D imaging with binary coding methods

As discussed in Sect. 2.1, in order to perform 3D recon-

struction through triangulation, at least one-dimensional

mapping (or correspondence) is required. Namely, we need

to map a point on the camera to a line (or a predefined

curve) on the projector. One straightforward method is to

assign a unique value to each unit (e.g., a stripe or a line)

that varies in one direction. The unique value here is often

regarded as the codeword. The codeword can be repre-

sented by a sequence of black (intensity 0) or white (in-

tensity 1) structured patterns through a certain coding

strategy (Salvi et al. 2010). There are two commonly used

binary coding methods: simple coding and gray coding.

Figure 5a illustrates a simple coding example. The

combination of a sequence of three patterns, as shown on

the left of Fig. 5a, produces a unique codeword for each

stripe made up of 1s and 0s, (e.g.. 000, 001, ...), as shown

on the right of Fig. 5a. The projector sequentially projects

this set of patterns, and the camera captures the corre-

sponding patterns distorted by the object. If these three

captured patterns can be properly binarized (i.e., converting

camera grayscale images to 0s and 1s), for each pixel, the

sequence of 0s and 1s from these three images forms the

codeword which is defined from the projector space.

Therefore, by using these images, the one-to-many map-

ping can be established and thus 3D reconstruction can be

carried out.

Gray-coding is another way of encoding information.

Figure 5b illustrates an example of using three images to

represent the same amount of information as simple cod-

ing. The major difference between gray coding and simple

coding is that, at a given location, gray coding only allows

one bit of codeword status change (e.g., flip from 1 to 0 or

0 to 1 on one pattern), yet the simple coding method does

not have such a requirement. For the example illustrated in

the red bounding boxes of Fig. 5a and b, simple binary

coding has three bit changes while gray coding only has

000 001 010 011 100 101 110 111111 1110

(a)
000 001 011 010 110 100 101 1110 1

(b)

Fig. 5 Two different types of

binary coding methods. a Three

bits simple coding, and

b corresponding gray coding
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one. Fewer changes at a point means less chance of errors,

and thus gray coding tends to be more robust for codeword

recovery.

The binary coding methods are simple and rather robust

since only two binary states are used for any given point,

but the achievable spatial resolution is limited to be larger

than single camera and projector pixels. This is because the

narrowest stripes must be larger than one pixel from the

projector space to avoid sampling problems, and each

captured stripe width also needs to be larger than one

camera pixel to be able to properly find the binary state

from the captured image. Figure 6 illustrates that the

decoded codewords are not continuous, but discrete with a

stair width larger than one pixel. The smallest achievable

resolution is the stair width, since no finer correspondence

can be precisely established. The difficulty of achieving

pixel-level spatial resolution limits the use of binary coding

methods for high-resolution and high-accuracy measure-

ment needs.

2.4 3D imaging using digital fringe projection (DFP)

Digital fringe projection (DFP) methods resolve the

limitation of the binary coding method and achieve

camera pixel spatial resolution by using continuously

varying structured patterns instead of binary patterns.

Specifically, sinusoidally varying structured patterns are

used in the DFP system, and these sinusoidal patterns are

often regarded as fringe patterns. Therefore, the DFP

technique is a special kind of structured light techniques

by using sinusoidal or fringe patterns. The major dif-

ference of the DFP technique lies in the fact that it does

not use intensity for coding but rather uses phase. And

one of the most popular methods to recover phase is the

phase-shifting-based fringe analysis technique (Malacara

2007). For example, a three-step phase-shifting algo-

rithm with equal phase shifts can be mathematically

formulated as

I1ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cosð/� 2p=3Þ; ð12Þ

I2ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cosð/Þ; ð13Þ

I3ðx; yÞ ¼ I0ðx; yÞ þ I00ðx; yÞ cosð/þ 2p=3Þ: ð14Þ

Here I0ðx; yÞ denotes the average intensity, I00ðx; yÞ stands

for the intensity modulation and / is the phase to be

extracted. The phase can be computed by simultaneously

solving Eq. (12)–(14):

/ðx; yÞ ¼ tan�1
ffiffiffi
3

p
ðI1 � I3Þ=ð2I2 � I1 � I3Þ

h i
: ð15Þ

The extracted phase / ranges from �p to þp with 2p
discontinuities due to the nature of the arctangent function.

