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One of the major challenges of employing a two-frequency (or two-wavelength) phase-shifting algorithm for
absolute three-dimensional shape measurement is its sensitivity to noise. Therefore, three- or more-frequency
phase-shifting algorithms are often used in lieu of a two-frequency phase-shifting algorithm for applications
where the noise is severe. This paper proposes a method to use geometric constraints of digital fringe projection
system to substantially reduce the noise impact by allowing the use of more than one period of equivalent phase
map for temporal phase unwrapping. Experiments successfully verified the enhanced performance of the
proposed method without increasing the number of patterns. © 2016 Optical Society of America
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1. INTRODUCTION

High-speed and high-accuracy three-dimensional (3D) shape
measurement is of great interest to numerous applications,
including in situ quality control in manufacturing and disease
diagnosis in medical practices.

Among all 3D shape measurement techniques developed,
phase-based methods using fringe analysis techniques uniquely
stand out due to their measurement speeds and accuracy.
Retrieving phase from a sequence of phase-shifted fringe pat-
terns is one of most popular methods since they can recover
phase for each point, are less sensitive to surface reflectivity var-
iations, etc. Typically, the phase directly obtained from fringe
patterns can only provide phase value ranging from −π to �π,
and a phase-unwrapping algorithm has to be adopted to recover
a continuous phase map. Phase unwrapping can be classified
into spatial and temporal phase unwrapping categories. The
spatial phase unwrapping determines 2π discontinuous loca-
tions from the phase map itself and adds or subtracts multiple
number of 2π accordingly. Numerous phase-unwrapping
algorithms have been developed with some being fast but less
robust and some being robust but slow; the principles and
various spatial phase-unwrapping algorithms have been
summarized in [1]. Among those spatial phase-unwrapping
algorithms, the popular ones are reliability-guided phase-
unwrapping algorithms since they tend to be robust. Different
reliability-guided phase-unwrapping algorithms have been re-
viewed in [2]. Regardless the robustness of any spatial
phase-unwrapping algorithms, they typically only generate a
relative phase map that is relative to a point for each connected
component. Therefore, 3D reconstructed shape using a spatial
phase-unwrapping algorithm usually only provides relative

geometry to that point instead of absolute geometry.
Furthermore, most spatial phase-unwrapping algorithms fail
if abrupt surface changes introduce more than 2π phase
changes from one point to the next point.

Temporal phase unwrapping, in contrast, tries to funda-
mentally eliminate the problem of spatial phase unwrapping
by capturing more images. And one of the popular methods
is to use multifrequency (or wavelength) phase-shifting tech-
niques [3–5], where fringe patterns with different fringe periods
are used to generate equivalent phase map, ϕeq. If the equiv-
alent phase map ranging from −π to π covers the whole range of
the surface, no phase unwrapping is necessary and thus ϕeq can
be regarded as the unwrapped phase, or Φeq � ϕeq. Φeq can
then be used to determine the fringe order for each point
on the high-frequency phase for temporal phase unwrapping.

Multifrequency phase-unwrapping algorithms were devel-
oped for laser interferometry systems. Due to the flexibility
of digital fringe projection (DFP) techniques, more temporal
phase-unwrapping algorithms have been developed, including
gray-coding plus phase-shifting methods [6,7], spatial coding
plus phase-shifting methods [8], and phase-coding plus
phase-shifting methods [9–11]. Compared to the two-fre-
quency phase-shifting based temporal phase-unwrapping
method, the gray-coding methods typically require more than
three additional binary patterns to determine fringe orders. The
method of spatial coding requires the knowledge of neighbor-
hood pixel information, and could fail if the surface is not lo-
cally smooth. Phase-coding methods only need three additional
fringe patterns, yet it is difficult to differentiate the encoded
fringe orders if the noise is large, which is the same problem
as conventional two-frequency phase-shifting methods.
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It is desirable for high-speed applications to use fewer fringe
patterns to reconstruct one 3D frame, and thus the two-
frequency phase-shifting algorithm is preferable. Yet, large
noise could completely fail the fringe order determination,
as thoroughly discussed by Creath [12]. Conventionally, multi-
frequency phase-shifting algorithms are often used in lieu of the
two-frequency phase-shifting algorithm for applications where
noise is severe. This paper proposes a method to enhance
the robustness of the two-frequency phase-shifting method
yet not to increase the number of patterns captured. In lieu
of using more patterns, this proposed method uses geometric
constraints of the DFP system to reduce the noise impact by
allowing the use of more than one period of equivalent phase
map to determine fringe order. Experiments demonstrated that
noise impact on phase unwrapping can be reduced by a factor
of 4 or even higher.

