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This paper introduces a novel method to calibrate 3D shape measurement systems that use the binary

defocusing technique. Specifically, this method calibrates the pixelwise z as low-order polynomial

functions of absolute phase; (x, y) coordinates are calculated from camera calibration with known z

value; and the camera is calibrated using the standard flat checkerboard method. Because this method

does not require estimation of the projector’s parameters, it can be adopted for any phase measurement

system including those employing out-of-focus projectors. Our experiment found that the root-mean-

squared (rms) error for the depth measurement is less than 70 mm when the measurement depth range

is about 100 mm, which is at the same level of the calibration stage 750 mm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Precise measurement applications in manufacturing and med-
ical sciences increasingly integrate real-time 3D shape measure-
ment systems based on digital sinusoidal fringe projection. A
digital fringe projection (DFP) technique projects a sequence of
sinusoidal structured patterns onto an object and captures the
deformed pattern images. The 2D images can then be used to
generate a 2D phase map from which the 3D information for each
pixel can be uniquely extracted. The DFP technique offers good
measurement accuracy, improves computation speed over many
other 3D shape measurement techniques, and eliminates image
matching difficulties of traditional stereo-vision systems by
replacing one camera with a projector [1]. These advances in 3D
shape measurement create opportunities for application of digital
fringe technologies in high precision measurement. However, the
drawbacks of a conventional DFP technique include projector
nonlinear gamma errors, difficult synchronization between pro-
jector and camera, and speed limitations of the projector, which
may drastically affect measurement quality [2].

To avoid the problems caused by the conventional DFP techni-
que projection technique, Lei and Zhang recently proposed a
structured light technique that projects defocused binary structured
patterns instead of sinusoidal patterns [3]. The binary defocusing
technique could alleviate the problems of conventional DFP
ll rights reserved.

: þ1 515 294 3261.

il.com (S. Zhang).
techniques in that the projector nonlinearity does not affect
measurement accuracy, the time modulation effect of the digital
light-processing (DLP) technique is less sensitive to precise syn-
chronization, and 1-bit instead of 8-bit data transfer reduces DLP
projector’s processing power demand [4].

However, the binary defocusing technique introduces a new
challenge: calibrating such a system becomes more difficult
because of the use of an out-of-focused projector since most
well-established, accurate calibration methods for structured
light systems require the projector to be in focus (e.g. the least
squares [5,6], projector image regeneration [7–10], and camera-
projector system optimization [11–13]). The calibration accuracy
usually determines the accuracy of a 3D shape measurement
system; thus, an accurate calibration method is vital to any
precision 3D shape measurement system. The reference-plane
based phase-to-height conversion methods [14] could be used if
the depth measuring range is small [7]. However, the calibration
accuracy is low if the measuring depth range is large. Therefore, a
new calibration technique must be developed for the binary
defocusing technique before it can be extensively adopted.

We propose a novel method for accurately calibrating a 3D
shape measurement system using the binary defocusing techni-
que by a method that indirectly calibrates the defocused projec-
tor. Specifically, the proposed method includes two stages: depth
z calibration and (x, y) coordinates calibration. The first stage is
calibrating z coordinate information by translating a calibration
plane over known depths, recording the depth z values and
absolute phase values per pixel for each plane, and fitting a curve
for each pixel across the entire depth range to establish the depth
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z and the absolute phase. We found that the depth z per pixel can
be described as 3rd- or 4th-order polynomials of the absolute
phase value; therefore, the depth z can be accurately recovered
once the polynomial functions are calibrated. The second stage is
to calibrate (x, y) coordinates, which is a standard camera
calibration method. We employed the checkerboard camera
calibration method proposed by Zhang [15] and estimated the
camera’s intrinsic and extrinsic parameters using the Matlab
software package developed by Bouguet [16]. If the camera
calibration depth z is aligned with the first calibration procedure,
(x, y) coordinates can be computed using the calibrated camera
parameters. Our experiment found that the root-mean-squared
(rms) error for the depth measurement is less than 70 mm, which
is at the same level of the calibration stage 750 mm.

