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Genetic method to optimize binary dithering
technique for high-quality fringe generation
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The recently proposed dithering techniques could substantially improve measurement quality when fringes are
wide, but offer limited improvement when fringes are narrow. This Letter presents a genetic algorithm to optimize
the dithering technique for sinusoidal structured pattern representation. We believe both simulation and experimental
results show that this proposed algorithm can substantially improve fringe quality for both narrow and wide fringe

patterns. © 2013 Optical Society of America
OCIS codes: 120.0120, 120.2650, 100.5070.

Digital fringe projection (DFP) techniques have been
increasingly employed due to their flexibility and speed
[1]. A DFP system uses a computer to generate sinusoidal
fringe patterns that are projected on to an object by a
projector. A camera captures the fringe patterns distorted
by the object surface geometry, and a fringe analysis
algorithm is used to reconstruct a three-dimensional
(3D) shape. However, since it requires 8 bits to represent
sinusoidal patterns, the measurement speed is typically
limited to 120 Hz, which is the video projector refresh rate.

The squared binary defocusing technique can achieve
tens of kHz since it only requires 1-bit structured patterns
[2]. However, its measurement quality is not as high as the
DFP technique due to the influences of high-frequency
harmonics. Pulse width modulation (PWM) techniques
[3,4] could substantially enhance the binary defocusing
technique when fringe stripes are narrow. Yet, the
improvements are limited when fringe stripes are wide
because the PWM techniques are one-dimensional in
nature, and cannot fully use the two-dimensional informa-
tion of the structured patterns.

The area-modulation technique developed by Xian and
Su [5] could generate high-quality fringe patterns, yet is
difficult to realize in a DFP system because of the need
for highly dense pixels. Locally modulating the 1s and
0Os ratios could result in patterns better for the defocusing
technique [6]. However, it also is difficult for these
techniques to achieve high-quality wide fringes.

Since the 1960s [7], researchers have been developing
methods to represent grayscale images with binary images
for printing. The technique developed was called halfton-
ing or dithering. Numerous dithering techniques have been
developed that include random dithering [8], ordered
dithering [9], and error-diffusion dithering [10]. Our
previous study [11] showed that these techniques could
substantially enhance 3D shape measurement quality
when fringe stripes are wide, but offered limited improve-
ment when fringes are narrow. All these dithering techni-
ques were simply applying a single matrix to convert an
8 bit grayscale image to a 1 bit binary image, ignoring
the inherent image structures. Since the required fringe
patterns have sinusoidal structures, there should be great
room for drastically improving their quality.

Some genetic algorithms have been developed to im-
prove dithering techniques [12,13] and they have shown
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drastic improvement over the conventional dithering
technique. However, they were developed to improve
dithering techniques in general, which may not be optimal
for structured patterns. This Letter presents a genetic
algorithm to specifically optimize the dithering technique
for sinusoidal structured pattern generation. The proposed
genetic algorithm takes full advantage of the inherent
sinusoidal structures of the desired patterns, and
optimizes 1s and Os distributions so better sinusoids can
be generated. The proposed method is a genetic algorithm
that produces better genes through mutations and
crossovers from the dithered patterns.

Among all existing dithering techniques, the error-
diffusion dithering techniques have been most extensively
adopted because they are more accurate. In this method,
the pixels are quantized in a specific order by applying a
diffusion kernel 2(x, y), and the quantization error for the
current pixel is propagated to unprocessed pixels. The
process of modifying an input pixel can be described as,
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_ Here, f(2,7) is the original image, and error e(i,j) =
f(@,7) - b(3,7) is the difference between the quantized
image b(7,7) and the diffused image including the prior
processed pixel influences. The quantization error
e(i,7) is further diffused to unprocessed pixels through
the diffusion kernel i(7, ). There are numerous diffusion
kernel selections, and we used the kernel proposed by
Floyd-Steinberg [14]:
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Here, — represents the previously processed pixels,
and * the pixel in processing. One may notice that the
kernel coefficients sum to one, and thus this operation
preserves the local average value of the original image.
Since the error-diffusion pattern is simply applying a
matrix to the image, it is far from optimal. Therefore, this
Letter proposes a genetic algorithm to optimize the
dithering technique to generate better sinusoids. The
genetic algorithm starts with the dithered patterns using
the error-diffusion algorithm. Since the error-diffusion
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Fig. 1. (Color online) Crossover example. (a) Ideal pattern,
(b) parent 1, (c) parent 2, (d) crossover from (b) to (c).

