Natural method for three-dimensional range
data compression

Pan Ou'? and Song Zhang"*

'Department of Mechanical Engineering, lowa State University, Ames, lowa 50011, USA

2School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China

*Corresponding author: song@iastate.edu

Received 3 December 2012; revised 15 February 2013; accepted 17 February 2013;
posted 20 February 2013 (Doc. ID 181031); published 13 March 2013

Prior studies on converting three-dimensional (3D) range data into regular two-dimensional (2D) color
images using virtual fringe projection techniques showed great promise for 3D range data compression,
yet they require resampling the raw scanned data. Due to this resampling, the natural 3D range data are
altered and sampling error may be introduced. This paper presents a method that compresses the raw
sampling points without modifications. Instead of directly utilizing the 3D recovered shape, this method
compresses the s map, the scale factor of a perspective projection from a 3D space to a 2D space. The s
map is then converted to 2D color image for further compression with existing 2D image compression
techniques. By this means, 3D data obtained by 3D range scanners can be compressed into 2D images
without any resampling, providing a natural and more accurate method of compressing 3D range data.
Experimental results verified the success of the proposed method. © 2013 Optical Society of America

OCIS codes:  120.2650, 100.5070, 100.6890.

1. Introduction

Over the past decades, three-dimensional (3D) range
geometry/video scanning techniques have advanced
rapidly and shown the great potential to penetrateinto
our daily life [1,2]. Yet, unlike their two-dimensional
(2D) counterparts, storing enormously large 3D raw
data becomes an issue since 3D range data compres-
sion techniques have notbeen well established. There-
fore, it is an important issue to study on how to store
and transport 3D range data in an efficient way [3].
At present, 3D range data are predominantly
stored as mesh formats (e.g., STL, OBJ, PLY). These
formats are designed to be generic and effective such
that they could be used to represent arbitrary topol-
ogies, and they usually store (x,y,z) coordinates for
each vertex of a polygon, the connectivity between
vertices, and sometimes surface normal and (u,v)
map. However, these methods require a large storage
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space (for example, to store 640 x 480 resolution 3D
range data, the OBJ file requires approximately
13 MB storage space even without normal infor-
mation [4]). Over the years, some mesh compression
methods [5—7] have been developed, and they
achieved reasonable compression ratios with good
qualities. However, they often involve a very time-
consuming encoding process (ranging from seconds
to minutes, even to hours), making them difficult
to be employed for real-time applications.

For a digital fringe projection (DFP) system, 3D
shapes are recovered from the phase, making it a
natural approach to represent 3D range data with
phase maps. This approach has been demonstrated
successfully for 3D video communication [8]. How-
ever, the achievable compression ratio is limited since
atleast 4 bytes are required to store the floating-point
phase map. To further compress the phase data, one
could pack the most significant bits of the phase maps
into regular 24 bits red, green, and blue (RGB) im-
ages. Yet, this method is limited to use lossless 2D im-
age formats since any error on the most significant bit
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will introduce substantially errors on the recovered
3D shape [3].

Virtually creating a 3D range scanner with ad-
vanced computer graphics tools can be used to con-
vert 3D shapes to regular 2D images by virtually
rescanning the objects with a virtual DFP technique
[4,9,10]. Since 3D shapes can be represented as co-
sine functions, they can be further compressed,
and even be extended to range video compression
[3,11]. These techniques achieved great compression
ratios without substantially losing data quality.
However, because one 8 bit channel spatially encodes
fringe orders for temporal phase unwrapping, these
techniques are limited to use a finite number of
fringe stripes, resulting in relatively low-resolution
2D images for representing 3D geometries. To permit
higher spatial resolution representation, we pro-
posed a method that directly encodes depth z into
regular color fringe images, such that an arbitrary
spatial resolution can be used [12]. However, all
these methods require resampling the original 3D
geometry, resulting in a loss of information during
the resampling process. To reduce sampling errors,
higher resolution sampling could be utilized, but this
approach drastically compromises the compression
ratio [13]. Moreover, the resampling angle becomes
vital since any deviation from the scanner’s camera
viewing angle will result in data loss due to occlu-
sions. Furthermore, because of resampling, the origi-
nal mesh connectivity information may change,
which might be problematic if such information is
crucial (e.g., texture mapping).