Section 2 explains the principles of the proposed method to
enhance the two-frequency phase-shifting algorithm by using
minimum phase. Section 3 shows some simulation results to
validate the proposed method. Section 4 presents experimental
results to further validate the proposed method. Lastly,
Section 5 summarizes the paper.

2. PRINCIPLE

This section thoroughly explains the principle of the proposed
two-frequency phase-shifting method. Specifically, we will
present the basics of the two-frequency phase-shifting algo-
rithm, detail the minimum phase generation using geometric
constraints of the calibrated DFP system, and explain how to
use the minimum phase to enhance the two-frequency
phase-shifting method.

A. Two-Frequency Phase-Shifting Algorithm
As aforementioned, phase-shifting algorithms are extensively
used in optical metrology. Over the years, numerous phase-
shifting algorithms have been developed including three-step,
four-step, and least-squares [13]. For high-speed applications, a
three-step phase-shifting algorithm is desirable since it uses the
minimum number of patterns to recover phase. For a three-step
phase-shifting algorithm with equal phase shifts, three fringe
images can be mathematically described as

I1�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ − 2π∕3�; (1)

I 2�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ�; (2)

I 3�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ� 2π∕3�; (3)

where I 0�x; y� is the average intensity, I 0 0�x; y� is intensity
modulation, and ϕ is the phase to be solved for. Solving
Eqs. (1)–(3) simultaneously leads to

ϕ�x; y� � tan−1
� ffiffiffi

3
p �I 1 − I 3�
2I 2 − I 1 − I 3

�
: (4)

The phase obtained from Eq. (4) ranges from −π to π with
2π discontinuities, and this phase is called the wrapped phase.
The process of removing 2π discontinuities to obtain a conti-
nuous phase map is called phase unwrapping. As discussed in

Section 1, there are two types of phase-unwrapping methods:
spatial and temporal, with spatial algorithms being limited to
smooth and continuous phase reconstruction and temporal
algorithms being more general but requiring additional
information.

One of the temporal phase-unwrapping methods is to use
multifrequency phase-shifted fringe patterns, where fringe pat-
terns with different fringe periods are used to generate an equiv-
alent phase map, ϕeq. If the equivalent phase map ranges
from −π to π for the whole surface, no phase unwrapping is
necessary. Therefore, ϕeq can be regarded as unwrapped phase
Φeq � ϕeq. Φeq can be used to determine fringe order for each
point on the high-frequency phase for temporal phase unwrap-
ping. For high-speed measurement, a two-frequency phase-
shifting algorithm is preferable comparing to three- or more-
frequency phase-shifting algorithms since it uses fewer images
for 3D reconstruction.

From two-frequency phase-shifted fringe patterns, one can
obtain two wrapped phase maps ϕ1�x; y� and ϕ2�x; y�. The
equivalent phase map can be computed as

ϕeq�x; y� � ϕ1�x; y� − ϕ2�x; y�mod 2π; (5)

where mod is the modulus operation. If the equivalent phase,
ϕeq, does not have any 2π discontinuities, it can be regarded as
unwrapped phase Φeq and be used to unwrap ϕ1�x; y� and
ϕ2�x; y� pixel by pixel.

For a DFP system, the frequency of a fringe pattern is
actually defined as 1∕T , where T is fringe period in pixel.
If the fringe periods used for a two-frequency phase-shifting
algorithm are T 1 and T 2, it is straightforward to prove that
the equivalent fringe period to generate the equivalent phase is

T eq � T 1T 2

T 2 − T 1 ; (6)

assuming T 2 > T 1.
Therefore, the condition to use a two-frequency phase-shift-

ing algorithm for temporal phase unwrapping is that T eq is the
whole projection range. In such a case, the fringe order for
high-frequency 1∕T 1 can be determined by

K �x; y� � Round

�
ϕeq�x; y� T eq

T 1 − ϕ1�x; y�
2π

�
; (7)

to temporally unwrap ϕ1�x; y� by
Φ1�x; y� � ϕ1�x; y� � K �x; y� × 2π: (8)

Here Round�� is to round a floating point number to its closest
integer number, and Φ1�x; y� is the unwrapped phase
of ϕ1�x; y�.