To remove the 2p discontinuities, a spatial (Ghiglia and

Pritt 1998) or temporal phase unwrapping algorithm is

necessary which detects 2p discontinuities and removes

them by adding or subtracting the integer k(x, y) of 2p, e.g.,

Uðx; yÞ ¼ /ðx; yÞ þ kðx; yÞ � 2p: ð16Þ

Here, the integer k(x, y) is often called the fringe order, and

U is the unwrapped phase.

A spatial phase unwrapping algorithm determines fringe

order k(x, y) relative to the starting point within a con-

nected component, and thus only generates a continuous

phase map relative to that pixel, called the relative phase.

The relative phase cannot be used for correspondence

establishment since it cannot be used to uniquely determine

the phase on the projector space. Therefore, additional

information is required to rectify the relative phase to be

absolute such that it can then be uniquely defined.

A temporal phase unwrapping algorithm retrieves the

absolute fringe order k(x, y) per pixel by acquiring addi-

tional information, and therefore generates the absolute

phase. One of the commonly adopted temporal phase

unwrapping methods is by means of encoding the fringe

order k(x, y) with binary coded patterns, discussed in

Sect. 2.3. Such a temporal phase unwrapping method

recovers the absolute phase by capturing additional binary

patterns in addition to the sinusoidal patterns.

Figure 7 illustrates the procedures for absolute phase

recovery. First, the wrapped phase map / with 2p dis-

continuities is obtained by applying the phase-shifting

algorithm; then the fringe order k(x, y) is recovered by

analyzing the binary coded fringe patterns, and finally, the

absolute phase U is recovered by applying Eq. (16). The

red line in Fig. 7 shows the unwrapped phase without 2p
discontinuities.

CCD images DMD planeDMD images

Codeword

up000
001

010
011

100
101

110
111

Fig. 6 1D correspondence

detection through binary

coding: one camera pixel maps

to multiple lines of projector

pixels sharing the same binary

codeword
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There are other temporal phase unwrapping methods

developed in optical metrology fields, such as multi-fre-

quency (or multi-wavelength) phase-shifting meth-

ods (Cheng and Wyant 1984, 1985; Towers et al. 2003;

Wang and Zhang 2011). The multi-frequency phase-shift-

ing methods essentially capture fringe patterns with dif-

ferent frequencies and uses phases from all frequencies to

determine absolute fringe order k(x, y).

The absolute phase map can be used as the codeword to

establish one-to-many mapping in the same way as binary

coding methods. However, since the phase map obtained

here is continuous NOT discrete, the mapping (or corre-

spondence) can be established at camera pixel level. Fig-

ure 8 illustrates the concept of pixel level correspondence

using phase-shifting methods. For a selected camera pixel

ðuc; vcÞ, its absolute phase value Uðuc; vcÞ uniquely maps to

the projector’s line up with exactly the same phase value on

the projector space. If horizontal sinusoidal patterns are

used, Eq. (7) becomes

up ¼ Uðuc; vcÞ � P=ð2pÞ; ð17Þ

where P is the number of pixels for a single period of

sinusoids which corresponds to 2p in phase. The scaling

factor P=ð2pÞ simply converts the phase to the projector

line in pixels. The continuous and differentiable nature of

an absolute phase map makes it possible to achieve pixel-

level correspondence between the camera and the projec-

tor. Once the correspondence is known, ðxw; yw; zwÞ can be

computed using Eq. (11).