This paper presents a novel technique to overcome
the aforementioned limitations by allowing com-
pressing the raw data points without any modifica-
tions. Instead of utilizing 3D recovered geometry,
the proposed approach compresses the s map, the
scale factor of a perspective projection from a 3D
space to a 2D plane. For a given 3D range system,
the s map is unique to every measurement, and it
can be determined during the 3D reconstruction.
Similar to the depth map encoding method proposed
in [12], an s map can also be converted to a 2D color
image that can be further compressed using existing
2D image compression techniques. Since the s map
comes along with the camera image pixel by pixel,
the proposed technique permits compressing 3D
range data into regular 2D images without any re-
sampling. Therefore, this is a natural and more accu-
rate method for compressing 3D range data. We will
present experimental results to verify the perfor-
mance of this proposed technique.

Section 2 explains the principle of encoding and de-
coding. Section 3 shows experimental results, and
Section 4 summarizes this paper.

2. Principle

A. Principle of Structured-Light Technique

The structured-light method has been extensively
adopted in both scientific study and industry due
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to its flexibility [2]. The structured-light method is
similar to a stereo-based method, except that it uses
a projector to replace one of the cameras [14]. Over
the years, there have been numerous techniques de-
veloped to recover 3D shape, among which the DFP
technique stands out due to its speed and accuracy.
The DFP technique is a special kind of structured-
light method where the structured pattern intensity
varies sinusoidally.

Figure 1 shows the schematic diagram of a 3D
shape measurement system using a DFP technique.
The system includes the image acquisition unit (A),
the projection unit (C), and the object to be measured
(B). These three basic units form a triangulation
base. The projector shines vertically straight struc-
tured stripes that vary horizontally on the object sur-
face. Each vertical stripe is also called a phase line
that is used to establish one of the correspondence
constraints between the camera and the projector.
The object surface distorts straight phase lines to
curved ones if the surface is not flat and if they
are perceived from another viewing angle. A camera
captures the distorted structured images from an
angle differs from the projection angle for 3D
reconstruction. For a DFP system, the correspon-
dence is established through the phase carried by
the sinusoidal structured patterns. Once the corre-
spondence is established, (x,y,z) coordinates of a
point on the object surface can be recovered if both
the camera and the projector are calibrated [15].

To calibrate a camera, a pinhole model is usually
used. The pinhole camera model describes a camera
with intrinsic parameters (e.g., focal length, princi-
pal point) and extrinsic parameters describing the
rotation and translation between the world coordi-
nate system (0;x,y,z) and the camera coordinate
system (0% x¢,y¢,2°) [16]. The imaging process is es-
sentially a projection from a 3D space to a 2D plane,
which can be mathematically described as
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Fig. 1. (Color online) Schematic diagram of a 3D shape measure-
ment using a structured-light-based technique.



where s is a scale factor, [R, T is the extrinsic matrix,
R is the 3 x 3 rotation matrix, and T is the 3x 1
translation vector. A is the camera intrinsic matrix
that can be described as

a Yy U
0 0 1

Here, a and g are, respectively, the focal lengths
along x and y axis, y is the camera skew factor,
and (ug,vq) is the principal point where the optical
axis intersects with the camera sensor. Once the
extrinsic and intrinsic matrices are determined
through calibration, the projection from the world
coordinates (x,y,z) to the camera image coordinates
(u,v) is unique.

Since the projector and the camera are optically
the same, the projector can also use the same pinhole
camera model [15]. The calibration of a structured-
light system essentially estimates the intrinsic and
extrinsic parameters of the projector and the camera.
If the world coordinate system for the camera is de-
fined to be the same as that of the projector, absolute
(x,y,z) coordinates can be reconstructed from
absolute phase [17].