The two-frequency phase-unwrapping algorithm discussed
above works in principle, yet has two major limitations:

1. Limited frequency choice. It is well known that using
higher-frequency (or smaller T ) fringe patterns can generate
accurate phase, and thus it is preferable to use smaller T for
higher accuracy 3D shape measurement. However, the two-fre-
quency phase-shifting algorithm limits its choices. For example,
if a three-step phase-shifting algorithm is used, it is preferable to
use a fringe period of n × 3 pixels (here n is an integer) to avoid
phase shift error. Based on this constraint, in order to generate
T eq � 1024 pixels, the smallest fringe periods to use are
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T 1 � 54 pixels and T 2 � 57 pixels, which are very large com-
pared to the desired value of around 30 pixels.

2. Large noise impact. From Eq. (7), one may notice that
the equivalent phase ϕeq is scaled up by a scaling factor of
T eq∕T 1 to determine fringe order K �x; y�. It is important
to note that the noise in ϕeq is also proportionally scaled up
by a factor of T eq∕T 1. This scaled noise could lead to incor-
rectly determine fringe order, K �x; y�. For example, if the phase
noise is 0.2 rad, a scaling factor of 18 could lead to incorrect
fringe orders.

Due to the flexibility of digital fringe pattern generation, the
DFP methods mitigate the former limitation by directly
projecting the equivalent frequency fringe patterns such that
one single fringe covers the whole projection range (e.g.,
T 2 � T eq � 1024 pixels for a projector resolution of
1024 × 768) and then use ϕ2�x; y� � ϕeq�x; y� to unwrap
ϕ1. By doing so, it allows the use of higher-frequency fringe
patterns (e.g., T 1 � 30 pixels). The consequence of using such
an approach is that the noise problem could be amplified since
the scaling factor T eq∕T 1 could be even larger. For example, if
T 2 � 1024 and T 1 � 30 pixels, the scaling factor is 34; and
the phase noise larger than 0.1 rad for a point can lead to a
wrong fringe order. As a result, the two-frequency phase-
shifting method is not very appealing to practical applications,
and three- or more frequency phase-shifting algorithms are
more extensively used.

One may realize that the fundamental problem associated
with the aforementioned two-frequency phase-shifting algo-
rithm is its requirement that T eq is large enough to cover
the whole measurement range. If this strong requirement is re-
laxed, the two-frequency phase-shifting algorithms could be
substantially enhanced.

In this research, we propose to use the geometric constraints
of DFP systems to improve the performance of two-frequency
phase-shifting algorithms. To understand such an approach, we
will introduce the mathematical model of a DFP system and
how to use such a model to set up constraints for temporal
phase unwrapping such as smaller T eq can be used.

B. DFP System Model
In this research, we use a well-known pinhole model to describe
an imaging lens. This model essentially describes the relation-
ship between 3D world coordinates �xw; yw; zw� and its projec-
tion onto 2D imaging coordinates �u; v�. The linear pinhole
model can be mathematically described as

s

" u
v
1

#
� A�R t �

2
664
xw

yw

zw

1

3
775; (9)

where

R �
2
4 r11 r12 r13
r21 r22 r23
r31 r32 r33

3
5; (10)

t �
2
4 t1
t2
t3

3
5; (11)

A �
2
4 f u γ u0

0 f v v0
0 0 1

3
5; (12)

respectively, represent the rotation R and the translation t from
the world coordinate system to the lens coordinate system, and
the projection A from the lens coordinate system to the 2D
image coordinate system. s is a scaling factor; f u and f v are
the effective focal lengths; γ is the skew factor of u and v axes,
and for research-grade cameras γ � 0; and �u0; v0� is the
principle point, the intersection of the optical axis with the
imaging plane.

For simplicity, let us define the projection matrix P as

P � A�R t � �
2
4 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3
5; (13)

which can be estimated from calibration.
The same lens model is applicable to both the projector and

the camera, and the only difference is that the projector is the
inverse of a camera. Therefore, if the camera and the projector
are calibrated under the same world coordinate system, we have

sp� up vp 1 �t � Pp� xw yw zw 1 �t ; (14)

sc � uc vc 1 �t � Pc� xw yw zw 1 �t : (15)

Here superscript p represents the projector, superscript c
presents the camera, and superscript t represents the transpose
of a matrix. After calibration, Pp and Pc are known.

