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This paper compares the active and passive projector nonlinear gamma compensation methods for phase error
reduction. The active method modifies fringe patterns before their projection to ensure sinusoidality; the passive
method, in contrast, compensates for the phase error after capturing those distorted sinusoidal fringe patterns.
Our study finds that the active method tends to provide more consistent high-quality fringe patterns regardless of
the amount of projectors defocusing; yet the effectiveness of the passive method is diminished if the measurement
condition deviates from the calibration condition. Experimental results will be presented to demonstrate the
differences between these two nonlinear gamma compensation methods. © 2015 Optical Society of America
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1. INTRODUCTION

High-speed and high-accuracy 3D optical metrology tech-
niques have been successfully applied to numerous areas includ-
ing medicine, computer science, and manufacturing industry.
Over the past few decades, many methods [1] have been
developed to recover 3D surface geometry using different prin-
ciples [2,3]. These methods include time of flight, laser triangu-
lation, shape from focus and defocus, stereo vision, structured
light, and digital fringe projection (DFP). Among these meth-
ods, DFP techniques have been increasingly used because of the
merits of high speed and high accuracy [4].

It is well known that the success of accurate 3D shape mea-
surement using a DFP method heavily relies on the recovered
phase quality if a single projector and a single camera are used.
This is because such systems recover 3D geometry directly from
phase, indicating that any phase noise or distortion will be re-
flected on final measurements. Among various major error
sources, the nonlinear response to input images is one critical
error source to handle if one uses a commercially available dig-
ital video projector: this error source often refers to the non-
linear gamma effect. Using more fringe patterns [5–7] could
reduce certain types of harmonics, and thus improve measure-
ment quality. However, using more patterns will sacrifice
measurement speeds, which is not desirable for high-speed
applications. The binary defocusing technology [8,9] could
also diminish the nonlinear influence, but it yields a lower
signal-to-noise ratio (SNR).

The majority of state-of-the-art research focuses on calibrat-
ing the nonlinear response of a DFP system and then compen-
sating for the associated error. Though numerous nonlinear

gamma calibration and error compensation methods have been
developed, they can be broadly classified into two categories:
actively modifying the fringe patterns before their projection
[10,11] or passively compensating phase error after the fringe
patterns are captured [12–22]. The majority of research focused
on estimating nonlinear gamma coefficients through different
algorithms from the captured fringe patterns, and some by
directly calibrating the gamma of the projector. Both active
and passive methods have been demonstrated successful to
substantially reduce the phase error caused by the projector’s
nonlinear gamma. However, to our knowledge, there is no
study to directly compare the effectiveness of these two types
of error compensation methods (i.e., active and passive meth-
ods) when the system is not operating under its calibrated set-
tings, i.e., when the projector has a different amount of
defocusing, albeit Ref. [11] mentioned the projector’s defocus-
ing effect.

This paper presents a study examining the influence of
projector defocusing on the effectiveness of these two different
error compensation methods. Our study finds that an active
method tends to provide more consistent high-quality fringe
patterns regardless of the amount of defocusing, yet the effec-
tiveness of a passive method is sensitive to the measurement
conditions, although the passive method could provide equally
good quality phase under its optimal calibration condition.
This research finding coincides with our prior study on the
binary defocusing technique in which the phase error varies
with different amounts of defocusing [16], and thus compen-
sating the phase error passively in the phase domain is more
difficult than actively modifying the fringe patterns before their
projection.
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Section 2 discusses the phase-shifting algorithm we used to
evaluate phase quality, and explains two different phase error
compensation methods. Section 3 presents some experimental
results, and Section 4 summarizes this paper.

2. PRINCIPLE

A. Three-Step Phase-Shifting Algorithm
Phase-shifting algorithms have been extensively employed in
optical metrology due to their speed, accuracy, and robustness
to noise [7]. Even though numerous phase-shifting algorithms
have been developed, a simple three-step phase-shifting algo-
rithm is usually preferable for high-speed applications. This
is because a three-step algorithm uses the minimum number
of patterns required to solve for the phase value pixel by pixel
without using global [23] or local [24] neighboring pixel infor-
mation. A three-step phase-shifting algorithm with a phase shift
of 2π∕3 can be realized by capturing three fringe images with
equal phase shifts that can be mathematically described as

I1�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ − 2π∕3�; (1)

I 2�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ�; (2)

