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ABSTRACT: Due to historical legal challenges, there is a driving force for the development of objective methods of forensic toolmark iden-
tification. This study utilizes an algorithm to separate matching and nonmatching shear cut toolmarks created using fifty sequentially manufac-
tured pliers. Unlike previously analyzed striated screwdriver marks, shear cut marks contain discontinuous groups of striations, posing a more
difficult test of algorithm applicability. The algorithm compares correlation between optical 3D toolmark topography data, producing a Wilco-
xon rank sum test statistic. Relative magnitude of this metric separates the matching and nonmatching toolmarks. Results show a high degree
of statistical separation between matching and nonmatching distributions. Further separation is achieved with optimized input parameters and
implementation of a “leash” preventing a previous source of outliers—however complete statistical separation was not achieved. This paper rep-
resents further development of objective methods of toolmark identification and further validation of the assumption that toolmarks are identifi-
ably unique.
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In recent history, the legitimacy of scientific testimony has
been questioned in several court cases—specifically Daubert
v. Merrell Dow Pharmaceuticals, Inc. This challenge has had
profound implications in the field of firearm and toolmark exam-
ination and resulted in many studies conducted to validate the
practice of comparative forensic examination. The primary vali-
dation needed is the assumption of toolmark examination—every
tool has its own unique surface that will leave a unique mark.
Screwdriver marks are among the most studied due to their

uniform and continuous striae. They have been previously char-
acterized using stylus profilometry and confocal microscopy in
various attempts designed for the identification of matching and/
or nonmatching toolmarks (1–4). The results from these types of
studies typically show that striae may be successfully objectively
compared using a computer algorithm with relatively high accu-
racy. For example, in a previous study by the authors using a
statistical algorithm, marks from fifty sequentially manufactured
screwdriver tips were successfully separated between matching
and nonmatching pairs to a reasonable degree of accuracy (2).
Studies of other tools that produce striations have also been

conducted. Pliers are another type of tool that can create a vari-

ety of marks. Cassidy, one of the first to study sequentially man-
ufactured pliers (5), found toolmarks produced by plier teeth—
such as when a burglar would twist off a door knob to enter a
building—to be unique because the broaching process used to
manufacture the plier teeth was performed in a direction perpen-
dicular to the striae it would create. This study established the
uniqueness of marks created by plier teeth; however the analysis
was based on logical reasoning and not backed by mathematical
analysis. More recently Bachrach et al. (4) studied tongue and
groove pliers marks created on brass pipe, galvanized steel pipe,
and lead rope. Test marks were made using a singular tooth
from the pliers to create a striated mark. This study found that
marks could be compared when made on different material but
with less accuracy than marks made on the same material.
Petraco et al. (3) has studied striated chisel marks. The test

marks created by the chisels were striated but discontinuous,
resulting in patches of striations. Unfortunately, the nature of the
created marks was too difficult for the employed software to
analyze.
While regularly striated marks have received the majority of

research attention, the extension of mathematically based studies
to other forms of toolmarks is also highly desirable. The results
discussed in this paper investigate the applicability of the algo-
rithm employed in (2) to quasi-striated marks created by slip-joint
pliers. This type of plier mark was chosen for two reasons. First,
the type of mark produced, termed a shear cut, presents a more dif-
ficult pattern for identification than a fully striated mark. Second,
pliers such as these and other tools that produce shear cut marks
are routinely used by criminals to steal copper from construction
sites. A July 30, 2013 report on CNBC stated that copper theft
in the U.S.A. has become a 1 billion dollar industry (http://
www.cnbc.com/id/100917758). Thus, objective examination and
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identification of shear cut toolmarks are becoming increasingly
important in law enforcement.
Results from an initial investigation on slip-joint pliers were

conducted by Grieve (6). These results having shown promise,
this paper presents results on shear cut marks made by 50
sequentially manufactured slip-joint pliers. While the initial
results revealed the algorithm could correctly separate a large
majority of matching and nonmatching pairs, some algorithm
parameter values and options that work well for regularly stri-
ated marks are not optimal in the present setting. Two distinct
deficiencies hindering algorithm operation were noted. The goal
of this study was to investigate optimization of the parameters
best suited for analysis of marks described as quasi-striated.
The first deficiency addressed involved parameters that affect