C. Temporal Unwrapping Use Minimum/Maximum
Phase Maps
For any given calibrated DFP system, the calibration volume is
well known, which defines minimum z, zmin, and maximum z,
zmax. Practically, zmin and zmax can be defined as the interested
region of z range within the calibration volume.

From Eq. (15), if zw is known, for any given pixel �uc; vc�,
coordinates xw and yw can be uniquely solved. Once
�xw; yw; zw� coordinates of a given point �uc; vc� are known,
its corresponding point on the projector �up; vp� can be com-
puted using Eq. (14). Because the phase on the projector is well
defined for any given pixel (even multiple fringe periods), the
camera phase map can be built for a given zw value, and such a
phase map does not have any 2π ambiguities. Therefore we
can create two phase maps Φmin and Φmax that respectively
correspond to zmin and zmax.

Figure 1 illustrates the basic concepts of using minimum
phase, Φmin, to correct 2π discontinuities. Assume the region
on the projector that a camera captures at z � zmin is shown in
the red dashed window, the phase directly obtained from three-
phase-shifted fringe patterns has one 2π jump, ϕ1, as shown in
Fig. 1(a). However, since such a phase is well defined on the
projector, the Φmin can be obtained, which is a continuous
phase on the projector space, as shown in Fig. 1(b). The cross
sections of the phase maps are shown in Fig. 1(c). This example
shows that if the wrapped phase is below Φmin, 2π should be
added to the phase to unwrap it. One may also notice that even
if the phase is obtained at zmax, the condition of adding 2π to
ϕ2 is still the same: when ϕ2 < Φmin.

Research Article Vol. 55, No. 16 / June 1 2016 / Applied Optics 4397



The above example demonstrates that the equivalent phase
ϕeq does not have to be continuous across the whole area: it is
fine to have one 2π jump. This indicates that the scaling factor
T eq∕T 1 can be half of the required value, leading to reducing
the noise impact by a factor of 2.

The question is: can we increase the number of 2π jumps
and still properly find them using the geometric constraints (or
Φmin) to remove them? Figure 2 illustrates the cases for two and
three jumps. Figure 2(a) shows a case where there are two 2π
jump locations, A and B. Between A and B, the phase differ-
ence Φmin − ϕ1 is larger than 0 but less than 2π; but on the
right of Point B, the phase difference is larger than 2π.
Therefore, 2π should be added to unwrap the point between
A and B, and 4π should be added on the right side of Point B.

For cases with three jumps shown in Fig. 2(b), if
0 < Φmin − ϕ1 < 2π, 2π (i.e., between A and B) should be
added; 2π < Φmin − ϕ1 < 4π (i.e., between B and C), 4π
should be added; and 4π < Φmin − ϕ1 < 6π (i.e., beyond
C), 6π should be added. A similar approach can be used to
determine the number of 2π to be added for the equiva-
lent phase.

As aforementioned, the use of 2π jumps for the equivalent
phase for temporal phase unwrapping is to reduce the scaling
factor. If N number of jumps are used, the scaling factor
T eq∕T 1 can be reduced by a factor of N � 1, and thus reduce
the noise impact to 1∕�N � 1� times.

3. SIMULATIONS

Simulations were performed to demonstrate the viability of the
proposed method to improve the two-frequency phase-shifting
algorithm. Figure 3 shows an example that fails standard two-
frequency phase unwrapping when the high-frequency phase
has a fringe period of T 1 � 30 pixels and the low-frequency
phase has a fringe period of T 2 � 1024 pixels. In this simu-
lation, Gaussian noise was added such that the signal-to-noise
ratio (SNR) is 25. Figure 3(a) shows three phase-shifted
high-frequency fringe patterns, and Fig. 3(b) shows a close-
up view of the fringe patterns. As can be seen, the fringe
patterns are noisy. Figure 3(c) shows the phase can be com-
puted using Eq. (4), and its zoom-in view is shown in
Fig. 3(d). The low-frequency fringe patterns and the phase
are respectively shown in Figs. 3(e) and 3(f ). Directly applying

Fig. 1. Conceptual idea of removing 2π jumps of low-frequency
phase map by using the minimum phase map determined from geo-
metric constraints. (a) Windowed regions show phase maps acquired
by the camera at different depths z: red dashed window shows at zmin

and solid blue window shows at zmax; (b) corresponding Φmin and
Φmax defined on the projector; (c) cross sections of Φmin and Φmax

and the wrapped phase maps with 2π discontinuities.