Besides recovering 3D geometry, Eqs. (12)–(14) can

also generate texture information It,

Itðx; yÞ ¼
I1 þ I2 þ I3

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI1 � I3Þ2 þ ð2I2 � I1 � I3Þ

q

3
:

ð18Þ

The texture information, which appears like an actual

photograph of the imaged scene, can be used for object

recognition and feature detection purposes.

Figure 9 shows an example of measuring a complex

statue with the gray coding method. Figure 9a shows a

photograph of the object to be measured. A sequence of

nine gray-coded binary patterns are captured to recover the

codeword map. Figure 9b–f shows five of these images

from the wider to denser structured patterns. From this

sequence of patterns, the codeword map is then recovered,

shown in Fig. 9g. This binary coded map can then be used

to recover the 3D shape of the object, and Fig. 9h shows

the result.

The same object is then measured again by the DFP

method; Fig. 10a–c shows three phase-shifted fringe
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Fig. 7 Absolute phase recovery

combining phase shifting with

binary coding; the phase-

shifting method extracts the

wrapped phase / with 2p
discontinuities; the binary coded

patterns encodes the fringe

order k; the phase is finally

unwrapped by adding integer k

multiples of 2p to the wrapped

phase / to remove 2p
discontinuities
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(projector)
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Fig. 8 1D correspondence detection through DFP: one camera pixel map has a unique absolute phase value, which maps to a unique phase line

on the projector absolute phase, and a pixel line on the projector DMD plane
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patterns. Applying Eq. 15 to these phase-shifted fringe

patterns will generate the wrapped phase map, shown in

Fig. 10d. In the meantime, we use six gray coded binary

patterns captured for the binary coding method to generate

a fringe order map k(x, y), as shown in Fig. 10e. The

unwrapped phase can then be obtained pixel by pixel by

applying Eq. 16. Figure 10f shows the unwrapped phase.

Once the unwrapped phase is known, the 3D shape can be

recovered pixel by pixel. Figure 10g shows the resultant

3D geometry. In addition to 3D geometry, the same three

phase-shifted fringe patterns shown in Fig.10a–c can be

used to generate the texture image using Eq. 18. Figure 10h

Fig. 9 Example of measuring a

complex statue with the gray

coding method. a Photograph of

the measured object; b–f gray
coded binary patterns from

wider to denser stripes;

g recovered codeword map;

h 3D recovered geometry

Fig. 10 The same object as in

Fig. 9 measured by the DFP

method. a–c Three phase-

shifted fringe images;

d wrapped phase map; e fringe

order map; f unwrapped phase

map; g 3D recovered geometry;

h texture image
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shows the texture image which is perfectly aligned with 3D

geometry point by point.

To better visualize the difference between these binary

codingmethods and the phase-shiftingmethod, Fig. 11 shows

the zoom-in view of the same region of the recovered 3D

geometry. Clearly, 3D geometry recovered from the DFP

method has a lot more detail than that using the binary coding

method, yet it requires fewer acquired images, demonstrating

the merits of using the DFP method for 3D imaging.

In summary, compared with binary coding methods, the

DFP technique based on phase-shifting algorithms has the

following advantages:

• High spatial resolution From Eqs. (12)–(15), one can

see that the phase value of each camera pixel can be

independently computed, and thus 3D measurement can

be performed at camera pixel spatial resolution.

• Less sensitive to ambient light The phase computation

numerator and denominator take the differences of the

captured images, and the ambient light embedded in

I0ðx; yÞ is automatically cancelled out. In theory,

ambient light does not affect phase at all, albeit it will

affect the signal-to-noise ratio (SNR) of the camera

image and thus may reduce the measurement quality.

• Less sensitive to surface reflectivity variations Since

surface reflectivity affects all three fringe patterns at the

same scale for each pixel, the pixel-by-pixel phase

computation (Eq. (15)) also cancels out the influence of

reflectivity.