the degree of statistical separation in the results. While separa-
tion was seen using the parameters employed for fully striated
markings, better results could be obtained by changing the oper-
ational parameters of the algorithm. The second deficiency noted
was concerning what the authors have termed the “Opposite End
Problem”. This problem manifests itself when, in a small number
of cases, the algorithm declares a “match” from two data sets
which are known to be nonmatching. Observation of the raw
data files shows that the opposite ends of the two sets of tool-
marks being compared are identified as the matching region.
Such a match is physically impossible and results due to the
inability of the algorithm to successfully complete the validation
procedure, which is integral to the operation of the algorithm,
when confronted with similar topography at opposite ends of the
data sets. This possibility was first noted during research on reg-
ularly striated screwdriver toolmarks (1,2).
This study involves complete analysis of fifty pliers using var-

ious parameter values and an option that accounts for the
“Opposite End” problem. The results of the study, including a
brief description of the statistical algorithm, are discussed below.

Experimental Methodology

Fifty sequentially manufactured slip-joint pliers were obtained
from Wilde Tool Co., Inc. It is common knowledge within the
field of study that the manufacturing process significantly affects
the toolmarks that are created (7,8). Thus, although the manufac-
turing process and test sample creation were previously
described (6), it deserves restatement.
The pliers start as pieces of steel that are hot forged into half

blanks. Each half blank was then cold forged once again using
the same die for every piece. After forging, the first difference
between half-pairs was introduced. Fifty halves were punched to
create a small hole, while the other fifty halves received a dou-
ble-hole punch—allowing future users to better hold a wider
dimension range of objects. The gripping teeth and shear surface
were next created with a broaching process. Two broaching
machines were used in the production of the pliers. Plier halves
with the double-hole punch went to one machine, while pliers
with a single-hole punch went to the other. During this separa-
tion time, the manufacturer stamped the numbers 1–50 on the
plier halves, so the correct sequence could be ensured. The
broaching process on the shear surface created the characteristic
nature that is of interest for this study.
After broaching, both halves of each plier were given the

same heat treatment and shot peened to strengthen the material
and increase the surface hardness. The flat side regions were
next polished, and the double-hole punch half was branded with
the company logo. The plier half with the double-hole punch

and company logo was labeled as the “B” side for every plier
pair, and the other side “A”. An overview of pliers from unfin-
ished to finished states is shown in Fig. 1.
Wire test samples were created using bolt cutters to cut 2”

samples from wire spools. The bolt cut ends were marked using
a permanent marker so they could not be confused with the plier
shear cut surfaces. Diameters of the wire used were 0.1620” for
the copper and 0.1875” for the lead. Test marks were made by
shear cutting the copper and lead wire. Shear cutters are defined
by the Association of Firearm and Toolmark Examiners as
“opposed jawed cutters whose cutting blades are offset to pass
by each other in the cutting process” (9). As the shear face was
used on the pliers to make the samples, by definition the created
marks are shear cutting marks. Figure 2 pictorially shows the

FIG. 1––Slip-joint pliers in finished and unfinished states. The “A” and
“B” sides were labeled as shown for every plier, with “B” appearing on the
branded side.

FIG. 2––Shows the exact location on the pliers used to shear cut wire
samples.
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exact location used on the pliers to create the toolmarks. Each
shear cut was made by placing the sample between the shear
surfaces—with the “B” surface always facing downward—mark-
ing the sides “A” and “B” corresponding to which plier shear
surface would be acting on that section of the wire. Thus, two
samples, one “A” and one “B”, were created with each shear
cut. The samples were shear cut alternating between copper and
lead until ten of each sample type were created. This resulted in
2000 total samples: 1000 samples for both copper and lead with
half of each coming from each side of the pliers. For consis-
tency, every sample was made by the author who is a retired
forensic examiner.
When the wire is mechanically separated, the two surfaces of

the shear edges move past each other. The resultant action is
therefore a combination of both cutting the surfaces and a shear-
ing action of the edges as they move through the material. The
result is two surfaces being created on each half of the separated
wire sample, comprising both shear cut and impression mark-
ings, roughly at 90° to each other with both being �45° to the
long axis of the wire. Only the shear cut surfaces on the “A”
and “B” sides of the sample were scanned and analyzed. A sche-
matic showing the process is shown in Fig. 3.
The scope of this study included only the copper samples,