After submitting this paper, we found a technique proposed by
Sitnik et al. [26] that presented a very similar idea to ours. In that
paper, it did point-by-point polynomial fitting for depth z calibra-
tion, and utilized the least square method for (x, y) calibration. It
concluded that 5th or higher-order polynomials are required for
depth z calibration. However, the method proposed by Sitnik was
used to handle conventional sinusoidal fringe projection method,
which is different from the main focus this paper: calibrating a
system using the binary defocusing technique. Our experimental
finding is slightly different from Sitnik’s paper in that only 3rd- or
4th-order polynomials are necessary. This might result from
different fringe pattern generation techniques. In addition, we
adopted the checkerboard calibration method for (x, y) calibra-
tion. This calibration method is well developed and can also easily
consider lens distortion influence, thus has the potential to
provide more accurate calibration results compared with the
least-square method adopted in Ref. [26].

Section 2 explains the principles used for the proposed
calibration technique. Section 3 describes the experimental setup
and method. Section 4 shows the experimental results. Finally,
Section 5 summarizes this paper.
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Fig. 1. Absolute phase Fðx,yÞ vs. depth z for four arbitrary pixels.
2. Principle

2.1. Nine-step phase-shifting algorithm

Phase-shifting algorithms are widely used in optical metrology
because of their measurement speed and accuracy [17]. Numer-
ous phase-shifting algorithms have been developed including
three-step, four-step, double-three-step, and five-step algorithms.
In this research, we use a nine-step phase-shifting algorithm to
reduce the influence of random noises and high-frequency har-
monics during defocusing. The nine phase-shifted fringe images
can be described as

Inðx,yÞ ¼ I0ðx,yÞþ I00ðx,yÞ cosðfþ2pn=9Þ, ð1Þ

where I0ðx,yÞ is the average intensity, I00ðx,yÞ the intensity modula-
tion, fðx,yÞ the phase to be solved for, and n¼1,2,y,9. The phase,
fðx,yÞ can be solved for as follows:

fðx,yÞ ¼ tan�1

P9
n ¼ 1 Inðx,yÞ sinð2pn=9ÞP9
n ¼ 1 Inðx,yÞ cosð2pn=9Þ

" #
: ð2Þ

Eq. (2) provides the phase ranging [�p, p) with 2p disconti-
nuities. This 2p phase jumps can be removed to obtain the
continuous phase map by adopting a phase unwrapping algo-
rithm, such as one of the algorithms described in Book [18]. The
phase unwrapping is essentially to determine the locations of the
phase jumps and remove them by adding or subtracting multiples
of 2p. However, the phase obtained by a spatial phase unwrap-
ping is relative phase. In this research, absolute phase is required
for accurate calibration.
2.2. Absolute phase recovery with gray coding

The conventional unwrapping method only recovers the rela-
tive phase for each pixel. It is sensitive to noise and cannot
measure step heights greater than p, which may introduce large
measurement errors. Instead, recovering the absolute phase,
Fðx,yÞ, can avoid these errors and provide a more robust solution.
Methods such as two- or multi-wavelength [19,20], optimal
multifrequency [21], temporal phase-unwrapping [22], and
gray-coding plus phase-shifting [23] methods can recover the
absolute phase. This paper uses the gray-coding plus phase-
shifting method to obtain the fringe order for absolute phase
retrieval in order to maintain the merits of the binary defocusing
technique where only binary patterns are needed. Specifically, a
sequence of designed binary coding patterns uniquely defines the
location of each 2p phase jump to create a fringe order, k(x, y), so
that the phase can be recovered pixel by pixel by referring to the
binary coded patterns.

