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Our previous research has shown that 3D range data sizes can be substantially reduced if they are
converted into regular 2D images using the Holoimage technique. Yet, this technique requires all 24 bits
of a standard image to represent one 3D point, making it impossible for a regular 2D image to carry 2D
texture information as well. This paper proposes an approach to represent 3D range data with 3 bits,
further reducing the data size. We demonstrate that more than an 8.2:1 compression ratio can be
achieved with compression root-mean-square error of only 0.34%. Moreover, we can use another bit
to represent a black-and-white 2D texture, and thus both 3D data and 2D texture images can be stored
into an 8 bit grayscale image. Both simulation and experiments are presented to verify the performance

of the proposed technique.
OCIS codes:  120.2650, 100.5070, 100.6890.

1. Introduction

Advancements in real-time 3D scanning are being
made at an unprecedented rate, driving the technol-
ogy further into mainstream life, as can be seen from
real-time 3D scanners, such as the Microsoft Kinect
[1,2]. With these advancements, large amounts of
data are being generated, bringing forth the chal-
lenge of streaming and storing this information in
an efficient manner. Classical geometry compression
approaches compress the 3D geometry and its attrib-
utes, such as normals, texture coordinates, etc., in a
model format such as OBJ, PLY, or STL. Though
these formats work well for static scans or structured
meshes, the same does not hold true for 3D scans
from a real-time 3D scanner due to its unstructured
nature [3].

To address this challenge, newer approaches bet-
ter suited to data coming from 3D scanners have
been developed, including heuristic-based point-
cloud encoding [4,5] and image-based encoding ap-
proaches [6-8]. Image-based encoding approaches
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work well, as the geometry can be projected into im-
ages, and then 2D image compression can be utilized
until 3D reconstruction is desired. Since 2D image
compression is a long studied field, high compression
ratios with relatively low amounts of error can be
achieved.

Holoimage [8] is an image-based encoding tech-
nique that allows for real-time encoding and
decoding at high compression ratios. It leverages
techniques from optical metrology, namely fringe
projection. Due to the error tolerance in fringe projec-
tion, the fringe patterns can be highly compressed
with little error to the reconstructed 3D geometry.
Karpinsky and Zhang [9] proposed to utilize the
Holoimage technique and Hou et al. [10] proposed
a similar virtual structured light technique to com-
press 3D geometry. Based on Holoimage’s real-time
encoding and decoding, it is able to compress data
from real-time 3D scanners [3]. With these merits,
it is well suited as a format for high-speed 3D scans,
which can then be streamed and stored.

Although Holoimage is a good technique for com-
pressing 3D geometry from a real-time 3D scanner,
it still uses 24 bits to represent a 3D coordinate,
which in practice takes up the three standard image



channels [red, green, and blue (RGB)]. With this rep-
resentation, there is no room in a standard image for
other information, such as a texture or a normal map.
This research addresses this by representing the
image with only 3 bits instead of 24 through the
use of image dithering. This leaves 21 remaining bits
for other information, such as texture or normal
maps, allowing for more information to be stored
and streamed. With this new encoding, compression
ratios of 8.1:1 have been achieved when compared
with a 24 bit Holoimage with a mean-squared error
of 0.34%.

Section 2 explains the principle behind Holoimage,
applying image dithering, and how it fits into the
Holoimage pipeline. Section 3 shows experimental
results of a 3D unit sphere and a David bust and dis-
cusses the findings. Finally, Section 4 summarizes
the paper.

2. Principle

A. Holoimage Encoding and Decoding

Holoimage is a form a 3D geometry representation
that is well suited to quickly and efficiently compress
3D geometry coming from 3D scanners [9]. It works
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off of the principle of fringe projection from optical
metrology. Encoding works by creating a virtual
fringe projection system and virtually scanning 3D
geometry into a set of 2D images that can then later
be used to decode back into 3D. Figure 1 shows a con-
ceptual model of the holovideo system. The projector
projects a pattern onto the geometry, which can be
done using OpenGL shaders [3], and then the camera
captures the resulting scene, which can be done by
saving the framebuffer as an image. Once in the
image format, standard 2D image-processing tech-
niques, such as compression or dithering can be
applied.

