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Abstract. Our study shows that the phase error caused by improperly
defocused binary structured patterns correlates to the depth z. This finding
leads to a novel uniaxial three-dimensional shape measurement techni-
que without triangulation. Since the measurement can be performed
from the same viewing angle, this proposed method overcomes some
limitations of the triangulation-based techniques, such as the problem
of measuring deep holes. Our study explains the principle of the technique
and presents some experimental results to verify its feasibility. © 2012Society
of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.2.023604]
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1 Introduction
Due to their speed and flexibility, three-dimensional shape
measurement based on digital sinusoidal fringe projection
techniques have been playing an increasingly important
role in optical metrology, and have been applied as a means
of solving problems for numerous areas.1 However, almost
all these techniques require formation of a triangle for depth
recovery. In other words, there must be a certain angle
between the projection line and the imaging line in order
to obtain the depth information for that point. However,
for any triangulation-based three-dimensional shape mea-
surement techniques, the occlusion of the system will be
a problem. That is, the depth of a point cannot be recovered
if just one of the two devices (camera or projector) can see it.
Therefore, it is very difficult for a triangulation-based
method to measure a small and deep hole, and difficult to
recover depth for the occlusion area of the camera or the
shadow area of the projector.

In contrast, if the depth information can be obtained
without triangulation, the limitation of the a triangulation-
based method can be significantly alleviated. The technique
that does not require the projector and the camera to form
a triangle is called uniaxial three-dimensional shape
measurement.

There are a few optical techniques that can recover depth
without triangulation. For instance, the shape from focus2

and the shape from defocus3,4 techniques measure depth
by capturing a set of images with varying focal lengths.
However, it is difficult for this technique to achieve high
measurement accuracy because it is extremely difficult to
precisely know the needed optical parameters (e.g., focal
length), especially when the object does not have strong
texture variations. Time-of-flight5 technique retrieves
depth by measuring the light traveling time from the point
at which it leaves the sensor to that of its return. This tech-
nique can achieve higher speed and good quality measure-
ment for long-range scenes, but cannot achieve high
accuracy for short-range scenes.

Since the contrast of the fringe will change at different
amounts of defocusing, Otani et al. presented a uniaxial three-
dimensional shapemeasurement technique by analyzing fringe
contrast (or data modulation).6 This technology works well for
uniform reflectivity surface, but has limitations when measur-
ing high-contrast three-dimensional objects. Recently, Birch
et al.7 proposed a method to alleviate this problem by measur-
ing the same surface another time with a different degree of
defocusing. However, this technique slows down the measure-
ment speed since it measures the object twice, and it is
practically difficult to calibrate since it is usually not easy to
precisely control the amounts of defocusing.

We propose a novel uniaxial three-dimensional shape
measurement technique to alleviate the aforementioned
problems through phase error analysis. Instead of analyzing
the image itself, this technique obtains depth from the phase,
which is inherently less sensitive to the optical properties
of the surfaces to be measured. This new technique is
based on the characteristics of the binary defocusing techni-
que8 that we proposed recently. In the study of the phase
error caused by improperly defocused binary structured
patterns, we found that the phase error can be described
as a function of wrapped phase, ϕðx; yÞ, and the depth, z.9

This finding provides an opportunity to determine the
depth from the phase error, which inspires the development
of this novel three-dimensional shape measurement techni-
que. Since it is not necessary to form a triangle to determine
the phase error caused by defocusing, this technique
can also be used for uniaxial three-dimensional shape
measurement.

Section 2 explains the principle of the proposed techni-
que. Section 3 shows some preliminary experimental results
to verify the feasibility of the proposed technique. Section 4
discusses the merits and possible limitations of the proposed
technique, and finally Sec. 5 summarizes this paper.

2 Principle

2.1 Three-Step Phase-Shifting Technique

Phase-shifting methods are widely used in optical metro-
logy because of their high measurement speed and high0091-3286/2012/$25.00 © 2012 SPIE
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achievable accuracy.10 A three-step phase-shifting algorithm
with a phase shift of 2π∕3 can be described as:

I1ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ − 2π∕3�; (1)

I2ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ�; (2)

I3ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ þ 2π∕3�; (3)

where I 0ðx; yÞ is the average intensity, I 0 0ðx; yÞ the intensity
modulation, and ϕðx; yÞ the phase to be solved for. From
these three equations, the phase can be calculated by

ϕðx; yÞ ¼ tan−1½
ffiffiffi

3
p

ðI1 − I3Þ∕ð2I2 − I1 − I3Þ�: (4)

This equation provides the wrapped phase ranging from −π
to þπ with 2π discontinuities.