Fðx,yÞ ¼fðx,yÞþkðx,yÞ � 2p: ð3Þ

2.3. Establishment of the relationship between absolute phase and

depth

Previous research has shown that the absolute phase and the
depth are monotonically related per camera pixel [4]. Therefore,
geometrical models can describe the relationship between the
absolute phase and the depth, and vice versa [24]. Then the
calibration process is to retrieve the parameters in the models.
However, due the complexity of the real projection system, the
models are always not very accurate with some assumptions,
which would bring errors for the final calibration accuracy.
Previous research found that this relationship of the absolute
phase and the depth is non-linear and can be approximated with
low-order polynomials [4,26]

zðx,yÞ ¼
X

ckðx,yÞ �Fðx,yÞk: ð4Þ

Here ckðx,yÞ are constants to be estimated by calibration.
Fig. 1 shows absolute phase and depth are related monotoni-

cally and nonlinearly, verifying that curve fitting calibration could
accurately describe depth z coordinate information.

In our experiments, five different curve fitting cases were
examined: linear interpolation, 2nd-, 3rd-, and 4th-order poly-
nomials. The remaining experiments for this paper use the best
performing fitting method. It is interesting to note that Zhang
et al. proposed a calibration technique that uses linear interpola-
tion to define the relationship between relative phase and depth



Fig. 2. Calibration system setup.
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[25]. This technique could provide good accuracy if the incre-
ments between calibration planes are small enough (i.e., the
nonlinear curves can be approximated as linear segments). How-
ever, as shown in Fig. 1, the relationship between phase and
depth is nonlinear and other curve fitting methods could generate
better calibration accuracy. By fitting a curve across all calibration
planes that define the depth range, the z coordinate can be
accurately calibrated per pixel.

2.4. Camera parameters estimation for x and y calibration

Typically, the pinhole camera model describes a camera with
intrinsic parameters, such as focal length, principle point, pixel
skew factor; and extrinsic parameters defining camera rotation
and translation between a world coordinate system used to unify
x, y and z calibration and the camera coordinate system [15]. A 3D
point in world coordinate system can be denoted by M¼ ½x,y,z�T ,
and the corresponding 2D point in camera coordinate system is
m¼ ½m,n�T . By adding 1 as the last element, the augmented vectors
are: ~M ¼ ½x,y,z,1�T and ~m ¼ ½m,n,1�T . The relationship between a 3D
point ~M and its image projection m is given by

s ~m ¼ A½R T� ~M , ð5Þ

where s is a scale factor, [R, T] is the extrinsic matrix, R is the 3�3
rotation matrix, and T is the translation vector. A is the camera
intrinsic matrix that can be described as

A¼

a g m0

0 b n0

0 0 1

2
64

3
75: ð6Þ

Here a and b are respectively the focal lengths along x and y axis,
g is the camera skew factor, and ðu0,v0Þ is the principal point
where the optical axis intersects with the camera sensor.

Once the extrinsic and intrinsic matrices are determined
through calibration, the world coordinate system and camera
coordinate system can be accurately matched. If camera para-
meters are obtained, x and y information can be determined by

s

m
n
1

2
64

3
75¼ A½R, T�

x

y

z

1

2
6664

3
7775: ð7Þ

In this equation, because z is a known value obtained through
a curve fitting procedure, (x, y) can be uniquely solved. Because
this technique does not require precise determination of the
corresponding projector pixel, it can be used to calibrate any
phase measurement system including the DFP system with
projector being out-of-focus. It should be noted that direct
projector calibration is not required; thus, the technique can be
applied to any phase measurement system.
3. Experiments

3.1. System setup

The structured light system used in our experiments consisted
of a digital-light-processing (DLP) projector (Samsung SP-
P310MEMX) and digital USB charge-coupled-device (CCD) camera
(Jai Pulnix TM-6740CL). The camera uses a 16 mm focal length
Mega-pixel lens (Computar M1614-MP). The camera resolution is
640�480 with a maximum frame rate of 200 frames/s. The
projector has a resolution of 800�600 with a projection distance
of 0.49–2.80 m. Fig. 2 shows the calibration system setup. The
field of view of the projector and camera are respectively
405 mm�295 mm and 220 mm�160 mm.
The projector projected fringe pattern onto a laser-printed red/
blue checkerboard pattern attached to a nearly planar surface.
The planar surface was attached to a precision TECHSPEC Metric
long travel linear translation stage. The stage is 250 mm long with
a traveling accuracy of 70.05 mm. The flat object with red/blue
checkerboard attached is mounted on top of the translation stage
and manually moved along the z (depth) axis.