I3�x; y� � I 0�x; y� � I 0 0�x; y� cos�ϕ� 2π∕3�: (3)

Here I 0�x; y� is the average intensity, I 0 0�x; y� is the intensity
modulation, and ϕ�x; y� is the phase to be solved for.
Simultaneously solving Eqs. (1)–(3) gives the phase

ϕ�x; y� � tan−1
ffiffiffi

3
p �I1 − I3�
2I2 − I1 − I3

: (4)

Since an arctangent function only provides phase values rang-
ing from −π to π, the phase obtained here is often called a
wrapped phase with a modulus of 2π, and a spatial or temporal
phase-unwrapping algorithm is required to resolve the 2π am-
biguity [25]. Once the system is calibrated, �x; y; z� coordinates
can be reconstructed from the unwrapped continuous
phase [26].

B. Nonlinear Gamma Model
In the literature, a projector’s nonlinear gamma was extensively
modeled to be a simple function in the form of

I o � a�I i�γ � b; (5)

where I o is the output grayscale value for a given input value I i,
a and b are constants, and γ is the unknown constant to be
calibrated. For such a model, estimating the nonlinear effect
of the digital video projector essentially is to determine γ.
The calibration of constants a and b will not affect the phase
quality since they can be optimized by properly adjusting the
camera settings. Estimating γ can be realized through harmonic
analysis, least squares, statistical methods, or directly analyzing
the phase error by comparing with the ideal phase map.

Over the past few decades, we have used more than 10 dif-
ferent models as old as Kodak DP900, to Optoma EP739, and
to the latest models such as LG PB63U and Dell M115HD;
the nonlinear gamma varies from one model to another, and
even from one projector to another with the same model.
The gamma curve of more recent models tends to be smoother
than for older models with LED projectors being remarkably
smooth. Our research found that the nonlinear gamma of the
majority of projectors we have used in our laboratory does not
precisely follow such a simple model if the full range of gray-
scale values is used. Instead, we found that modeling the pro-
jectors’ nonlinear gamma with a seventh-order polynomial
function is sufficient and reliable for all the projectors [10].
That is, the gamma function is described as

I o � c0 � c1I i � � � � � c6�I i�6 � c7�I i�7; (6)

where c0; c1;…; c6; c7 are those constants to be calibrated.

C. Active Error Compensation Method
Active error compensation is more complex because the calibra-
tion condition could be different from case to case, and the
modeling should be generic to any sort of captured calibration
data. In this paper, we use the slightly improved method origi-
nally presented in Ref. [10].

Figure 1(a) illustrates the nonlinear gamma curve and the
designed linear response curve. The nonlinear curve can be ob-
tained by projecting a sequence of uniform grayscale images
with different grayscale values, I ci, and capturing them by a
camera. By analyzing a small area of the camera image, the aver-
age value is treated as the output data, I c0. It should be noted
that the starting and ending points of the curve are not, respec-
tively, always 0 and 255 to make the approach generic.

Fig. 1. Example of using an active error compensation method to model nonlinear gamma. (a) Nonlinear gamma curve, fitted polynomial curve,
and the desired linear curve. (b) Desired ideal sinusoidal wave, actively distorted wave, and the resultant sinusoidal wave with nonlinear gamma
correction. (c) Difference between ideal sinusoidal wave and the resultant sinusoidal wave with nonlinear gamma correction.
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Since the active calibration method requires modifying the
computer generated fringe patterns and predistorting the fringe
patterns before their projection, the calibration is actually to
determine the inverse function of the projector’s nonlinear
gamma. Instead of obtaining a polynomial function using
Eq. (6), we fit the inverse function with the output as the x
axis. That is, the polynomial function here is actually

I ci � a0 � a1�I sco� � � � � � a6�I sco�6 � a7�I sco�7: (7)

Here ak are constants that can be determined by using a set of
calibration data.