leading to a total sample size of 1000. To obtain the surface data
from the samples, each piece was scanned using an Infinite
Focus Microsope G3 (Alicona). Scans were completed at
109 magnification with a two micron vertical resolution. An
example image obtained using the IFM is shown in Fig. 4.
Similar to the initial study (6), the data were taken from two
locations. The long edge (solid line in Fig. 4) is near where the
shear cut began and the short edge (dashed line) is nearer where
the shear cut ended. Striae near the beginning of the shear cut
are longer and more regular than striae near the end of the shear
cut, so it is important to observe the results at both locations. It
is clear from viewing the figure that the pliers created a quasi-
striated surface—a surface consisting of groups of parallel striae
that are not continuous along the length of the mark.
An example of the scanned data from the infinite focus micro-

scope prior to and post noise reduction is shown in Fig. 5. The
cut surface is embedded in irregular spiky noise, which arises
from the sample’s edge and the background generated when
making an IFM scan. This spiky noise must be removed so that
it does not interfere with the statistical analysis. To remove this
noise, the authors used a combination of automated cleaning
algorithms and manual cleaning. The automated cleaning

algorithms are described in more detail in (10), but a brief
description of these follows. First, the 2D image texture and
quality map from the IFM operating software were used to
remove those points that were too dark or had a poor quality
value. These points cause spikes in the visual output. Next, a
seventh-order polynomial fitting was generated for each row of
the data. For each point, the discrepancy between the measured
and predicted depth was computed, and points with a discrep-
ancy of 100 microns or greater were discarded. This process was
repeated for the columns. Finally, small holes (<20 pixels in
diameter) were filled through linear interpolation. To remove

FIG. 3––The left photograph shows an example wire sample mid-shear cut, revealing how the toolmark gains its angle. The right photograph shows the “B”
side sample, also revealing why the created mark is not completely circular. A similar “A” side sample also exists but is not shown in the right photograph.

FIG. 4––Example scan of a sheared copper wire. The dashed line is the
short edge while the solid line is referred to as the long edge.

FIG. 5––Uncleaned data are on the left while the detrended and cleaned
data are shown on the right.
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any remaining spikes and the sides of the cut wire, the authors
used a visual painting program to paint over noisy regions. The
computer algorithm then interpreted the painted areas as data
points to exclude from the analysis.
As it is impossible to scan every sample at precisely the same

angle relative to the equipment, it is necessary to correct for this
sample angle using a process called detrending. To detrend the
data, linear least squares were used to fit a plane to the data. To
make this process faster and less sensitive to noise, only 80
points were used in the plane fitting. These points were selected
in an “X” pattern that evenly covered the majority of the sample
surface. Once the plane fitting was obtained, the plane was
subtracted from the surface data to remove the global surface
angle.
When employed in the initial study (6), the comparative algo-

rithm used was discovered to have the same limitation that pre-
vented it from operating effectively in certain instances in (2).
For a more complete discussion of the algorithm, the reader is
referred to (2). Briefly, the algorithm works in two major steps,
the optimization and validation steps. An iterative “search” win-
dow of user-determined size (in pixels) is held stationary on
Trace 1, while the correlation to a same size window is calcu-
lated over the entirety of Trace 2. The window is then shifted
one pixel over on Trace 1 and the process is repeated. This is
performed until the two regions of best correlation are found.
Figure 6 schematically shows this process.
Once the region of highest correlation is found during the

optimization step, two shifts are applied and compared—random
shifts and rigid shifts. This is the validation step. The size of the
“validation” windows that are shifted are user determined. Dur-
ing the rigid shift step, a user-defined window is moved a set
distance from the best correlation window on each trace and the
correlation at that point is calculated. For the random shift step,
the same size window is moved randomly calculated distances
from the best correlation window for the two comparison scans
and the correlation is again calculated. An example of rigid and
random shifts is shown in Fig. 7. The number of rigid and ran-
dom shifts employed is also user defined; for the purposes of
this study, the number was set at 50. Comparison of the rigid
shift correlation values to the random shift correlation values by
the algorithm produces the statistical values to be mentioned.
In the initial investigation (6), outlier data points were