Fig. 2. Determination of number of 2π to be added by using Φmin

when low-frequency phase has multiple 2π jumps. (a) Example of hav-
ing two 2π jumps; (b) example of having three 2π jumps.

Fig. 3. Simulation result of standard two-frequency phase unwrapping when the SNR is not high (for this example, SNR � 25). (a) Three high-
frequency phase-shifted fringe patterns with phase shifts of 2π∕3 and fringe period of T � 30 pixels; (b) zoom-in view of fringe patterns shown in
(a); (c) wrapped phase of the high-frequency fringe patterns; (d) zoom-in view of the high-frequency phase; (e) low-frequency fringe patterns; (f )
low-frequency phase; (g) unwrapped high-frequency phase; (h) zoom-in-view of the unwrapped high-frequency phase.
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the conventional two-frequency phase unwrapping will gener-
ate the phase map shown in Fig. 3(g). Clearly, the phase is not
smooth with many points being incorrectly unwrapped.
Figure 3(h) shows a closed-up view of the unwrapped phase,
showing that the incorrectly unwrapped phase points cannot
be filtered out by filters since there are many successive points.

We then added one jump to the low-frequency fringe pat-
terns and use the geometric constraints to remove 2π jumps of
the low-frequency phase, as shown in Fig. 4(a). By using the
unwrapped phase with one jump, the high-frequency phase
shown in Fig. 3(c) can be properly unwrapped, as shown in
Fig. 4(b).

4. EXPERIMENT

To verify the performance of the proposed method, we devel-
oped a DFP system that includes a complementary metal-oxide
semiconductor camera (Model: Vision Research Phantom
V9.1), a digital light processing projector (Model: Texas
Instruments LightCrafter 4500), and a microprocessor
(Model: Arduino Uno). The camera is attached with a
24 mm focal length lens (Model: SIGMA 24 mm f/1.8 EX
DG). The camera resolution selected was 1024 × 1024, and
the image data was transferred to a computer via an ethernet
cable. The resolution of the projector is 912 × 1140. The
microprocessor was used to synchronize the camera with the
projector. The system was calibrated using the method dis-
cussed in [14]. For all experiments presented in this paper, hori-
zontal fringe patterns are generated by computer and projected
by the projector. Since the projector’s vertical resolution is 1140
pixels, the equivalent fringe period has to be T eq � 1140 pixels
in order to temporally unwrap high-frequency phase if a
conventional two-frequency phase-shifting algorithm is used.

We experimentally verified the performance of the en-
hanced two-frequency phase-shifting method. We first test
the case when fringe patterns are of high quality (i.e., high
SNR). Figure 5(a) shows the photograph of the statue we mea-
sured. It is important to note that we did not show the full
resolution image of 1024 × 1024 because the rest areas are sim-
ply the background; and we crop the image the same way for all
images for clearer visualization. In this experiment, the high-
frequency fringe patterns use fringe periods of T 1 � 30 pixels.
One of the high-frequency fringe patterns and the wrapped
phase map are, respectively, shown in Figs. 5(b) and 5(c).
If a conventional two-frequency phase-shifting algorithm is

applied, the low-frequency fringe patterns have a fringe period
of T 2 � 1140 pixels, and the corresponding wrapped phase is
shown in Fig. 5(d). Applying a conventional two-frequency
phase-shifting algorithm results in the unwrapped phase
shown in Fig. 5(e). As one might see, the unwrapped phase

Fig. 4. Example of using one jump on the low-frequency phase
and geometric constraints to unwrap the high-frequency phase.
(a) Original low frequency phase ϕ2, the phase at zmin from geometric
constraints Φmin, and the unwrapped low-frequency phaseΦ2; (b) un-
wrapped high-frequency phase Φ1.

Fig. 5. Comparison of the conventional two-frequency phase-shift-
ing algorithm and the proposed enhanced algorithm when the fringe
patterns are of high quality. (a) Photograph of the measured statue;
(b) one of the captured high-frequency fringe patterns; (c) wrapped
phase from high-frequency fringe patterns; (d) wrapped phase from
low-frequency fringe patterns with fringe period of 1140 pixels; (e) un-
wrapped phase using the conventional two-frequency phase-shifting
algorithm; (f ) wrapped phase from low-frequency fringe patterns with
fringe period of 380 pixels; (g) minimum wrapped phaseΦmin; (h) un-
wrapped phase using the proposed method; (i) 3D result using the
conventional two-frequency phase-shifting method; (j) 3D result using
the proposed two-frequency phase-shifting method.