Details of the holoimaging encoding and decoding
algorithms have been thoroughly discussed in [3]; we
only briefly explain these algorithms here. The Holo-
image encoding colors the scene with the structured
light pattern. To accomplish this, the model view
matrix of the projector is rotated around the z axis
by some angle (e.g., # = 30°) from the camera matrix.
Each point is colored with the following three
equations:

I(x.y) = 0.5 + 0.5 sin(2zx/P), (1)
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Fig. 1. (Color online) Holovideo system conceptual model. The virtual projection system projects sinusoidal fringe patterns onto the
object; the result is rendered by the graphics pipeline, and then displayed on the screen. The screen view acts as a virtual camera imaging
system. Because both the projector and the camera are virtually constructed, they can both be orthogonal devices. The angle between the

projection system and the camera imaging system is 6.
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I (x,y) = 0.5+ 0.5 cos(21x/P), (2)

Iy(x,y) =S -Fl(x/P) + S/2 + (S -2)/2
- cos[2x - Mod(x, P)/P4], 3)

where P, the fringe pitch represents the number of
pixels per fringe stripe, P; = P/(K + 0.5) is the local
fringe pitch and K is an integer number, S is the stair
height in the grayscale intensity value, Mod(a, b) is
the modulus operator to get a over b, and Fl(x) is
used to obtain the integer number of x by removing
the decimals.

Decoding the resulting Holoimage is more involved
than encoding involving four major steps: (1) calculat-
ing the phase map from the Holoimage frame, (2)
filtering the phase map, (3) calculating normals from
the phase map, and (4) performing the final render. A
multipass rendering was utilized to accomplish these
steps, saving results from the intermediate steps to a
texture, which allowed us to access neighboring pixel
values in proceeding steps.

Equations (1)—~(3) provide the phase uniquely for
each point,

D (x,y) = 27 x FI[I, - S/2)/S]
+tan"l[(I, - 0.5)/(I, - 0.5). (4

It should be noted that this phase is already un-
wrapped, and thus no spatial phase unwrapping is
required for this process. From the unwrapped phase
®(x,y), the normalized coordinates (x",y",2") can be
decoded as [9]

x" =j/W, (5)

Yy =yW, (6)

n

_ P®(x,y) — 271 cos(6)

2zW sin 6 @)

This yields a value z" in terms of P, which is the
fringe pitch, i, which is the index of the pixel being
decoded in the Holoimage frame, 6, which is the
angle between the capture plane and the projection
plane (6 = 30° for our case), and W, which is the
number of pixels horizontally.

From the normalized coordinates (x",y",z"), the
original 3D coordinates can recovered point by point:

x=x"x8,+ C,, (8)
y=y"xS,+C,, (9)

z=2z"%xS,+C,. (10)
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Here S, is the scaling factor to normalize the 3D
geometry, and (C,, C,, and C,) are the center coordi-
nates of the original 3D geometry.

B. Image Dithering

Image dithering is the process of taking a higher
color depth image and reducing the color depth to
a lower level through a quantization technique
[11]. Different types of image-dithering techniques
exist, such as ordered dithering [12] and error diffus-
ing [13]. In this research, two of the most popular
algorithms were investigated: Bayer [12] and
Floyd—Steinberg [14] dithering.

1. Bayer Dithering

Bayer dithering, sometimes known as ordered dith-
ering, involves quantizing pixels based on a thresh-
old matrix [12]. In the simple case of quantizing to a
binary image, it involves taking each pixel in an im-
age and applying Algorithm 1:

Algorithm 1: Bayer dithering

Input: Pixel—Structure representing properties of a pixel in
an image. Has color components ranging from 0.0 to 1.0

Input: ThresholdMap—Matrix of threshold values

Ouput: Pixel.color—Pixel’s dithered color component,
either 0 or 1

for Each Pixel do

if Pixel.color >= ThresholdMap|[pixel.x mod map Width]
[pixel.y mod mapHeight]

then
Pixel.color = 1;
else
Pixel.color = 0;
end
end

0 32 8 40 2 34 10 42
48 16 56 24 50 18 58 26
12 44 4 36 14 46 6 38

40 |60 28 52 20 62 30 54 22
25507 | 3 35 11 43 1 33 9 41
51 19 59 27 49 17 57 25
15 47 7 39 13 45 5 37
63 31 55 23 61 29 53 21

(11)

Equation (11) gives an example of an 8 x 8 thresh-
old matrix, which was also the matrix used in
this work.