observed to stem from the algorithm misidentifying the opposite
ends of marks as a positive match. One example of this is shown
in Fig. 8. The solid line orthogonal to the shear cutting direction
is the location the profiles were compared along and the dashed
lines represent coordinate axes.
As Fig. 8 illustrates, through random chance, opposite ends of

a mark are occasionally selected as having the regions of highest
correlation between marks for the selected window size. Clearly,

given that the shape of the shear cut wire specifies a definitive
left and right side of the shear cut, it is physically impossible for
this pair of windows to correspond. In investigating the cause
for the false match, it was discovered that in cases where the
region of highest correlation between two marks occurs at the
end of the scan profile, the validation routine used by the algo-
rithm to ascertain the quality of the comparison cannot function
properly. When a “match” is found near the end of a scan pro-
file, the space needed to successfully accomplish the rigid shifts
and complete the validation step does not exist. This results in
an incorrect validation, and a “match” being declared when in
fact a nonmatch may exist.
To address this problem, a “leash” was applied to the search

window of the original algorithm (2) during the optimization
step, the purpose being to limit the comparison distance between
profiles. In this case, the comparative correlation is no longer
calculated over the entirety of Trace 2 for each iteration of the
search window, but only to a certain percentage of the entire dis-
tance. Figure 9 shows schematically an example of how the
leash limits the search range for the region of highest correlation.
Leashing the search window makes it impossible for the algo-
rithm to identify regions far from each other on the real surface
as matching. Where contextual information exists concerning the
shape of a mark (such as exists for a distinctive mark like those
used) this in no way affects the objective performance of the
algorithm.
The current version of the leash is set as a percentage of the

total length of the trace. The leash was set at 80% for this analy-
sis. Figure 10 shows the same plier comparison as Fig. 8 but
after the leash was implemented. The algorithm clearly finds a
reasonable location for best correlation but now computes a low
value for the Wilcoxon rank Sum test statistic (T1), indicating a
nonmatching pair.
A Wilcoxon rank Sum test statistic (centered and scaled to

have a nominal SD 1) is calculated during the validation step
and is what is returned by the algorithm. The T1 statistic is
determined by comparing the results of rigid and random shifts.
Matching marks should have relatively high correlation after a
rigid shift if they are truly similar and lower correlations during
random shifts. The magnitude of the T1 statistic is affected by
how much the rigid and random shifts differ. High rigid shift
correlation and low random shift correlation would result in a
high T1 value—indicating a matching pair—while the opposite
scenario would result in a low or negative T1 value indicating a
nonmatching pair. The reason many shifts are applied is because
random chance may allow a few random shift windows to have
a high correlation. As more shifts are applied to a matching pair,
the probability of observing a small T1 statistic will decrease.
As more shifts are applied to a nonmatching pair, the expectedFIG. 6––Generalized example of the iterative optimization step.

FIG. 7––A rigid shift is shown on the left and a random shift is shown on
the right.
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trend would be average rigid and random shift correlations that
become closer in value—resulting in a T1 statistic value near
zero.
Currently, there is not a definitive T1 value that perfectly

defines when a match or nonmatch pair has been confirmed.
This is due to the nature of the data—the comparisons are not
independent events. Even if a definitive value was created for
this study, it would likely not be applicable to other toolmark
comparisons due to inherent differences in toolmark variability
between different tools. Statements of correct or incorrect “iden-
tification” in this paper are qualitative—when the matching pairs
consistently have significantly larger T1 values than nonmatch-
ing pairs, it is fair to state that the algorithm is correctly separat-
ing (“identifying”) the majority of the pairs. A more advanced
statistical argument is necessary to truly state whether an indi-
vidual comparison was correctly identified.