The objective here is to determine the desired grayscale
value, I d , to be projected for a given value, I g , such that
the projected image will be ideally sinusoidal.
Mathematically, I d can be determined using

I d � a0 � a1�I sg� � � � � � a6�I sg�6 � a7�I sg�7; (8)

where

I sg � κ × �I g − Imin
o � � Imin

o (9)

is the modified given input value to consider the fact that the
calibrated data range may not be 0 to 255. Here,

κ � Imax
o − Imin

o

Imax
ci − Imin

ci
�10�

is the slope of the desired linear response with

Imin
o � c0 � c1�min�I ci�� � � � � � c6�min�I ci��6

� c7�min�I ci��7; (11)

Imax
o � c0 � c1�max�I ci�� � � � � � c6�max�I ci��6

� c7�max�I ci��7: (12)

Here min�� and max�� are the minimum and maximum func-
tions, and ck are from the polynomial function determined us-
ing Eq. (6). Instead of directly using the captured data (i.e., Imin

co
and Imax

co ) as in Ref. [10], we calculated Imin
o and Imax

o using the
fitted polynomial function to reduce the noise influence of the
raw captured data on both ends.

Figure 1(b) depicts the projected sinusoidal wave, the ideal
sinusoidal wave, and the corrected sinusoidal wave using the
nonlinear gamma curve shown in Fig. 1(a). Once the distorted
curve is modulated by the nonlinear gamma function fitted by

Eq. (6), the output curve should be identical to the ideal sinus-
oidal wave. This simulation clearly shows that the projected
curve, as expected, perfectly overlaps with the ideal sinusoidal
wave and the difference is purely random, as illustrated in
Fig. 1(c).

D. Passive Error Compensation Method
The passive error compensation method, in contrast, does not
modify the projector’s input fringe patterns, but rather deter-
mines the phase error from the calibrated gamma curve, and
then compensates for the phase error in phase domain. It is
straightforward to determine the phase error for each phase
value using the following steps if the projector’s nonlinear
gamma curve is obtained:

• Step 1: Compute the ideal phase-shifted fringe patterns.
In our case, we use a three-step phase-shifting algorithm as de-
scribed in Eqs. (1)–(3). Only one period of fringe patterns and
one cross section of the sinusoidal patterns are necessary for
further analysis.

• Step 2: Apply the nonlinear fitted gamma equation as
described in Eq. (6) to generate the distorted curve with gamma
effect. Figure 2(a) shows one of the distorted waves by the
nonlinear gamma shown in Fig. 1(a).

• Step 3: Compute the ideal phase, Φi, using three ideal
sinusoidal waves.

• Step 4: Compute the distorted phase, Φd , using three
distorted waves. Figure 2(b) shows the ideal phase and the
distorted phase. It clearly shows that significant phase error
is introduced by the nonlinear gamma.

• Step 5: Compute phase error by simply taking the differ-
ence between the ideal phase and the distorted phase,
i.e., ΔΦ�Φd � � Φd −Φi.

Once the phase error for each distorted phase value is
determined, it can be used to compensate for phase error
introduced by the nonlinear gamma effect. Since the error com-
pensation is pixel by pixel for each measurement, the computa-
tional cost could be substantial. To reduce computational cost,
Zhang and Huang proposed to use a look-up table (LUT) (e.g.,
256 elements) [13]. Generating the LUT is the process of
evenly sampling the error curve and storing the phase error val-
ues for each phase value. It is important to note the x axis in
Fig. 2(c) is the distorted phase map Φd that is the sampling
space we should use. Compensation of the phase error can
be done by locating the nearest LUT element or involving

Fig. 2. Example of determining phase error based on calibrated gamma curve. (a) Simulated ideal sinusoidal wave and the distorted wave by
gamma effect. (b) Ideal phase Φi versus distorted phase Φd . (c) Phase error induced by nonlinear gamma.
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linear or nonlinear interpolation, and then adding ΔΦ to the
phase value of that particular point.

3. EXPERIMENTS

A. Hardware System Setup
A hardware system was used to evaluate the performance of
these nonlinear gamma calibration methods. The system in-
cludes a digital-light-processing (DLP) projector (Samsung
SP-P310MEMX) and a charge-coupled-device (CCD) camera
(Jai Pulnix TM-6740CL). The camera is attached with a
16 mm focal length mega-pixel lens (Computar M1614-MP)
with F/1.4 to 16C. The projector resolution and the camera
resolution are 800 × 600 and 640 × 480, respectively. A uni-
form flat white board was used as an imaging target for error
analysis. It should be noted that the flat board and the camera
remain untouched for all the experiments.

The projector’s nonlinear gamma curve was obtained by
projecting a sequence of unique grayscale images (from 20
to 250) with a grayscale value increment of 5. The camera cap-
tures the sequence of images, and the grayscale value for each
input image is determined by averring a small area (5 × 5 pixels)
in the center of each captured image. Figure 1(a) actually shows
the gamma curve of this particular projector.