B. s Map Encoding

Equation (1) indicates that, for a calibrated
structured-light system, there is a unique relation-
ship between (x,y,z) coordinates and the scale factor
s given (u,v) map, which is the camera image. That
is, instead of storing recovered (x,y,z) coordinates,
one can store the camera calibration parameters
li.e., A, R, T in Eq. (1)] and s map. Since only s rather
than three x, y, and z information are stored, this
method reduces the file size to be 1/3 without scari-
fying any quality. Furthermore, because s map is a
natural camera grid, it can be converted to 2D color
images for further compression.

To convert s map to a 2D color image, a similar
method to that introduced in [12] can be adopted. In-
stead of converting the resampled and normalized
depth z map into regular RGB image, we encode nor-
malized s map, s”, into three color channels of the
regular 2D image as

I.(i,j) = 127.5 + 127.5 sin(2zs" /P), 3)
I, (i.j) = 127.5 4+ 127.5 cos(2zs" / P), 4)

I,@i.j) =c-Fl(s"/P+ 0.5) + 0.5¢c + 0.5(c — 2)
) Mod(sn,P)i|

P, %)

- Ccos [27[

Here, P is the fringe period, P; = P/(N + 0.5) is the
local fringe period, N is an integer number, ¢ = 255P
is the stair height in grayscale value, Mod(a, b) is the

modulus operator to get a over b, and Fl(x) is to get
the integer number of x by removing the decimals.
Since all these equations vary sinusoidally, this
compression technique permits high-quality lossy
compression [3]. In these equations, the normalized
s map, s”, is determined by

st = (S - smin)/(smax - Smin)» (6)

where s, and s.,;, are, respectively, the maximum
and the minimum s values.
Solving Egs. (3) and (4) leads to

I.-1275
LN -1 r
$(.j) = tan (Ig - 127.5)'

(7
This equation provides the wrapped phase ¢(i.j)
ranging from 0 to 2z with 2z discontinuities. The
wrapped phase can be unwrapped by combing with
the fringe order, k(i,j), information carried by the
blue channel,

kG.j) = FZ(I:) (8)

It should be noted that the blue channel encodes a
modified stair image to ensure that the stair changes
perfectly align with the 27 discontinuities for tempo-
ral phase unwrapping, and the normalized s map, s”,
can be uniquely determined for each point by

¢(i,j):|.

on 9

s(.j) = P[k(i,j) +

Once s" map is obtained, s map can be obtained by a
linear transformation,

§=g"" (smax - Smin) =+ Smin- (10)

Recovering (x,y,z) coordinates from s map is
straightforward. From Eq. (1), we have

X u
|:yi|:(A-R)‘1-s-|:vi|—R‘1-T. (11)
2 1

3. Experiments

In this research, we used a previously developed
DFP system to scan the testing objects, and com-
pressed the raw scanned data with the proposed
method. The hardware system includes a digital-
light-processing  projector (Model: Samsung
SP-P310MEMX), and a CCD camera (Model: the
Imaging Source Digital USB CCD camera DMK
21BU04). The camera uses a 12 mm focal length
megapixel lens (Model: Computar M1214-MP) at
F/1.4 to 16C. The camera resolution is 640 x 480.
The projector has a resolution of 800 x 600 with a
projection distance of 0.49-2.80 m. We employed
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Fig. 2.
(d) recovered 3D shape.

the multiple wavelength phase-shifting algorithm
described in [18] for absolute phase capture, and
the calibration method discussed in [15] for 3D coor-
dinates recovery.

We first experimented with a spherical object.
Figure 2 shows the measurement results. The raw
data are shown in Fig. 2(a), whose s map is show
in Fig. 2(b). The s map was encoded into a 24 bit color
image using Egs. (3)-(5), and the result is shown in
Fig. 2(c). From this encoded color image, the original
s map can be recovered, and the original (x,y,z) co-
ordinates can also be reconstructed by combining the
camera calibration parameters. Figure 2(d) shows
the recovered 3D result if 2D color image is stored
as the lossless PNG format. There is no visible
difference between the original 3D data and the
recovered one.