algorithm is path and origin dependent, different
variations (genes) can be generated. Figures 1(b) and
1(c) shows two variations with one starting from the
top left corner and diffusing, and the other starting from
bottom left and bottom corner and diffusing. The diversity
of variations within genes will speed up the optimization
process. The proposed genetic algorithm was designed to
have a population of 20 patterns for each generation, and
individuals within each generation were evaluated using a
fitness function. The probability of choosing one individual
as the parent of next generation was calculated using the
rank selection method discussed in [15].

To emulate a projector defocusing effect, the pattern
was first blurred by a small Gaussian filter (e.g., 5 x 5 with
a standard deviation of 5/3 pixels). Then, the intensity of
this blurred image at each pixel was compared to the ideal
image. The difference between the two was defined as the
fitness function to be minimized. The proposed genetic
algorithm used two major techniques: crossover and
mutation.

Crossover is a technique that copies a block of one
pattern to the other. This happens when two parents
are chosen for recombination: a random rectangle from
the first parent with a random starting location, and ran-
dom width and height with both width and height less than
the fringe period. The random starting location from the
second parent is chosen with a constraint of ensuring
the same phase. To improve the efficiency of the crossover
process, the rectangle was chosen to lie in a region that
had a higher error for about 50% of the time to ensure that
the algorithm will avoid wasting too much time on areas
already optimized. Figures 1(b)-1(d) illustrate one cross-
over (inside the red rectangle) from Fig. 1(b) to Fig. 1(c).

While crossover was the primary driver, with approxi-
mately 80% of children having crossover from two parents,
the importance of mutations cannot be overlooked. In fact,
according to Spears [16], “Mutation serves to create
random diversity in the population, while crossover serves
as an accelerator that promotes emergent behavior from
its components.” This research employed a few different
strategies.

The primary method of mutation was bit-flip: changing
1s to Os or Os to 1s. We also adopted bit-switching: switch-
ing pixels within 4 x 4 pixels region. High-error (or low-
fitness) bits were more likely to undergo recombination
or be flipped. Similar to crossover, about 50% of mutations
occur on bits with a larger errors to speed up the whole
process.

Due to the fast speed of computing the genome fitness
value, no more than one mutation would occur for any
child. If we assume the probability p, <1 that any
mutation will be successful, then the probability of two
mutations far apart both being successful will be less than
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Fig. 2. (Color online) Patterns with different techniques:
(a) ideal sinusoidal, (b) Bayer dithering, (c) error-diffusion
dithering, (d) genetic optimized, (e) cross sections, and (f) cross
sections of intensity difference maps.

the probability of only one mutation being successful
(i.e., p? < py). If we remove the restriction that the two
pixels will be far apart, and instead only consider when
the pixels are close, then we have two cases: (1) The pixels
have the same value, in which case it is far more likely that
one flip would be successful rather than two; and (2) the
pixels have differing values, in which case they could still
be bit-switched.

Although allowing the algorithm to run for as long as
possible would yield the patterns with the lowest fitness
function, a stopping criterion was used to balance the
processing time and fitness value. The algorithm was
stopped when the fitness of the best individual did not
improve after 100 iterations. The results presented in this
Letter were generated by roughly 10,000 iterations.