Bayer has shown that if the sizes of the matrices
are 2V (N is an integer), then optimal matrices
can be derived; the matrices can be obtained as

follows:
0 2
M, = [3 1}, (12)



which is the smallest 2 x 2 base dither pattern.
Larger dither patterns can be obtained using

4M,

Mo 4aM, + 2U,
n+1 =1 4M, + 38U,

aM, + U, } (13)
where U, is an n-dimensional unit matrix (one
for all elements). Using larger threshold matrices
allows more distinct tones to be represented in
the final image; thus larger threshold matrices
could result in lower error. In this research, we
used an 8 x 8 since it is a large matrix that should
theoretically yield 64 different tones in the result-
ing image. However, we also found that if the
matrix is too large, the resultant dithered pattern
is not of high quality. We typically use 8 x8 or
16 x 16 matrices of our study.

With Bayer dithering, the threshold map adds
minor local error noise to the quantized pixel, but
the overall intensity is preserved. Since this
algorithm is a parallel algorithm, it can easily be
integrated into the Holoimage pipeline in the
fragment shading stage of the encoding, allowing
for little to no overhead in encoding.

2. Floyd-Steinberg Dithering

Floyd—Steinberg dithering is a form of error diffusing
dither, which diffuses quantization error of a specific
pixel into neighboring pixels [14]. Through error
diffusing, the cumulative quantization error is kept
to a minimum, which is near zero. The original
Floyd—Steinberg dithering algorithm is given with
Algorithm 2.

Algorithm 2: Floyd—Steinberg dithering

Input: Image—Original Image to be dithered. Has color
components ranging from 0.0 to 1.0
for y<0 to Image.Height do
for x<0 to Image.Width do
if Image.Pixel(x,y).color >= 0.5 then
newColor = 1;
else
newColor = 0;
end
quantError = Image.Pixel(x, y)-newColor;
Image.Pixel(x,y) = newColor;
//Diffuse Error;
Image.Pixel(x + 1,y)+ = 7/16 * quantError;
Image.Pixel(x — 1,y + 1)+ = 3/16 * quantError;
Image.Pixel(x,y + 1)+ = 5/16 * quantError;
Image.Pixel(x + 1,y + 1)+ = 1/16 * quantError;
end
end

In the first part of the algorithm, the image’s pixel
value is quantized into either 1 or 0. Then the quan-
tization error from this operation is calculated, and
then diffused into neighboring pixels, to the right and
down. It should be noted that unlike ordered dither-
ing, this algorithm is a serial algorithm, operating
on the image pixels one by one. In the standard

Floyd—Steinberg dithering algorithm, the route is
from left to right, top to bottom, realized as a forward
array. Once a pixel has been quantized, it is no longer
changed. However, we did find that the resultant im-
age quality depends on the starting location and path
of diffusing the error [15]. Another zigzag route could
be taken, but the algorithm would have to be altered
slightly so that the error is not diffused into pixels
that have been dithered in the new zigzag route.

3. Experiments

To test the effects of image dithering on Holoimages,
we performed both Bayer and Floyd—Steinberg dith-
ering on Holoimages of a unit sphere and 3D scan of
the statue of David. In all of our experiments we had
a fringe frequency of 12, 6 of 30 deg, and Holoimage
size of 512 x 512.

To begin, we performed the dithering on the unit
sphere and then stored the resulting images in the
lossless portable network graphics (PNG) format.
Figures 2 and 3 show the results. Figure 2(a) shows
the Holoimage. RGB channels of the Holoimage are
then dithered with the Bayer-dithering technique
individually, and then stored into the three most sig-
nificant bits of the 8 bit grayscale image shown in
Fig. 2(b), with R being stored as the most significant
bit, and B being stored as the third most significant
bit. This grayscale image contains all the informa-
tion required to recover the whole 3D geometry car-
ried on by the 24 bit Holoimage shown in Fig. 2(a).
Similarly, the other dithering technique can also
be employed to convert the 24 bit Holoimage into
the three most significant bits of an 8 bit grayscale
image. Figure 2(c) shows the dithered image using
the Floyd—Steinberg dithering technique.