2.2 Binary Defocusing Technique

Our recent study showed that by properly defocusing a bin-
ary structured pattern, a pseudo-sinusoidal one can be gen-
erated,8 which is similar to the Ronchi grating defocusing
method proposed by Su et al.11 However, it is difficult for
a Ronchi grating method to generate precise phase shift
due to the requirement of mechanical adjustments. There-
fore, the measurement error could be dominated by the
phase shift error. In contrast, the phase-shift error of a digital
fringe projection technique can be eliminated because of its
digital fringe generation nature. Therefore, for a digital fringe
projection system with the binary defocusing technique, the
single dominant error source is the nonsinusoidal structure of
the defocused binary patterns when the projector is not prop-
erly defocused; this magnitude of phase error correlates to
the amount of defocusing, which will be addressed next.

2.3 Phase Error Determination

As explained earlier, if the projector is not properly defo-
cused, the binary defocusing technique will result in signif-
icant phase error. For a conventional fringe projection
system, the phase error is regarded as noise and needs to

be reduced. Toward reducing the phase error caused by
improper defocusing, we found that the phase error can
be described as a function of wrapped phase, ϕðx; yÞ, and
the depth, z.9 This finding provides an opportunity to deter-
mine the depth from the phase error, which inspires the
development of this novel three-dimensional shape measure-
ment technique. Interestingly, the phase error becomes signal
for this technique.

It is important to notice that it is very difficult to deter-
mine the phase error directly from three binary defocused
fringe images because (1) the geometric shape of object
may distort the fringe stripes; and (2) the camera and/or
the projector lens may cause image distortion. Instead, we
capture three ideal sinusoidal fringe patterns with exactly
the same fringe pitch (number of pixels per fringe period).
The phase error is determined by taking the difference
between the phase, ϕbðx; yÞ, obtained from the binary defo-
cused patterns and the phase, ϕsðx; yÞ, calculated from the
ideal sinusoidal patterns,

Δϕðx; yÞ ¼ ϕbðx; yÞ − ϕsðx; yÞ mod 2π. (5)

Though the phase error can be calculated from the wrapped
phase point by point, it practically uses the 2π modulus opera-
tion to account for the one-pixel shift due to camera sampling.

Let us take a look at the phase errors determined from
Eq. (5) under different amount of defocusing. The first
row of Fig. 1 shows the defocused binary patterns under dif-
ferent amounts of defocusing, while the second row of Fig. 1
shows the corresponding phase errors for three phase-shifted
fringe patterns. It clearly shows (as expected) that when the
projector is in focus, we have clear binary structures of the
image, and the phase error is the largest; when the fringe
patterns become closer and closer to ideally sinusoidal,
the magnitude of phase error reduces accordingly, but the
phase error structure remains.

3 Experiments
The proposed method was tested under the a system
illustrated in Fig. 2 The system includes a digital-light-
processing (DLP) projector (Samsung SP-P310MEMX)

Fig. 1 Example of sinusoidal fringe generation by defocusing a binary structured pattern. The first row shows one of the three binary defocused
patterns under each defocusing level. (a) shows the pattern when the projector is in focus; (b)–(e) show patterns when the projector is increasingly
defocused; (f)–(j) show 240th row cross sections of the phase error maps.
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and a digital charge-coupled detector (CCD) camera (Jai Pul-
nix TM-6740CL). The camera is attached with a 16-mm
focal-length lens (Computar M1614-MP). The resolution
of the camera is 640 × 480, with a maximum frame rate
of 200 frames∕ sec. The projector has a resolution of 800 ×
600 with a projection distance of 0.49 to 2.80 m. Figure 2
shows that the projector sits below the camera and projects
horizontal stripes to make sure that the optical axis of the
projector and that of the camera are approximately in paral-
lel. It is practically difficult to configure the commercial
video projector with the camera as a parallax system, and
the current setup was found to be adequate to verify the
proposed technique.

A linear translation stage was used to provide the desired
motion backward and forward for calibration. In this
research, we used the TECHSPEC Metric long travel linear
translation stage. This stage is 250 mm long with a traveling
accuracy of �0.05 mm. An uniform white flat object is

mounted on top of the translation stage and travels with
the stage for this study.