Results

The data from the fifty sequentially manufactured pliers were
compared using three different types of comparisons resulting in
three sets of data. All three comparison types were performed
using data from both the long and short edges as defined in
Fig. 3.
Set 1: Comparing known matching pairs. Data for Set 1 were

created by comparing marks made by the same side of the same
pliers. Comparisons were made between marks 2 and 4, as well
as marks 6 and 8 for both sides of each plier. An example of the
methodology for comparisons in Set 1 is best described in a tab-
ular format; an example of the comparison order through two
pliers is shown in Table 1.
Set 2: Comparing known nonmatching pairs. Data for Set 2

were created by comparing marks made by different sides of the
same pair of pliers. This set could confirm that both sides leave
a unique mark. Comparisons were made between sides “A” and
“B” for marks 10, 12, and 14. An example of the methodology
for comparisons in Set 2 is shown in Table 2.
Set 3: Comparing known nonmatching pairs. Data for Set 3

were created by comparing marks from the same side of differ-
ent pliers. Marks 16, 18, and 20 were compared between differ-
ent pliers for both sides. An example of the methodology for
comparisons in Set 3 is shown in Table 3.
Search and validation window sizes of 200 and 100 pixels,

respectively, were used as part of the initial analysis. These win-
dow sizes had been previously used for successful matching of

FIG. 8––Example of computer algorithm false positive (T1 = 8.09). Opposite ends of the toolmark were misidentified as a positive match—indicated by the
“high” value for the T1 statistic (See text).

FIG. 9––Generalized example showing possible ranges for the iterative
search window.
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screwdriver toolmarks (2). The results for all three data sets are
shown in Fig. 11 presented as box and whisker plots. The solid
black line represents the median value of the comparisons. The

upper and lower bounds of the box represent quartiles, and the
whiskers are within one and a half times the difference of the
quartiles. Outliers are denoted by circular dots. A T1 statistic
close to zero indicates little or no correlation between the data
sets (i.e., a nonmatching pair), while a larger positive value
would indicate a correlation exists between the two data sets
being compared.
Observation of Fig. 11 shows that the algorithm performs rea-

sonably well for the quasi-striated plier marks. Both the long
and the short edge comparisons show significantly higher T1
values for the known matches of Set 1 than for the known non-
matches of Sets 2 and 3.
Results from the initial investigation that used the original

algorithm are shown in Fig. 11 for comparison. The same source
data were used in both experiments. Note that the leash included
as a fix to the opposite end problem has resulted in a substantial

FIG. 10––Plier comparison from Figure 8 after implementation of the leash. Comparison is now consistent with the expected result for nonmatching tool-
marks (T1 = 0.63).

TABLE 1––Example methodology for Set 1.

Comparison
Plier

Number Side
Mark

Number
Plier

Number Side
Mark

Number

1 1 A 2 1 A 4
2 1 A 6 1 A 8
3 1 B 2 1 B 4
4 1 B 6 1 B 8
5 2 A 2 2 A 4
6 2 A 6 2 A 8
7 2 B 2 2 B 4
8 2 B 6 2 B 8

TABLE 2––Example methodology for Set 2.

Comparison
Plier

Number Side
Mark

Number
Plier

Number Side
Mark

Number

1 1 A 10 1 B 10
2 1 A 12 1 B 12
3 1 A 14 1 B 14
4 2 A 10 2 B 10
5 2 A 12 2 B 12
6 2 A 14 2 B 14

TABLE 3––Example methodology for Set 3.

Comparison
Plier

Number Side
Mark

Number
Plier

Number Side
Mark

Number

1 1 A 16 2 A 16
2 3 A 16 4 A 16
3 1 A 18 4 A 18
4 2 A 18 3 A 18
5 1 A 20 3 A 20
6 2 A 20 4 A 20
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improvement of algorithm performance over the original version.
The median value for Set 1 has been increased from a T1 value
of c. 1.5–2 to a T1 value of 4, and even more importantly there
is now statistical separation of the quartiles for the long edge
data. Data Sets 2 and 3 are still centered approximately on zero,
and there is a net reduction in the total number of outliers.
As the quasi-striated marks produced by the plier shear cuts

are far less regular than the previous screwdriver marks studied,
experiments were conducted to determine the effect window size
(i.e., search and validation) may have on the results. The 2:1
window size ratio was maintained for this second round of
analysis with the search windows set to 1000, 500, 200, and 100
pixels with corresponding validation window sizes of 500, 250,
100, and 50 pixels. The results of these experiments for the short
and long edges are shown in Figs 12, 13, and 14. Figure 12
shows that except for the smallest window size (100–50), Set 1
always has a median value well above zero, with the median
increasing as window size increases from c. 4.0 (200–100) to
7.5 (1000–500). In contrast, the median values for Sets 2 and 3
always hover near zero as expected for nonmatching pairs,
regardless of the window size. An apparent increase in data
spread and number of outliers is also observed with increasing
window sizes. Results from both long and short edges were sim-
ilar to each other.
In some cases during the analysis, the algorithm would not