3.2. z coordinate calibration

The translation stage was moved toward the structured light
system and data was captured in 5 mm increments from
z0¼0 mm (farthest point from camera and projector) to
z20¼100 mm. 21 calibration planes were captured. Of the 21
planes, 11 and 6 evenly spaced planes in the z0�z20 range were
used for curve fitting with different curve fitting methods (i.e.
linear interpolation and polynomial fitting). Due to lens distortion
and other factors, the absolute phase-depth curve for each pixel
varies, so a curve was fit to each similar pixel on the calibration
planes. With the remaining planes, the average fitting error per
plane was calculated for each curve fitting method by subtracting
the captured depth value from the experimental value deter-
mined through the curve fitting.

The accuracy of z calibration was evaluated for four different
curve fitting methods: linear interpolation, 2nd-, 3rd-, and 4th-
order polynomials. The average depth calibration error was
calculated when using evenly spaced calibration planes for curve
fitting, but the amount of space between the calibration planes
was changed. Fig. 3(a) shows calibration error for the four curve
fitting methods when 11 interpolation planes were used. The
planes were space 10 mm apart. Fig. 3(b) shows calibration error
for the four curve fitting methods when 6 interpolation planes
were used spaced 20 mm apart.

From the experimental results, linear interpolation, 3rd-, and
4th-order polynomials fit the absolute phase-depth relationship
with reasonable accuracy; however, 3rd- and 4th order polyno-
mials produce a slightly more accurate fitting method (a max-
imum absolute average depth error of 0.064 mm for 3rd-order
polynomial compared with 0.098 mm obtained by linear
interpolation).

As the number of calibration planes decreases, low-order
polynomial curve fitting represents the z coordinate data signifi-
cantly more accurately compared to linear interpolation.
Fig. 3(b) shows the calibration depth errors when 6 interpolation
planes were used. In this experiment, the maximum absolute
average depth error for linear interpolation was 0.260 mm com-
pared to 0.070 mm for 3rd-order polynomial. This is because the
absolute phase-depth relationship is nonlinear, and if fewer
calibration planes are used, the nonlinear effect is exaggerated
and not well defined by linear interpolation.

For traditional sinusoidal fringe projection technique, it could
be true that increasing the polynomial’s order generates less
error, albeit requires more calibration planes. However, for our
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Fig. 3. Average depth error per plane using different curve fitting methods. (a) RMS error when 11 interpolation planes were used; (b) RMS error when 6 interpolation

planes were used.

Fig. 4. Example of four images of plane used in camera calibration set at different angles.

Fig. 5. The measured diagonals.
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binary defocusing technique, our experimental data showed that
the error with 3rd-order polynomials already returns error close
to that of the linear translation stage and using higher order
polynomials will not lead to increased overall accuracy but will
increase the depth z interpolation computation time and com-
plexity. This finding was also experimentally verified by the prior
study by Xu et al. [4]. Therefore, the remaining experiments curve
fit using 3rd-order polynomials.

It should be noted that during the depth z calibration stage, the
projected fringe patterns are monochromatic so that the red/blue
checkers will not appear. The red/blue printed color contrast was
previously calibrated based on the system setup to ensure that
when the projector is projecting monochromatic images, the
checkers disappear.

3.3. x and y coordinate calibration

After z calibration, x and y coordinates can be calibrated using
the procedure explained in Section 2.4. The z0 plane, located at
0 mm for z calibration, is manually adjusted in the algorithms to
z0¼50 mm. This step is essential to unify the coordinate systems
used in z calibration and x and y calibration. Then, the captured
calibration plane at location z0 used in z interpolation is set as
the reference for Zhang’s optimization procedure [15]. It is
important to notice that during this stage of calibration, the
red/blue checkerboard was illuminated with red light so that the
checkers will appear as regular checkerboard. 11 more images of
the red/blue checkerboard calibration plane are captured at
different orientations for calibrating the intrinsic and extrinsic
parameters (see Fig. 4). The intrinsic and extrinsic parameters
were optimized using the 12 captured images in an optimization
algorithm.