• Perfectly aligned geometry and texture Since pixel-

wise 3D geometry and texture are obtained from

exactly the same set of fringe patterns, they are

perfectly aligned without any disparities.

2.5 High-speed 3D imaging

Real-time 3D imaging includes three major components:

3D image acquisition, reconstruction and visualization,

which are all done simultaneously in real time. Real-time

3D imaging can be applied to numerous areas, including

manufacturing, entertainment, and security. For intelligent

robotics, real-time 3D imaging technology is also of great

value as a non-contact optical sensing tool. DFP techniques

have been one of the best available methods due their

advantageous properties, discussed in Sect. 2.4.

The advancement of real-time 3D imaging using DFP

methods has evolved with hardware improvements. Earlier

technologies (Zhang and Huang 2006) mainly used the

single-chip DLP technology and encoded three phase-

shifted fringe patterns into the three primary color channels

of the DLP projector. Due to its unique projection mech-

anism, the single-chip DLP projection system allows the

camera to capture three primary color channels separately

and sequentially. Figure 12 shows the layout of such a real-

time 3D imaging system. The single-chip DLP projector

projects three phase-shifted patterns rapidly and sequen-

tially in grayscale (when color filters are removed), and the

camera, when precisely synchronized with the projector,

captures each individual channel for 3D reconstruction.

Since a DLP projector typically projects fringe patterns at

120 Hz, such a technology allows 3D shape measurement

at a speed of up to 120 Hz.

Being limited to encoding three primary color channels,

only three phase-shifted fringe patterns can be used for

such a real-time 3D imaging technology, and thus absolute

phase recovery has to be realized by encoding a marker on

these fringe patterns (Zhang and Yau 2006), while only

single smooth geometry can be measured. This method also

requires substantial projector modifications, and sometimes

these modifications are impossible without the projector

manufacturer’s involvement (Bell and Zhang 2014).

Although DLP Discovery platforms have been available for

a long time, they have been too expensive for wide adop-

tion in academia or industry.

Fortunately, with more than a decade of effort on high-

speed 3D imaging from our research community, projector

Fig. 11 Comparing results from

binary coding and DFP

methods. a Zoom-in view of 3D

geometry, shown in Fig. 9h, by

the binary coding method;

b zoom-in view of 3D

geometry, shown in Fig. 10g, by

the DFP method
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manufacturers are finally recognizing the opportunities in

industry for producing affordable specialized projectors for

this field: for example, LogicPD has produced the

LightCommander, and WinTech Digital the LightCrafter

series. With such specialized DLP projectors, it is much

easier to employ more robust algorithms for real-time 3D

imaging, such as those absolute phase recovery methods

discussed in Sect. 2.4.

Once data acquisition becomes fast enough and ready

for use, the second challenge is to speed up data process-

ing. High-speed 3D data processing starts with fast phase-

shifting algorithms including phase wrapping (Huang and

Zhang 2006) and unwrapping (Zhang et al. 2007) coupled

with advanced graphics processing unit (GPU) technology

developments. GPU is a dedicated graphics rendering

device for a personal computer or games console. Current

GPUs are not only very efficient at manipulating and dis-

playing computer graphics but their highly parallel struc-

ture also makes them more effective than typical CPUs for

a range of complex algorithms. Although CPUs have been

increasing their performance over time, they have

encountered severe bottlenecks for progressing since

increasing the clock frequency has fundamental physics

limitations. GPUs boost the performance of the CPU by

employing a massive number of lower-frequency simple

processors in parallel. Due to the simpler architecture, the

fabrication cost is much lower, making them available now

for almost all graphics cards. Naturally, researchers have

endeavored to bring GPU technologies to the optical

imaging field, such as Zhang et al. (2006), Liu et al. (2010)

and Karpinsky et al. (2014). Faster than real-time (e.g., 30

Hz) 3D data processing speeds have been successfully

achieved even with an integrated graphics card on a laptop.