We firstly performed some simulations with a
wide range of fringe breadths. Figure 2 shows the
example when fringe is dense (period of 18 pixels).
Figures 2(b)-2(d) top half images show the dithered
patterns, and the bottom images show the smoothed
patterns with a Gaussian filter (5 x5 with a standard
deviation of 5/3 pixels). The cross sections of
these smoothed patterns were plotted in Fig. 2(e).
Figure 2(f) shows the differences between these
patterns and the ideal sinusoidal pattern. This figure
shows that the genetic optimized pattern is closer to
the ideal pattern.

Since the phase quality determines the measurement
quality, the phase was also calculated using a three-step,
phase-shifting algorithm and a temporal phase unwrapping
framework [17]. The phase errors were calculated by com-
paring them with the phase obtained from ideal sinusoidal
patterns. Figures 3(a) and 3(b) show the comparison of the
phase root-mean-square errors for different techniques

g -x-Bayer (a)

~o-Error Dff. (b)
01 ~0-Error Diff.

-©-Genetic

a
o
o
=)

=4
9
3

x
Eooef. Mg

2 - e
E0.04w""—-‘-q--x--u--x._
[ ——

50 100 150 200 250 ST 80 100 150 200 250
Fringe period (pixel) Fringe period (pixel)

~6-Error DI (d)
\O_Q\"jjen:‘*o—v—o—h
-+ \

Oig g0 LOmey
oo, ‘6--6.

Phase rms error (rad)
o
°
8
o

o <
)

o

-x-Bayer (©)
~6-Error Diff.

°
=
)

Phase rms error (rad)
°
o

Phase rms error (rad)
°

°
o o
3
3

o
200 250

250 50

50

100 150 200 100 150
Fringe period (pixel) Fringe period (pixel)

Fig. 3. (Color online) Results with different dithering techni-
ques. (a) and (b) Simulation results; (¢) and (d) experimental
results.
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Fig. 4. (Color online) Measurement results of 3D statue using
different techniques. (a) Photo of the object. (b) One of the
squared binary patterns. (c¢)—(f) 3D results using the squared
binary, the Bayer dithered, the error-diffusion dithered, and
the genetic optimized dithered patterns.

with different fringe periods. This clearly shows that
the proposed genetic algorithm works the best while
the error-diffusion technique works better than the Bayer
diffusion technique. Notice that both the Bayer and error-
diffusing dithering techniques showed larger errors when
fringes are dense, while the genetic optimization method
performed well even when fringe stripes were very dense.

The proposed technique also was verified with a
previously developed 3D shape measurement system that
includes a digital light processing projector (Samsung
SP-P310MEMX) and a CCD camera (Jai Pulnix TM-
6740CL). The camera was attached a 16 mm focal
length megapixel lens (Computar M1614-MP). The pro-
jector and the camera remained untouched for these
experiments.

We experimentally verified the simulation results by
measuring a flat white surface using all these fringe
patterns. Figures 3(c) and 3(d) show the results. The phase
errors were calculated by taking the difference between
the phase recovered from the ideal sinusoidal fringe
patterns with that from the dithered patterns. Again, the
genetic optimized algorithm generated the best results
while the Bayer dithering performed the worst.

A more complex 3D statue, the David head shown in
Fig. 4(a), was also measured to compare these methods.
Figure 4 compares all the results. The captured squared
binary pattern, shown in Fig. 4(b) clearly shows that

the projector was nearly focused. The fringe period used
was very small (18 pixels), and the phase was converted to
depth using the simple reference-plane-based method [2].
This figure showed that the squared-binary technique
could not generate reasonable quality measurement when
projector is nearly focused, as indicated in Fig. 4(c).
Figures 4(d)—4(f), respectively, shows the result with
the Bayer dithering, error-diffusion dithering, and the
genetically optimized dithering technique. All these were
better than Fig. 4(c) with the proposed method performing
the best. It is important to note that all these 3D data
were smoothed by a 5 x 5 Gaussian filter to reduce some
random noise.

We have presented a genetic algorithm to optimize the
dithering technique. Both simulation and experiments have
demonstrated the proposed technique can substantially
improve fringe quality for both narrow and wide fringes.
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