When ideal sinusoidal patterns generated by a computer are
directly sent to the projector, the resultant phase error is

significant due to the projector’s nonlinear gamma effect.
To demonstrate this, we projected ideal sinusoidal fringe pat-
terns onto the white board and captured three phase-shifted
fringe images while the projector was in focus. The phase
was calculated by applying a phase-wrapping and a temporal
phase-unwrapping algorithm. Figure 3(a) shows one cross
section of the unwrapped phase map. To better visualize the
phase error, the gross slope of the phase line was removed.

To quantify phase error, we took the difference between this
phase map and the ideal phase map Φi. The ideal phase map
was obtained by using the squared binary phase-shifting
method [9] with a fringe period of 18 pixels for the projected
fringe patterns. The squared binary phase-shifting method can
generate high-quality phase without the influence of the non-
linear gamma effect of the projector if a larger number of pat-
terns is used (nine in our case) using the least-square algorithm
[27]. Again, a temporal phase-unwrapping algorithm was used
to obtain raw phase that was further smoothed by a large
Gaussian filter (e.g., 31 × 31 pixels) to structural error caused
by our system. Figure 3(b) shows the ideal phase after removing
its gross slope, which is very smooth, confirming that no ob-
vious systematic structural error was introduced by the ideal
phase map, Φi. The phase error map was calculated by taking
the difference between the captured phase and the ideal phase
(i.e., ΔΦ � Φ −Φi). Figure 3(c) shows one cross section of

Fig. 3. Phase measurement error of the hardware system without nonlinear gamma correction. (a) Cross section of the unwrapped phase map after
removing gross slope. (b) Cross section of the ideal unwrapped phase map after removing gross slope. (c) Cross section of the phase error map
without gamma correction (rms of 0.116 mm).

Fig. 4. Passive and active phase error compensation result. (a) Cross section of the unwrapped phase map with active error compensation after
removing gross slope. (b) Cross section of the phase error map after active error compensation (rms 0.025 rad). (c) Cross section of the phase error
map with passive error compensation (rms 0.025 rad).
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Fig. 5. Measurement results of statue. (a) Photograph of the statue. (b) 3D result before gamma compensation. (c) 3D result with active
error compensation method. (d) 3D result with passive error compensation method. (e) Zoom-in view of (b). (f) Zoom-in view of (c).
(g) Zoom-in view of (d).

Fig. 6. Phase error compensation results when projector is out of focus. (a) Cross section of phase error map without any error compensation (rms
0.080 rad). (b) Cross section of the phase error map with active error compensation method (rms 0.026 rad). (c) Cross section of the phase error map
with passive error compensation method (rms 0.049 rad).
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the phase error map. If nonlinear gamma is not considered, the
phase error is very large with a root-mean-square (rms) value of
0.116 rad.

B. Experimental Results for In-Focus Projector
Using the calibrated gamma curve, we predistorted the pro-
jected fringe patterns using the method discussed in
Subsection 2.C and projected those distorted patterns onto
the white board. Figure 4(a) shows one cross section of the cap-
tured phase after removing its gross slope. Comparing with the
result shown in Fig. 3(a), the phase does not have any obvious
structural error. Figure 4(b) shows one cross section of the
phase error with a phase rms error of 0.025 rad, proving the
effectiveness of active error compensation.

We then captured three phase-shifted fringe patterns using
exactly the same settings, except the projector’s input fringe
patterns are ideal sinusoidal (the same images as those used in
Fig. 3). Figure 4(c) shows the phase error after error compensa-
tion using the 512-element LUT discussed in Subsection 2.D.
This experiment shows that passive error compensation can also
effectively reduce the phase rms error from 0.116 to 0.025 rad.
Compared with the active method, the passive method performs
equally well.