To calibrate the phase error function in terms of the
wrapped phase, ϕbðx; yÞ, and the depth (z), we set up the sys-
tem in a manner so that the projected image is focused at a
plane, and the camera is also focused at the same plane. This
plane was chosen as z ¼ 0; we then moved the plane toward
the system with an increment of Δz ¼ 5mm. For each plane,
we recorded three phase-shifted binary patterns, and three
sinusoidal patterns with exactly the same fringe pitch, and
computed the phase error using Eq. (5). In this research,
the ideal sinusoidal fringe patterns were generated by cor-
recting the nonlinear gamma of the projector using the tech-
nique presented in Ref. 12. To reduce the random noise
caused by the camera and the projector, each fringe pattern
was an average of 15 patterns. Once the phase error is cal-
culated, a 1024-element error look-up-table (LUT) was cre-
ated by evenly quantize the wrapped phase within ½−π;þπ�
with a 2π∕1024 rad phase interval. Within each interval, the
phase error is determined by averaging all points that fall
within that interval.

For each plane, six fringe images are captured to deter-
mine the LUT. Figure 3 shows an example of how to create
the LUT table. Figure 3(a) shows one of the three phase-
shifted binary patterns, and Fig. 3(b) shows the wrapped
phase from the binary patterns. At each position, three
sinusoidal fringe patterns with the same fringe pitch were
also captured, with one of them being shown in Fig. 3(c),
and the resultant wrapped phase is shown in Fig. 3(d). Taking
the difference of these two phase maps will result in the
phase error illustrated in Fig. 3(e). However, because
the phase error is higher frequency, it is difficult to see
the error pattern without zooming in view. Figure 3(f)
shows the 240th row cross section of the phase error map.
It clearly shows periodical error structure while embracing
randomness. The phase error is dependent of the camera
sampling pixel position. In contrast, if we plot the phase
error map as a function of wrapped phase, as shown in
Fig. 3(g), it can be seen that the 6X frequency error structure

Fig. 2 System configuration.

Fig. 3 Phase error determination. (a) One of the three phase-shifted binary structured patterns; (b) wrapped phase from the binary patterns; (c) one
of the three phase-shifted sinusoidal fringe patterns; (d) wrapped phase from the sinusoidal patterns; (e) phase error map; (f) 240th row phase error
against camera pixel; (g) the phase error against the wrapped phase ϕðx; yÞ; (h) 1024-element LUT.
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is vivid, and is independent of sampling pixel position.
Therefore, the phase error is described as a function of
wrapped phase, and the LUT can be created. Figure 3(h)
shows the 1024-element LUT created for this plane.

Our further experiments as shown in Fig. 4(a) indicated
that the peak and valley points of the phase error occur at
approximately ϕðx; yÞ ¼ �ð2k þ 1Þπ∕12, ðk ¼ 0; 1; : : : ; 5Þ.
For each of these points, the depth z can be approximated as a
polynomial function of the phase error Δϕðx; yÞ,
zi ¼ f ðΔϕi;ϕiÞ: (6)

Here i ¼ 1; 2; : : : 12. In the experiment, we used 28 planes to
fit the polynomial functions. We found that the 3rd-order
polynomials are sufficient to represent these functions.
Figure 4(a) shows some of these LUT’s. Furthermore,
Fig. 4(b) shows the 562th element (one of the peaks) in
each LUT along the depth z. This figure indicates that the
peak phase error changes monotonically as a function of
depth z, thus z can be obtained by solving the inverse
function. Video 1 better visualizes the calibration LUTs
with respect to the depth z. The red mark points on the
video were plotted as Fig. 4(b).

Once the system is calibrated, we measured a step-
height object with a known depth of approximately
53 mm. Figure 5(a) shows one of the binary fringe patterns,
and Fig. 5(b) shows the phase error map. To better visualize
the phase error difference on top and bottom surface,
Fig. 5(c) shows the zoom-in view of the top surface, and
Fig. 5(d) shows the zoom-in view of the bottom surface.

It clearly shows the error magnitudes are quite different
for different depth z.