With advanced GPU technologies, real-time 3D image

visualization becomes straightforward since all data are

readily available on the graphics card, and so can be dis-

played immediately on the screen. It is important to note

that the amount of data to be visualized is very large since

DFP techniques recover 3D coordinates and texture for

each camera pixel. Therefore, the deciding factors of real-

time 3D imaging efficiency are the number of pixels on the

camera sensor and the processing power of the computer.

For all obtained data points, it is very challenging to send

them directly to a graphics card through the data bus

between the video card and the computer, and thus, in order

to achieve real-time visualization, 3D reconstruction typi-

cally has to be done on the graphics card with GPU.

It is always desirable to achieve higher-speed 3D image

acquisition to reduce motion artifacts and to more rapidly

capture changing scenes. Lei and Zhang (2009) developed

the 1-bit binary defocusing method to break the speed

bottleneck of high-speed 3D imaging methods. Using 1-bit

binary patterns reduces the data transfer rate and thus

making it possible to achieve a 3D imaging rate faster than

120 Hz with the same DLP technology. For example, the

DLP Discovery platform introduced by Texas Instruments

can switch binary images at a rate up to over 30,000 Hz,

and thus kHz 3D imaging is feasible (Li et al. 2014). This

method is based on the nature of defocusing: evenly

squared binary patterns appear to be sinusoidal if the pro-

jector lens is properly defocused. Therefore, instead of

directly projecting 8-bit sinusoidal patterns, we can

DLP
projector

RGB
fringe

Object

PC

CCD 
camera

R G

B

Wrapped
phase map

3D W/ 
Texture

I1
I2

I3

3D 
model

2D
photo

Fig. 12 Layout of a real-time

3D imaging system using a

single-chip DLP projector.

Three phase-shifted fringe

patterns are encoded into R,

G and B color channels of the

projector are sequentially and

repeatedly projected onto the

object surface. The high-speed

camera used to capturethe

images which is precisely

synchronized with each

individual 8-bit pattern

projection. A three-step phase-

shifting algorithm is applied to

the combined channel images to

compute the phase for 3D

reconstruction. The projector

refreshes typically at 120 Hz in

color, 360 Hz for individual

channels
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approximate sinusoidal profiles through projecting 1-bit

binary patterns and properly defocusing the projector.

Figure 13 shows some captured fringe images with the

projector at different defocusing levels. As one can see,

when the projector is in focus, as shown in Fig. 13a, it

preserves apparent squared binary structures, but when the

projector is properly defocused (see Fig 13c), the squared

binary structure will appear to have an approximately

sinusoidal profile. Without a doubt, the sinusoidal struc-

tures will gradually diminish if the projector is overly

defocused, which results in low fringe quality. Once

sinusoidal patterns are generated, a phase-shifting algo-

rithm can be applied to compute the phase and thus 3D

geometry after system calibration.

3 Measurement examples

This section shows some representative 3D measurement

results using DFP techniques, ranging from static to high

speed, and from micro- to macro- and to large-scale scene

captures.

3.1 Complex 3D mechanical part measurement

Figure 14 shows the result of measuring the static

mechanical part. Figure 14a shows that the part has a

variety of different shapes, blocks, and color on its surface.

Figure 14b and c respectively show one of the captured

fringe patterns and the reconstructed 3D geometry. The 3D

result clearly shows that the fine details are well recovered

under our 3D shape measurement system. The system

includes a digital CCD camera (Imaging Source DMK

23UX174) with a resolution of 1280� 1024 pixels, and a

DLP projector (Dell M115HD) with a resolution of 1280�
800 pixels. The camera has a lens with 25-mm focal length

(Fujinon HF25SA-1).