We also measured a statue to visually compare the
differences of these error compensation methods. Figure 5
shows the results. Unlike the previous flat board, the statue
actually has certain depth variations. As shown in Figs. 5(b)
and 5(e), before error compensation, the structural error is very

Fig. 7. Measurement results of statue when the projector is out of focus. (a) 3D result before gamma compensation. (b) 3D result with active
error compensation method. (c) 3D result with passive error compensation method. (d) Zoom-in view of (a). (e) Zoom-in view of (b). (f) Zoom-in
view of (c).
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obvious. The active error compensation method provides very
high-quality 3D shape measurement without obvious error
caused by the nonlinear gamma effect, as shown in Figs. 5(c)
and 5(f). Figures 5(d) and 5(g) show the results after applying
the passive error compensation method. Even though these
results are fairly good, the quality is not as high as that using
the active method. We believe this was caused by the fact that
the object surface does not always stay in the same amount of
defocusing, even when the projector is in focus. These experi-
ments visually demonstrated that the active method outper-
forms the passive method even when the measurement is
close to the calibration condition. It should be noted that
all the 3D rendered results were smoothed with a 3 × 3
Gaussian filter to suppress the most significant random noise.

C. Experimental Results for Defocused Projector
In practical measurement conditions, the object may be placed
further away from the gamma calibration plane, meaning the
projector may not be perfectly at the same amount of defocus-
ing. To emulate this effect, we changed the focal plane of the
projector, making the projected image blurred on the flat
board. We then repeated the same analyses. Figure 6 shows
the results. Comparing the results shown in Fig. 6(a) and
Fig. 3(c), we can see that the phase error induced by nonlinear
gamma is reduced because of defocusing (rms 0.116 versus rms
0.080). One may notice that the active method still performs
well [refer to Fig. 6(b)], but the passive method has significant
residual structural error [refer to Fig. 6(c)]. This is because the
defocusing effect actually changes the inherent structures of the
fringe patterns if they are not ideally sinusoidal, but does not
alter sinusoidal pattern structures for ideal sinusoidal patterns.
One may notice that the overall phase error for the active
method is also slightly increased because of the lower fringe
contrast. This coincides with our prior study [16] that demon-
strated that the phase error is indeed different for different
amounts of defocusing [although that study shows a different
type of nonsinusoidal structured patterns (i.e., squared binary
patterns)].

Again, the statue was measured when the projector was
defocused. Figure 7 shows the results. Figures 7(b) and 7(e)
indicate that the active error compensation method still gener-
ated good-quality data. However, the passive error compensa-
tion method fails to produce high-quality results, as shown in
Figs. 7(c) and 7(f). These experimental results demonstrated
that the active method works much better than the passive
method when a different amount of defocusing is used for non-
linear gamma calibration and real measurement. Additionally,
comparing Figs. 7(a) and 7(d) with Figs. 5(b) and 5(e), one may
also notice that, without applying any error compensation, the
measurement results are much better when the projector is out
of focus than when the projector is in focus. This is because
projector defocusing can naturally suppress the nonlinearity
of the projector’s gamma effect.

Lastly, we performed experiments when the projector was at
different amounts of defocusing. Figure 8 shows the phase rms
error when the projector was at fixed different defocusing levels
(i.e., from nearly focused, Level 1, to substantially defocused,
Level 6). This figure shows that increased defocusing degree
(1) diminishes the nonlinear gamma effect of the projector

without any compensation; (2) does not obviously affect the
active nonlinear gamma calibration method, although the
phase error increases slightly when the projector is defocused
too much; and (3) adversely changes the effectiveness of the
passive nonlinear gamma calibration method. It should be
noted that this set of data was captured using a newer model
projector, LG PB63U, to show the variations of hardware
selection.

We would like to point out the fact that not all system non-
linear gamma curves can be directly calibrated as they are to
digital video projectors, or the projected patterns can be pre-
distorted. Therefore, for many practical systems, passive error
compensation methods have to be adopted. Yet, this paper pro-
vides the insight that for such systems, if the projection system
has a different amount of defocusing, a simple error calibration
may not be sufficient.

4. CONCLUSIONS

This paper compares the study of the passive and active pro-
jectors’ nonlinear gamma calibration methods. It reveals that if
the measurement conditions are exactly the same as the calibra-
tion conditions (e.g., the projector has the same degree of de-
focusing, and the object is on the same plane as the calibration
board), both active and passive methods can perform equally
well. However, when the object is at different locations or
the projector’s focus is changed, the effectiveness of the active
method does not change noticeably, but the passive method
fails to effectively reduce the phase error caused by the projec-
tor’s nonlinear gamma. Therefore, it appears that an active
method is preferable if such a method can be adopted, and
if only a passive method can be used, caution should be given
to the calibration conditions and the measurement conditions.
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