The depth z can be determined for those peak and value
points of the phase error map. Figure 6(a) shows the result
that was smoothed by a 7 × 7 Gaussian filter. Our research
found that the zero points of the phase error theoretically
locates at ϕðx; yÞ ¼ �kπ∕6, where k ¼ 0; 1; : : : ; 6, in the
wrapped phase domain. These zero points divide the
wrapped phase evenly into 12 segments. Within each seg-
ment, the peak/valley points can be determined by finding
the maximum/minimum phase errors. The plot was gener-
ated by re-meshing the none-grid sparse measurement points
for the sake of visualization. Figure 6(b) shows one of the
cross sections of the three-dimensional result. This prelimin-
ary data shows that the height of the three-dimensional object
can indeed be successfully recovered from the phase error.
However, one may notice that even after applying a Gaussian
smoothing filter, the measurement accuracy is not very high;
the reasons for this will be discussed in the next section.

4 Discussion
By analyzing the phase error, the depth information can be
retrieved from the same view as the projection. This uniaxial
three-dimensional shape measurement technique has the
following merits:

• Deep hole measurement. This is an advantage of any
uniaxial three-dimensional shape measurement techni-
que, since it does not require formation of a triangle to
recover depth.

Fig. 4 The phase error changes with different depth z(Video 1). (a) Phase errors as a function of wrapped phase; (b) peak phase error shown in (a)
as a function of depth z. (Video 1, MOV, 1.10 MB). [URL: http://dx.doi.org/10.1117/1.OE.51.2.023604.1]

Fig. 5 Measurement result of a step-height object. (a) One of the binary fringe patterns; (b) phase error map; (c) zoom-in view of the top surface;
(d) zoom-in view of the bottom surface.
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• Potential high depth sensitivity. Its depth sensitivity
could be very high depending on the projection lens
system used. If the depth of focus for the projector
lens is very small, the amounts of defocusing will
change rapidly with depth changes, and so will the
phase error. Therefore, this measurement technique
could be very sensitive to depth changes by properly
selecting a lens system.

• Less sensitivity to surface reflectivity variation. Unlike
the uniaxial method that retrieves depth by analyzing
data modulation, this technique obtains depth from the
phase, which is naturally less sensitive to surface
reflectivity variations.

• No phase unwrapping requirement. Since the phase
error is obtained by taking the difference of the phase
obtained from the binary defocused patterns and
that obtained from the ideal sinusoidal patterns, no
phase unwrapping is necessary. Therefore, a single-
wavelength phase-shifting algorithm can be used to
measure an arbitrary step-height object.

However, despite its advantages, it has the following
limitations:

• Lower spatial resolution. The current technique can
only measure 12 points per period of fringe patterns,
which is relatively low compared with some uniaxial
three-dimensional shape measurement techniques
that can achieve the camera-pixel spatial resolution.

• Slower measurement speed. This technique requires
three phase-shifted sinusoidal patterns and three binary
patterns to obtain one three-dimensional shape, and
therefore its measurement speed is lower than that
of a standard triangulation-based method that only
needs three fringe patterns. In the meantime, for arbi-
trary step-height measurement when the absolute phase
is required for a conventional triangulation-based
fringe projection system, this technique might be faster
since the conventional method practically requires
more than six fringe patterns to obtain absolute
phase point by point.

• Better hardware requirement. This technique requires
precisely generated sinusoidal fringe patterns as a refer-
ence to obtain phase errors. Any error in the sinusoidal
fringe patterns will be coupled into the final measure-
ment. In addition, even for those peak points of the
phase error, their actual values are relatively small
(approximately �0.15 rad instead of �π rad), making
it more susceptible to noise than a conventional triangu-
lation-based three-dimensional shape measurement
system. Therefore, better hardware (both camera and
projector) isneeded to improve themeasurementquality.

• Divergent projection/capture.Most commercially avail-
able video projectors use a divergent projection lens,
which makes this proposed technique still feature the
limitation of a triangulation-based method. To measure
deepholes, theoptical systemhas tobe redesigned so that
both the projector and the camera use collimated lenses.

5 Conclusions
This paper has presented a novel technique for uniaxial
three-dimensional shape measurement by analyzing the
phase error caused by improperly defocused binary struc-
tured patterns. The principle of this proposed technique
has been explained, and preliminary experimental results
have verified the feasibility of the proposed approach. How-
ever, the measurement quality is not very high at this stage.
Our future work will focus on exploring methodologies to
improve the spatial resolution, and to reduce the noise effect
of this proposed uniaxial three-dimensional shape measure-
ment technique.
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