Fig. 6. Close-up views of the results from Fig. 5 around the eye
region. (a) Zoom-in view of the unwrapped phase map shown in
Fig. 5(e); (b) zoom-in view of the unwrapped phase map shown in
Fig. 5(h); (c) zoom-in view of 3D result shown in Fig. 5(i);
(d) zoom-in view of 3D result shown in Fig. 5(j).
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is not smooth on the neck and around the right eye
regions, indicating some areas of the phase are not correctly
unwrapped.

In contrast, if the proposed method is used, the low-fre-
quency fringe pattern can have multiple fringes. For example,
we can use a fringe period of T 2 � 380 pixels to reduce the
noise impact. Figure 5(f ) shows the wrapped phase map.
The minimum phase map determined from geometric con-
straints of the corresponding region is shown in Fig. 5(g).
Figure 5(h) shows the unwrapped phase map using the
proposed method. This phase map is smooth overall. Once
the unwrapped phase map is obtained, 3D shape can be recon-
structed. Figures 5(i) and 5(j) respectively show 3D
reconstruction using the conventional two-frequency phase-
shifting algorithm and that using our proposed algorithm.

To better visualize differences, Fig. 6 shows the closed-up
view of the unwrapped phase maps and the corresponding
3D reconstructions. The 3D result from our proposed method
does not have spiky noisy points that are apparent on the result
from the conventional algorithm. These experiments clearly
demonstrated that even for high-quality fringe patterns, the
conventional two-frequency phase-shifting algorithm could still
fail to correctly unwrap the phase due to the large scaling factor
T eq∕T 1. In comparison, the proposed method does not have
such a problem.

To further verify the performance of the proposed method,
we measured the same statue with low fringe quality to emulate
low SNR cases. Figure 7(a) shows one of the capture high-fre-
quency fringe patterns; clearly the pattern has low SNR.
Figure 7(b) shows 3D results from the conventional two-fre-
quency phase-shifting algorithm. The whole surface is poorly
measured with spiky points present everywhere, as anticipated.
In contrast, if we use the proposed method to perform

measurement under exactly the same settings, the 3D results
are shown in Figs. 7(c)–7(f ) with different numbers of jumps
ranging from 1 to 4. To better visualize the differences, we
showed zoom-in views of the overhead area for all these results,
as shown in Figs. 7(g)–7(k). They all greatly reduced incorrectly
unwrapped points with more jumps providing better results.
However, one may notice that, for such a low SNR case, using
one jump (or two periods for low-frequency fringe patterns) is
not sufficient, but using five periods of fringe patterns can al-
most eliminate all incorrectly unwrapped points. It should be
noted that by using five periods of fringe patterns, the proposed
method reduces the noise impact by a factor of 5. These experi-
ments further demonstrated that the proposed two-frequency
phase-shifting algorithm can indeed greatly enhance the perfor-
mance of the conventional two-frequency phase-shifting
algorithm by using the minimum phase.

5. SUMMARY

This paper has presented a method to substantially improve the
conventional two-frequency phase-shifting algorithm by using
geometric constraints of the DFP system. We demonstrated
that the noise impact can be substantially reduced by allowing
the use of more than one period of equivalent phase map to
determine fringe order. Both simulation and experiments suc-
cessfully verified the drastic improvements of the proposed
method over the conventional two-frequency phase-shifting
algorithm. Since the proposed method does not require more
fringe patterns to be captured, it has the advantage of measure-
ment speeds for high-speed applications.

Funding. Directorate for Engineering (ENG) (100000084,
CMMI-1521048).

Fig. 7. Comparison of the conventional two-frequency phase-shifting algorithm and the proposed enhanced algorithm when the fringe patterns
have low SNR. (a) One of the captured high-frequency fringe patterns; (b) 3D result using the conventional two-frequency phase-shifting method;
(c)–(f ) 3D results using the proposed two-frequency phase-shifting method when low-frequency fringe patterns use two (c), three (d), four (e), and
five (f ) periods of sinusoidal fringes, respectively; (g)–(k) zoom-in views of the same regions for results shown in (b)–(f ).
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