return a result for every comparison. This is because the algo-
rithm does not allow validation windows to overlap. Thus, as

larger and larger window sizes are used it becomes more likely
that the algorithm will run out of profile length, especially on
short edges with large window sizes, and not return a T1
value. For a 2:1 ratio, the algorithm did not return 6 values for
the Set 1 short edge, 9 values for the Set 2 long edge, 13 val-
ues for the Set 2 short edge, and 19 values for the Set 3 short
edge. These numbers should be compared to the total of 3965
data comparisons that did return a result for the 2:1 ratio
analysis. The algorithm returned a result more than 98% of the
time.
With a clear trend in the results due to window size, the effect

of size ratio was next analyzed using both 4:1 and 6:1 search to
validation window size ratios. Search windows were set to 800,
600, 400, and 200 pixels with corresponding validation window
sizes of 200, 150, 100, and 50 pixels used for the 4:1 ratio
experiment. Search windows were set to 750, 600, 450, and 300
pixels with corresponding validation window sizes of 125, 150,
75, and 50 pixels for the 6:1 ratio experiment. The results from
these analyses are shown in Figs 15–20 for the short and long
edges.
Observation of Figs 15 and 16 shows that the clear trend of

increasing T1 value with increasing window size observed for
the 2:1 ratio holds true for both the 4:1 and the 6:1 ratios for
Set 1 comparisons. An increasing number of outliers were also
observed with increasing window size. The median values for
the Set 1 data ratios were still qualitatively significantly above a
zero value, with medians approaching a T1 value of 6.

FIG. 11––Results for search and validation window sizes of 200 and 100 pixels. (A) Current long edge results (B) current short edge results (C) prior long
edge results and (D) prior short edge results (6). Note the difference in scale between the current data and early published results.

SPOTTS ET AL. . OBJECTIVE COMPARISON OF TOOLMARKS 309



Set 2 and 3 comparisons, known nonmatches, are shown in
Figs 17–20. Observations for Set 2 and 3 comparisons showed a
median value near zero regardless of window size, increasing data
spread with increasing window sizes and no clear trend in the
number of outliers. In general, long edge comparisons had better
results evidenced by the general decrease in data spread. The algo-
rithm did not fail to return any results for the 4:1 and 6:1 ratios.
This analysis contained 4012 comparisons for each ratio.

Discussion

The results presented add further credence to the basic
assumption involved in toolmark identification, namely, that all

manufactured tools are unique due to the machining processes
used in their manufacture. This uniqueness is transferred to tool-
marks as the tool is employed. Use of advanced characterization
methods and computer algorithms can, to a large degree, allow
objective comparison and identification of a series of toolmarks.
When the research transitioned from regularly striated to

quasi-striated marks, it became apparent that a parameter optimi-
zation of the algorithm employed is necessary for different tools.
This optimization led to improved results. The algorithm used in
this research was optimized to provide better results for the cur-
rent set of toolmarks by experimentally changing window sizes
and utilizing an option that limits errors due to the opposite end
problem. While the leash restriction is effective, it should be

FIG. 12––Data Set 1 results for a 2:1 window ratio. (A) Long edge. (B) Short edge.

FIG. 13––Data Set 2 results for a 2:1 window ratio. (A) Long edge. (B) Short edge.

FIG. 14––Data Set 3 results for a 2:1 window ratio. (A) Long edge. (B) Short edge.
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realized that its effectiveness is only made possible by the intro-
duction of contextual knowledge into the analysis. For the plier
marks, the nonsymmetric shape of the shear cut makes it easy to
determine in which direction the scans should be analyzed. A
more symmetric plier mark might be more difficult to orient
properly to make use of the leash, involving a trained examiner
to ensure the data were obtained correctly.
In the most ideal scenario, there would be complete data sepa-

ration between known matching and nonmatching pairs, giving a
clear indication of correlation, with no outliers in the data.
Although ideal degree of separation has not been achieved, there
is clearly a large majority of correctly identified toolmarks.