Before the 3D geometry can be decoded from the
Holoimage, 2D image processing needs to be re-
versed to attempt to put the Holoimage back into
its original state. In terms of dithering, this can be
done by applying a low-pass filter, such as a Gaussian
filter, to the dithered image. In this research, we used
a 7 x 7 Gaussian filter with a standard deviation of
7/3 pixels. It is also important to know that in the
Holoimage pipeline, filtering can be applied after
phase unwrapping. Previous work has shown that
median filtering can remove spiking noise in the final
reconstruction [16,17]. This is done by median filter-
ing, and then instead of using the median, detecting
the correct number of phase jumps from the
median and applying it to the phase at the cur-
rent pixel.

Figure 2(e) shows the reconstructed result from
the Bayer-dithered pattern shown in Fig. 2(b). In
comparison with the 3D result recovered from the
24 bit Holoimage shown in Fig. 2(d), the Bayer-
dithered result has some random noise on top of
the recovered 3D results. Yet, the sphere was well
recovered. Figure 2(f) shows the recovered results
using the Floyd—Steinberg dithering technique,
which are significantly better than the results
obtained from the Bayer-dithering technique.
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Fig. 2. (Color online) Results of dithering on unit sphere in a lossless image format. (a) Original Holoimage, (b) Holoimage with Bayer
dithering, (¢) Holoimage with Floyd—Steinberg dithering, (d) 3D reconstructed results for image shown in (a), (e) 3D reconstructed results
for image shown in (b), and (f) 3D reconstructed results for image shown in (c).

To better compare these dithering techniques,
Fig. 3 shows the cross sections of the recovered 3D
results using different methods compared with the
ideal unit sphere. Figures 3(a) and 3(d), respectively,
show the cross section of the recovered 3D sphere
overlapping with the ideal unit sphere, and the cross
section of the difference between these two, when the
24 bit Holoimage is used. The results are smooth,
and the error is small, which has been demonstrated
previously [3]. The Bayer-dithered results [Figs. 3(b)
and 3(e)] show that the overall geometry was recov-
ered quite well, but the error is larger: an approxi-
mate root-mean-square (rms) error of 0.33%. It can
be seen that this error is still quite small. Yet, the
Floyd—Steinberg dithering technique can further im-
prove the results, as shown in Figs. 3(c) and 3(f). This
is due to the quantization error being diffused into
neighboring pixels, reducing the overall quantization
error. The error can be further reduced to have an
approximate rms error of 0.2%. Is should be noted
that only 3 bits were used to represent the 24 bit
Holoimage, and the reconstructed geometry is still
of high quality.

Compression results depend on how the resulting
dithered information is stored. In this work JPEG
and other lossy image compression was not used
due to the fact that it makes use of a low-pass filter
before compression. This takes the 3 bit binary dith-
ered information and transforms it back into 24 bit
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information, which is undesirable. Instead, PNG, a
lossless image compression, was utilized, and the
three most significant bits of a grayscale image were
utilized, shown by Fig. 4(a). This resulted in a file
size of 79 kB with the unit sphere. Further compres-
sion can be achieved by saving the image in a planar
format, three times as wide with image channels one
after another, and then saving the PNG as a logical
1 bit image. This resulted in a file size of 62 kB, yield-
ing a compression ratio of 3.9:1 when compared
against a 24 bit Holoimage in the PNG format.

To further test dithering on Holoimages, the tech-
nique was performed on a scan of the statue of David
shown in Fig. 5. Figure 5(a) shows the 24 bit Holo-
image, and Fig. 5(d) shows the recovered 3D geom-
etry. The 24 bit Holoimage is then dithered into
3 bits and stored into the three most significant bits
of an 8 bit grayscale image. Figures 5(b) and 5(c), re-
spectively, show the Bayer-dithered result and the
Floyd—Steinberg dithered result, and their recovered
3D shapes are shown in Figs. 5(e) and 5(f). Again, it
can be seen that Bayer dithering results in larger
amounts of error seen as ripples and bumps on the
surface; Floyd—Steinberg dithering has some of these
errors as well, but they are not as prominent as in the
case with Bayer dithering. Floyd—Steinberg dither-
ing results a lower rms error of 0.34% when com-
pared to Bayer dithering at 0.37%. The resulting
file size is 39 kB, achieving a compression ratio of
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(Color online) Reconstruction errors of dithering on unit sphere in a lossless image format. (a) Cross section of reconstructed result
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shown in Fig. 2(d), (b) cross section of reconstructed results shown in Fig. 2(e), (c) cross section of reconstructed result shown in Fig. 2(f),
(d) reconstruction error between the reconstructed and ideal unit sphere for the result in (a), (e) reconstruction error between the recon-
structed and ideal unit sphere for the result in (b) (approximate rms error 0.33%), (d) reconstruction error between the reconstructed and
ideal unit sphere for the result in (c) (approximate rms error 0.2%), and (g)—(i) difference map of technique to ideal unit sphere.