3.2 Real-time 3D shape measurement

Figure 15a shows the result captured by a system devel-

oped more than 10 years ago (Zhang et al. 2006). The right

part of the image shows a subject and the left side shows

the simultaneously recovered 3D geometry on the com-

puter screen. Recently, the laptop computer has proven

powerful enough to perform real-time 3D imag-

ing (Karpinsky et al. 2014). Figure 15b shows a recently

developed system that used a laptop computer (IBM Len-

ovo laptop with a Intel i5 3320M 2.6 GHz CPU and

NVIDIA Quadro NVS5400M GPU) to achieve 800 � 600

image resolution (or 480,000 points per frame) at 60 Hz.

The entire system cost is also fairly low due to the reduced

hardware component cost.

Facial expressions carry a lot of information including

emotions, and thus the capability of capturing facial

expression details is of great interest to different commu-

nities potentially including robotics. Figure 16 shows a few

example frames captured by our real-time 3D shape

Fig. 13 Sinusoidal fringe generation by defocusing binary structured patterns. a When the projector is in focus; b–f gradual resultant fringe
patterns when the projector’s amount of defocusing increases

Fig. 14 3D imaging of a complex mechanical part. a The captured part; b one of the fringe patterns; c 3D reconstruction
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measurement system. This system includes a USB3.0

camera (Point Grey Grasshopper3) and a LightCrafter 4500

projector. The acquisition speed was chosen to be 50 Hz,

and the image resolution was set at 640� 480. As dis-

cussed earlier, the same set of fringe patterns can also be

used to recover texture (or a photograph of the object). The

second row of Fig. 16 shows the corresponding color tex-

ture that is perfectly aligned with the 3D geometry shown

above.

Hands are very important parts of the human body for

interactions, manipulations, and communications. We have

used the same system shown in Fig. 16 for facial data

acquisition to capture hands. Figure 17 shows the results of

different hand gesture in 3D; and, similarly, color texture is

also available for immediate use. The color texture was not

included in this paper because it is straightforward to

understand.

Human body gesture motion dynamics also provide rich

information for communication. Figure 18 shows that the

DFP system can also be used to measure the human body.

This system includes a USB3.0 camera (Point Grey

Grasshopper3) and a LightCrafter 4500 projector. The

acquisition speed was 33 Hz, the image resolution was

1280� 960, and the pixel size is approximately 1 mm at

the object space. As discussed earlier, the same set of

fringe patterns can also be used to recover texture (or a

photograph of the object).

3.3 Superfast 3D imaging

Figure 19 shows an example of using a kHz 3D imaging

system (Li and Zhang 2016) to capture object deformation,

in which three sample frames of a fluid flow surface

topological deformation process are shown. As one can see,

the geometric deformation of the imaged droplet is well

recovered with the kHz binary defocusing technique, which

could potentially bring additional information for fluid

mechanics analysis. This superfast 3D imaging technique is

also applicable to other applications, such as vibration

analysis (Zhang et al. 2010) in mechanical engineering or

Fig. 15 Real-time 3D imaging.

a Real-time 3D imaging system

on a desktop computer

developed over a decade ago;

b real-time 3D imaging on a

laptop computer developed

recently

Fig. 16 Capturing different facial expressions. The first row shows the 3D geometry and the second row shows the corresponding texture that is

perfectly aligned with the 3D geometry
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Fig. 17 Capturing different

hand gestures. First row shows

single hand examples, and the

bottom row shows two hands

examples

Fig. 18 Capturing different

poses of the human body
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cardiac mechanics analysis (Wang et al. 2013) in

biomedical science.

3.4 3D Microstructure measurement

The real-time to superfast 3D imaging techniques can also

be used to measure micro-structures by different optics. For

example, we have developed micro-scale 3D imaging with

dual telecentric lenses, and achieved lm measurement

accuracy (Li and Zhang 2016). This system used the

Wintech PRO4500 for pattern projection and the Imaging

Source DMK 23U274 camera for data acquisition. The

camera resolution was 1600� 1200, and the pixel size is

approximately 16 lm. Figure 20 shows two measurement

examples. For this system setup, the measurement accuracy

was found to be approximately ±5 lm for a volume of

10(H) mm �8ðWÞ mm �5ðDÞ mm.