Taking the differences between the recovered 3D
shape and the original 3D shape point by point,
the error can be quantified. In this research, the
error is quantified by the mean distance error that
is defined as

M
Ba = z\%z V=2 + 0=y + -2 (12)
i=1

Here, (x,y,2z) are the original coordinates, (x",y",2z")
are the recovered coordinates, and M is the total
number of valid measurement points (i.e., the back-
ground points are ignored).
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Fig. 3.
(Ag = 0.003 mm).
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(Color online) Experimental results of an ideal sphere. (a) Original 3D shape, (b) s map, (¢) encoded 2D color image, and

Figure 3 shows the comparison between the origi-
nal 3D shape and the recovered shape. Figure 3(a)
plots one cross section of the original geometry and
the recovered geometry, which clearly shows that
they are almost perfectly aligned. The differences be-
tween these two curves were plotted in Fig. 3(b). The
difference is very small with a mean distance error
(Ag) of 0.003 mm for the whole measurement points.
It is negligible small for the object with a range of
x €[-22.98,70.45] mm, y € [48.35,144.07] mm, and
z €[144.79,191.44] mm.

Even without further 2D image compression,
the file size is already much smaller comparing
with storing the data using the standard 3D mesh
formats. If the encoded image is stored as a lossless
PNG file format (file size is approximately
114 kbytes), the compression ratio is approximately
52:1 comparing with the STL format. The 2D image
can be further stored as lossy image formats, such as
the JPG formats with different levels of quality.
Figure 4 shows the comparing results when the 2D
images were stored as JPG files with quality levels
12, 10, 8, and 6. The JPG quality levels are defined
by Adobe Photoshop CS3 with 12 being the best qual-
ity. This experiment shows that the encoded color im-
age can be stored as lossy image formats. Of course,
higher-quality 2D images will result in less compres-
sion ratio but better quality 3D shape recovery. One
may also notice that the recovered data have some
artifacts if a low-quality JPG is used: spikes on
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(Color online) Comparison between the recovered sphere and the original sphere. (a) z cross sections and (b) z difference
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Fig. 4. (Color online) Results of using different quality JPG file formats. (a)-(d) 3D results from JPG file with quality levels 12, 10, 8, and

6, respectively; (e)—(h) z differences for 320-th row of above results comparing with the original 3D data. A; = 0.008, 0.035, 0.063, and

0.192 mm for (e)—(h), respectively.

the boundary. Even with low-quality JPG formats,
the overall 3D geometry was still properly recovered.
It should be noted that for these 3D results recovered
from lossy formats, median filters (9 x9 and 5 x 5)
were used to reduce the incorrectly unwrapped phase
points.

A more complex 3D object (David head) was also
scanned and tested. Figure 5 shows the results.
Figures b5(a)-5(c) show the raw scanned 3D
shape, the s map, and the encoded 2D color image.
Figure 5(d) shows the image that overlays the original
3D shape with the 3D shape recovered from a lossless
PNG image. This figure shows that they are almost
perfectly aligned. Quantitatively, A, is approximately

Fig. 5.

0.022 mm, which is, again, negligibly small com-
paring with the size of 3D statue: x €[-30.58,
166.46) mm, y €[-13.07,214.93]mm, and =z€
[-47.58,125.38] mm. This once again confirmed that
the proposed encoding technique can represent the
original complex 3D shape with a high quality.