Close examination of the outlying data points from both edges
reveals that for these specific comparisons the algorithm pro-
duces a correct result for the vast majority of window combina-
tions used. For example, consider Table 4 where several
individual outlying points are shown. Incorrect matches, bolded
and italicized, were found that were inconsistent with the algo-
rithm results for other window sizes. Of the 12 different window
sizes employed, the algorithm typically returns a “correct”
answer for most of the window combinations. Note also that the
majority of these outlier points stem from larger window sizes.
If the underlying hypothesis behind the application of the T1

statistic is that matching pairs will have more correlation than

FIG. 15––Data Set 1 results for a 4:1 window ratio. (A) Long edge. (B) Short edge.

FIG. 17––Data Set 2 results for a 4:1 window ratio. (A) Long edge. (B) Short edge.

FIG. 16––Data Set 1 results for a 6:1 window ratio. (A) Long edge. (B) Short edge.
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nonmatching pairs, one might assume that this also holds true if
one uses more search and validation window combinations.
A simple experiment was performed to see the effect of using
multiple search and validation window combinations simulta-
neously could have on separating known matches from known
nonmatches. The data from the c. 6000 possible long edge com-
parisons were used for this exploratory analysis. The average T1
values from all 12 search and validation window combinations
were determined for each comparison. The results were orga-
nized by data set and are shown in Fig. 21. The average result
returned by the algorithm when all window sizes are considered

remains considerably above a zero T1 value for matching pairs
and remains near zero for nonmatching pairs.
While the above observation is interesting, it is recognized

that providing any statistical merit to such an analysis would
require substantial further development of the arguments on
which the algorithm is based. This is necessary as correlations
based on different algorithm parameter values will have different
distributions, both in matching and in nonmatching cases. Such
a task is not anticipated at this time for this research group;
however, it is suggested as a possible field of endeavor for the
reader.

FIG. 18––Data Set 2 results for a 6:1 window ratio. (A) Long edge. (B) Short edge.

FIG. 19––Data Set 3 results for a 4:1 window ratio. A) Long edge. B) Short edge.

FIG. 20––Data Set 3 results for a 6:1 window ratio. (A) Long edge. (B) Short edge.
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Observation of Table 4 suggests that each unique type of tool-
mark will most likely require a study to determine what the best
set of operating parameters is for that particular mark and that
any attempt to operate the code using a “one size fits all” men-
tality is insufficient for this algorithm. Future work will investi-
gate whether an automated method to quickly evaluate multiple
search and validation window combinations is possible. Such an
enhancement would greatly speed analysis as new and more
complicated toolmarks are examined.
Finally, while the quasi-striated marks examined in this study

involve an added complexity when compared to the regularly
striated marks previously examined, they are still less complex
than, for example, impression marks. As the toolmark to be ana-
lyzed becomes more and more complex, it is becoming increas-
ingly likely that development of a truly robust objective
algorithm will involve moving from a linear pixel-to-pixel com-
parison of the data to one that involves an area comparison.
While this would represent a major shift as it relates to the oper-
ation of the current algorithm, exploratory efforts using this line
of approach are already underway by other research groups (11).

Summary and Conclusions

This study was completed using 1000 samples of copper wire
shear cut into two pieces using 50 sequentially manufactured
pliers. The resultant toolmark on the shear cut surfaces was quasi-
striated in nature, consisting of groups of striations. Pairs of shear
cut surfaces were objectively compared utilizing a statistical algo-
rithm that had been previously successful in comparing regularly
striated marks. The algorithm was optimized and applied using a
leash option to the search and validation windows to prevent
incorrect identification related to matching at opposite ends of the
comparison pairs from occurring. This resulted in a noticeable
improvement in the analysis. Known matching pairs had large T1
values for the majority of comparisons (indicating a match) and
known nonmatching pairs had near zero values for the majority
of comparisons (indicating a nonmatch). A high degree of separa-
tion in the data was observed although sufficient statistical sepa-
ration was not achieved. While the results have improved, more
work is needed to increase the robustness of the identification
process. Future improvements to the analysis method may
involve automated means to examine combinations of search and
validation windows quickly or, more radically, changing the
process to compare areas rather than single linear files.
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FIG. 21––Average T1 values obtained when combining multiple window
sizes for analysis.
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