4 Potential applications

With the development of computer data analysis, high-

resolution and high-accuracy 3D data captured by these

optical 3D imaging techniques could be an integrated part

of future intelligent robots. In this section, we cast our view

over potential applications of the high-accuracy and high-

speed 3D optical imaging techniques in the field of intel-

ligent robotics.

Fig. 19 Superfast 3D imaging of fluid surface dynamics. a–c Three sample frames of texture; d–f three frames of the 3D geometry

Fig. 20 3D imaging of micro-

structures. a 3D result of a PCB

board; b 3D result of a

mechanical part; c cross-section

of (a); d cross-section of (b)
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4.1 Robot manipulation and navigation

The intelligent robot has the capability of performing some

tasks autonomously without any teaching or programming.

The prerequisite of autonomous action is to know the

environment around the robot by sensors, followed by

decision making and dynamic planning. The visual sensors

are commonly employed to reconstruct the 3D environ-

ment for robot manipulation and navigation. To reconstruct

the 3D environment, the corresponding matching always

relies on the optical properties of the environment, such as

texture, reflectance, and illumination, resulting in

decreased reliability. To address this problem, structured

light-based visual sensors have increasingly been used in

the field of robotics because they can provide a high-ac-

curacy, high-speed, and high-reliability 3D environment.

For example, with integrated advanced 3D imaging sen-

sors, intelligent robots could figure out a complex and

unknown assembly task by a single one or a team after a

certain level of training. Of course, to be able to do that,

advanced machine learning techniques have to be devel-

oped, and the miniaturized 3D imaging techniques have to

be embedded onto the robot itself.

For robot manipulation, a geometry-based Xpoint

primitive can be designed to achieve high-accuracy loca-

tion regardless of invariant surface reflectivity (Xu et al.

2012). Commercial sensor such as Kinect, RealSense, and

Tango have started being used, albeit their accuracy is still

limited for precision manipulations. Structured light system

has proven to be able to achieve lm measurement accu-

racy (Li and Zhang 2016), making it possible to precisely

tell where a particular object is as well as the geometry of

those features. Figure 14 shows an example of part mea-

surement at tens of lm accuracy. Once these accurately

measured 3D data are available, one can measure the dis-

tance between two holes for inspection, and also precisely

tell the layout of the features on the surface.

With such high-accuracy measurement and further data

analytics tools for feature detection and path planning, we

believe that future robots will be able to use such high-

accuracy 3D imaging techniques to learn unknown parts

and then precisely manipulate those parts. For mobile robot

navigation, a wide field of view (FOV) is preferred to avoid

obstacle, especially in a narrow space. Thus, extending

real-time structure light techniques to be omnidirectional

(e.g., Zhang et al. 2012) would add more value.

4.2 Human robot interaction

Extremely high-resolution and high-accuracy 3D imaging

could also potentially help robots to understand humans,

allowing humans and robots to interact with each other

naturally and thus collaborate more seamlessly. In modern,

especially smart, factories, where humans and robots typ-

ically coexist, the safety of persons working in such

industrial settings is a major concern. If smart sensors can

precisely measure where people are close by, they can send

signals to the robots to avoid accidents.

Human body language can tell a lot about the current

emotional and physical status of a person. Thus, under-

standing human facial expressions could infer whether a

person is happy or sad; understanding the gesture motion

dynamics (e.g., walking) could provide information about

the physical strength of an aged person; and understanding

the hand and arm dynamics of a worker could give cues

about their reliability. By sensing such cues of human

partners, robots could make decisions about whether they

should provide assistance to them (e.g., support an aged

person before s/he falls).