To further compress the data, the encoded 2D color
images were compressed with lossy JPG file formats.
Again, we used Adobe Photoshop CS3 to save the
lossless image to JPG formats with quality levels
of 12, 10, 8, and 6. Figure 6 shows the comparing
results. Figures 6(a)-6(d) show the recovered 3D
results if the 2D image is stored with these quality
levels of JPG files. Again, there are artifacts on

(d)

(Color online) Experimental results of on a complex statue, David head. (a) Original 3D shape, (b) s map, (c¢) encoded 2D color

image, and (d) overlapping original and recovered 3D results. Green color represents the original 3D shape and golden color represents the

recovered 3D shape (A; = 0.022 mm).
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Fig. 6. (Color online) Experimental results of on a complex statue, David head. (a)-(d) Raw 3D results from JPG images at levels 12, 10, 8,
6, respectively, and A; = 0.046, 0.128, 0.215, and 0.371 mm, respectively; (e)—(h) cleaned 3D results from JPG images at levels 12, 10, 8, 6,
respectively, and A; = 0.046, 0.079, 0.114, and 0.153 mm, respectively.

the boundary and detail losses for lower-quality JPG
formats, but the overall 3D geometry is all main-
tained quite well. To better illustrate the recovered
geometry, all those boundary spikes were removed
by a simple thresholding method. Figures 6(e)-6(h)
illustrate the cleaned 3D results with different
quality levels of JPG files.

The ultimate goal of this research is to compress
complex 3D range data effectively. Table 1 summa-
rizes the achieved compression ratios and the asso-
ciated errors if the David head data were stored in
different mesh formats (i.e., OBJ, PLY, and STL),
and in different 2D image formats. These data indi-
cate that (1) even converting 3D range data to a loss-
less BMP file will substantially save the storage
(21.3:1 comparing with the STL format), (2) PNG
seems to be a good option if lossless compression is
needed, and (3) overwhelming compression ratios
can be achieved if the encoded 2D color images are

stored in lossy JPG formats. It is important to note
that the OBJ and PLY files we used only store the
connectivity and vertices information. In other
words, texture, uv map, and normal map were not
preserved. If the uv maps were stored, the file size
would be drastically larger, and even greater
compression ratios could be achieved.

It is important to note that comparing with previ-
ously presented methods [4,12], this compression
method requires to store camera calibration informa-
tion [i.e., (AR)™! and RT] and the range of data
(Smax and sp,in). The background pixels are indicated
as black pixels (R = G = B = 0), and thus it is not
necessary to store such information. Coincidentally,
encoding s-map directly could more effectively
achieve higher accuracy than the method of spatially
resampling the data with higher densities. This
holds true for structured-light range scanning
systems, where the ratio between the depth recovery

Table 1. Compression Ratios for Different Encoded Image Formats Versus 3D Mesh File Formats®

BMP PNG JPG12 JPG10 JPGS8 JPEG6
OBJ 15.7:1 51.0:1 62.7:1 110:1 159.1:1 213.5:1
PLY 16.1:1 52.4:1 64.4:1 112.9:1 163.4:1 219.3:1
STL 21.3:1 69.3:1 85.2:1 149.5:1 216.2:1 290.3:1
Ay (mm) 0.022 0.022 0.046 0.079 0.114 0.153

“Mean distance errors A, refer to cleaned results.
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error and the lateral extension is a constant. Under
an optimal setup, the ratio is approximately
1074 [19,20].

4. Summary

We have presented the idea of naturally encoding 3D
range data into regular 2D images without resam-
pling the 3D geometry. Experimental data showed
that: (1) high accuracy reconstruction can be
achieved if the 2D images are stored as lossless im-
age formats, (2) larger compression ratios can be
realized if the image is stored as lossy image formats
(e.g., JPG), and (3) even with very low quality lossy
JPG compression, the overall 3D shape can still be
well preserved. Since this novel compression method
takes the s map naturally without modifications, it is
a natural way of storing 3D range data without those
major limitations suffered by most of the state-of-
the-art 3D data compression techniques. Moreover,
because this technique is straightforward without in-
tensive computation requirements, this proposed
technique has the potential to instantaneously
compress and deliver 3D live video contents for a 3D
range video acquisition system. Though the linear
camera model is used, this proposed method can be
extended to the nonlinear camera model by con-
verting the nonlinear to linear model through prior
rectification of the camera images before com-
pression. By this means, the same compression
techniques can be used. For the 3D shape measure-
ment system we have, because the camera lens is
quite good, the nonlinear effect is not obvious, and
thus a linear calibration model is sufficient.
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