To test the calibration accuracy, four pixels in the corners on
the checkerboard were chosen, as shown in Fig. 5. The top left
corner pixel and the bottom right pixel forms Diagonal 1 (line
AD). The other two corner pixels form Diagonal 2 (line BC). From
Eq. (7), (x, y, z) information of all the four corners can be obtained.
Then the lengths of both diagonals can be calculated, as shown in
Table 1.

From the results, the (x, y, z) coordinate measurement accu-
racy was fairly good: approximately 1.6% error. However, com-
paring with depth z accuracy, (x, y) calibration accuracy is much
lower. Moreover, one might notice that the average values
calculated from Eq. (7) are smaller than the measured values.
This could be caused by the camera calibration error. The varia-
tion of Diagonal 2 is larger than Diagonal 1. This could result from
the distortion of camera lens, which was not considered in our
camera calibration algorithm. One should notice that the goal of
this paper is to provide a more accurate calibration method for
depth z; thus, z calibration was given higher priority. If one wants
to increase (x, y) calibration as well, a better camera calibration
approach could be adopted.
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3.4. 3D shape reconstruction

To further verify the depth calibration accuracy, we also did an
experiment to measure a step height object as shown in Fig. 6.
Fig. 6(a) shows the photo of the object, and the 3D reconstruction
result is shown in Fig. 6(b). The step height is about 40.00 mm
measured by a digital caliper, while the calibrated result is
40.29 mm. The relative error is about 0.7%.
Fig. 6. 3D shape measurement result of a step-heig

Fig. 7. 3D shape measurement results of complex object. (a) One fringe pattern; (

Table 1
Measurement accuracy verification for four corner points.

Diagonal 1 (mm) Diagonal 2 (mm)

1 134.51 134.52

2 134.16 135.93

3 134.08 136.43

4 134.80 133.36

5 135.33 132.86

6 136.33 132.55

7 135.94 137.90

8 135.39 137.28

9 135.26 136.59

10 134.05 132.22

11 134.00 133.06

12 134.33 135.93

Average 134.84 134.88

Variation 0.79 2.02

Measureda 137.01 137.18

a Values are obtained from a high-accuracy digital caliper.
Fig. 7 shows the 3D shape reconstruction of a sculpture.
Fig. 7(a) shows one of the nine fringe patterns and
Fig. 7(b) shows one of the coding patterns. Fig. 7(c) shows the
extracted absolute phase map, and the recovered 3D result is
shown in Fig. 7(d). Fig. 7 along with Fig. 6 demonstrate that the
proposed calibration technique allows the 3D shape measure-
ment system to accurately reconstruct 3D models with high
resolution and accuracy.
4. Summary

We have presented a novel method for calibrating a structured
light system using the binary defocusing technique. Our proce-
dure curve fits z coordinate information between selected planes
in a known range. x and y coordinates are then calibrated by an
optimization procedure to find extrinsic and intrinsic camera
parameters. With the proposed method, we have demonstrated
that a 3D model be accurately reconstructed. Proper calibration of
a structured light system using the defocusing technique may
help to realize the advanced capabilities of defocusing technology
over traditional sinusoidal fringe projection. This calibration
method can also be adopted for traditional fringe projection
techniques. It should be noted that badly defocused binary
patterns will introduce significant phase errors that may couple
and reduce measurement accuracy. For our experiments, we used
binary patterns with a small pitch as well as nine-step phase
shifting to reduce errors introduced by the high order harmonics
ht object. (a) Step-height object; (b) 3D result.

b) One coding pattern; (c) Absolute phase map; (b) 3D reconstruction results.
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present in binary patterns. Future work may combine phase error
compensation with the proposed calibration technique.
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