8.2:1 when compared to the 24 bit Holoimage.
Although it might be expected that a simple unit
sphere would have a higher compression, this is
not the case, as PNG compression depends on pre-
compression and DEFLATE steps, which can result
in different file sizes for similar images.

Since the proposed technique only requires 3 bits
to represent the whole 3D geometry, there are 21 bits
remaining to encode more information such as the
grayscale texture that comes from the 3D scanner,
which can be encoded into the same image. There

are essentially two approaches to carry on texture
with 3D geometry. The first method is to pack the
8 bit grayscale image directly into the 24 bit image.
Figure 6(a) shows the resultant image, and its recov-
ered 3D geometry with texture mapping is shown in
Fig. 6(b). The file size is approximately 189 kB, which
is a substantial reduction compared with the original
24 bit Holoimage stored in PNG format 320 kB.
The 8 bit texture image can be dithered as well to
further compress the data. Figure 6(c) shows the
packed image that stores the 3D geometry along with

(b)
Fig. 4. Different ways to hold a packed dithered Holoimage. (a) Dithered channels packed in the three most significant bits and saved as a

grayscale PNG with resulting file size of 79 kB. (b) Dithered channels packed into a planar format and then saved as a logical PNG with
resulting file size of 62 kB.
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Fig. 5. (Color online) Results of dithering on scan of David statue in a lossless image format. (a) Original Holoimage, (b) Holoimage with
Bayer dithering, (c) Holoimage with Floyd—Steinberg dithering, (d) recovered 3D geometry from (a), (e) recovered 3D geometry from (b),

and (f) recovered 3D geometry from (c).

(©

Fig. 6. (Color online) Packing dithered Holoimage with texture. (a) 3 bit packed Holoimage with 8 bit grayscale texture, (b) 3D geometry
with original 8 bit texture mapping, (c) 3 bit packed Holoimage with 1 bit dithered texture, (d) 3D geometry with 1 bit dithered texture
mapping, and (e) 3D geometry with 1 bit dithered texture after texture is Gaussian filtered.

the 1 bit dithered texture image into the four most
significant bits of an 8 bit grayscale image. From this
image, the texture can be recovered by applying
a very small Gaussian filter (7 x7) as shown in
Fig. 6(d). It can be seen that the texture image is
of good quality. With only 4 bits, the file size is
approximately 64 kB. This example clearly demon-
strates that the proposed technique can embed both
the 3D geometry and the texture into a regular 2D
image, making it a novel technique to store 3D range
data in a substantially reduced size, with minor loss
of quality. Furthermore, because it only utilizes 4 bits,
this proposed 3D range data compression technique
can be leveraged for applications in which other
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critical information, such as connectivity or bump
maps, needs to be carried along.

4. Conclusion

An approach to represent 3D geometry has been pre-
sented, specifically applying image dithering to the
Holoimage technique to reduce the bit depth from
24 to 3 bits. The technique was presented with two
forms of image dithering, and sample data of a unit
sphere and a 3D scan of David have been shown. A
mean-squared error of 0.2% was achieved on the unit
sphere with a compression of 3.9:1 when compared
with the 24 bit Holoimage technique, and an rms er-
ror of 0.34% was achieved on the scan of David with a



compression of 8.2:1 when compared with the 24 bit
Holoimage. With the remaining 21 bits, grayscale
texture information was also encoded, effectively
embedding 3D geometry and texture into a single
8 bit grayscale image. Future work for this research
includes extending it to video with animation appro-
priate dithering.
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