4.3 Mobile microrobotics

High-accuracy, and high-speed 3D imaging also has a great

potential to conquer some fundamental challenges in the

microrobotics field. Robots with the size of several microns

have numerous applications in medicine, biology, and

manufacturing (Diller et al. 2013; Abbott et al. 2007).

Simultaneous independent locomotion of multiple robots

and their end-effectors at this scale is difficult since the

robot itself is too small to carry power, communication,

and control on board. However, high-accuracy, high-speed

3D structured light imaging may be the key to unlocking

the potential of these systems. Mobile microrobots have an

overall size (footprint) of less than a millimeter, and their

motions are no longer dominated by inertial (gravitational)

forces (Chowdhury et al. 2015a). Thus, microrobots have

to overcome the size restrictions that do not allow for on-

board actuation, power, and control, and due to the unique

interaction forces, the conventional actuation principles

utilizing the gravitational forces typically do not work.

Researchers typically rely on off-board or external

global fields for power and actuation of mobile micro-

robots (Kummer et al. 2010; Steager et al. 2013; Floyd

et al. 2008; Jing et al. 2011, 2012, 2013a, b). Using an

external magnetic field is a popular actuation method due

to its high actuation force, compact system size, and low

cost. Researchers have long been trying to control multiple

microrobots independently using these global magnetic

fields. However, it has primarily resulted in coupled

movements of the robots in the workspace (Pawashe et al.

2009a, b; Diller et al. 2012; Frutiger et al. 2010; DeVon

and Bretl 2009; Cheang et al. 2014). Recently, researchers

have developed a specialized substrate with an array of

planar microcoils to generate local magnetic fields for

independent actuation of multiple microrobots (Cappelleri

et al. 2014; Chowdhury et al. 2015c, b). While some new
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microrobot designs are emerging with soft end-effec-

tors (Jing and Cappelleri 2014a, b, c), they are passive, and

current man-made microrobots cannot actively deform.

Another control modality is needed if one is to control an

active end-effector, i.e., a micro-gripper, at the end of the

magnetic microrobot. This is an opportunity for 3D struc-

tured light techniques.

By taking advantage of the wireless, scalable and spa-

tiotemporally selective capabilities that light allows, Palagi

et al. (2016) show that soft microrobots consisting of

photoactive liquid-crystal elastomers can be driven by

structured light to perform sophisticated biomimetic

motions. Selectively addressable artificial microswimmers

that generate travelling-wave motions to self-propel, as

well as microrobots capable of versatile locomotion

behaviors on demand, have been realized. The structured

light fields allow for the low-level control over the local

actuation dynamics within the body of microrobots made

of soft active materials. This same technique can be applied

to actuate end-effectors made from similar materials

attached to a magnetic microrobot body, like the ones

in Jing and Cappelleri (2014a, b, c). Magnetic fields can be

used for position and orientation control while the struc-

tured light can be used for end-effector actuation control.

Structured light exposure can also be used for shape-

shifting soft microrobots (Fusco et al. 2015) into different

configurations. Huang et al. (2016) demonstrated that

individual microrobots can be selectively addressed by

NIR light and activated for shape transformation, yielding

the microrobot’s ‘‘shape’’ as an extra degree of freedom for

control. Thus, the principle of using structured light has

great potential in the mobile microrobotics community, and

it can be extended to other microrobotic applications that

require microscale actuation with spatiotemporal

coordination.

5 Summary

This paper has presented the high-speed and high accuracy

3D imaging techniques using the digital fringe projection

method, a special yet advantageous structured light

method. We have elucidated the details of these techniques

to help beginners to understand how to implement such

techniques for their applications. We have also presented

some representative measurement results to demonstrate

the capabilities of the DFP techniques for different scale

and resolution measurements. Finally, we cast our per-

spective over potential applications of the DFP techniques

in the robotics field. We hope that this paper is a good

introduction of DFP techniques mainly developed in the

optical metrology community to the intelligent robotics

community.
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