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This paper presents a comparative study on three sinusoidal fringe pattern generation techniques with
projector defocusing: the squared binary defocusing method (SBM), the sinusoidal pulse width modula-
tion (SPWM) technique, and the optimal pulse width modulation (OPWM) technique. Because the phase
error will directly affect the measurement accuracy, the comparisons are all performed in the phase do-
main. We found that the OPWM almost always performs the best, and SPWM outperforms SBM to a
great extent, while these three methods generate similar results under certain conditions. We will briefly
explain the principle of each technique, describe the optimization procedures for each technique, and
finally compare their performances through simulations and experiments. © 2012 Optical Society of
America
OCIS codes: 120.0120, 120.2650, 100.5070.

1. Introduction

Over the past decades, digital sinusoidal fringe pro-
jection techniques have been very successful in the
field of 3D optical profilometry and applied to numer-
ous application areas [1–3]. However, they still en-
counter challenges due to the speed limitation as
well as the nonlinear gamma effect. Conventionally,
the projector switching speed, which is typically less
than 120 Hz, limits the measurement speed.
However, studies, such as high-frequency vibration,
require speed faster than 120 Hz. Furthermore,
when a common digital projector is used, nonlinear
gamma effect will introduce errors. And then gamma
calibration is required. Numerous methods [4–9]
have been proposed to reduce the measurement

errors caused by the nonlinear gamma. Though
successful, the residual errors are usually nonnegli-
gible for high-precision measurement applications.

The recently proposed squared binary defocusing
technique (SBM) [10] has demonstrated its potential
to overcome the aforementioned limitations. How-
ever, it poses new challenges: (1) the error induced by
high-order harmonics and (2) the smaller depth mea-
surement range. Endeavors have been made to con-
quer these challenges: (1) Ayubi et al. proposed a
technique called sinusoidal pulse width modulation
(SPWM) [11], and (2) Wang and Zhang proposed a
technique called optimal pulse width modulation
(OPWM) [12]. The two methods have demonstrated
their superiorities over the SBM under certain con-
ditions, while having their own limitations. The
square binary method is sensitive to defocusing ef-
fect. It can only give good results when the binary
structures are properly defocused to sinusoidal
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ones. This means the depth range of measurement is
pretty small when SBM is adopted. Both recently
proposed SPWM and OPWM techniques have the
ability to improve the SBM method. They can pro-
duce high-quality 3D shape measurement even when
the defocusing degree is small, which means the
depth range of measurement for these two methods
is larger than that for the SBM. Since each method
has its own merits and shortcomings, it would be of
interest to present thorough comparisons to the
society among the three methods: SBM, SPWM,
and OPWM.

It is important to note that this paper examines
the method differences from the phase perspective
since the 3D shape measurement quality is mainly
determined by the quality of phase data for fringe
projection techniques. It is also important to note
that it is almost impossible to compare these meth-
ods exhaustively in one paper due to the fact that
there are numerous variables affecting the measure-
ment quality. Therefore, we limit our paper to a few
case studies that will provide sufficient critical char-
acteristics of these methods which are vital for 3D
shape measurement. Specifically, we will focus on
analyzing the phase errors caused by the three meth-
ods under different conditions, and we will use a
three-step phase-shifting algorithm with equal
phase shifts to perform phase analysis for simplicity
and speed. The phase error is obtained by taking the
differences between the phase obtained from the de-
focusing methods and the phase from the traditional
ideal sinusoidal fringe projection method. Since we
are studying the phase error caused by defocusing,
the amount of defocusing needs to be accounted
for. This research will consider two representative
scenarios: the nearly focused case and the signifi-
cantly defocused case. Different breadths of fringe
patterns will also be examined for comparisons. Both
simulations and experimental results will be pre-
sented in this paper to demonstrate the differences
among SBM, SPWM, and OPWM.

Section 2 will explain the principle of each techni-
que. Section 3 will present an optimization strategy
for each technique. Section 4 and Section 5 respec-
tively show simulation and experimental results
under optimal conditions, and finally Section 6 sum-
marizes the paper.

2. Principle

A. Three-Step Phase-Shifting Algorithm

Phase-shifting algorithms are widely used in optical
metrology because of their measurement speed and
accuracy [13]. Numerous phase-shifting algorithms
have been developed including three step, four step,
double three step, and five step. In this paper, we use
a three-step phase-shifting algorithm with a phase
shift of 2π∕3 for simplicity and speed. Three fringe
images can be described as

I1�x; y� � I0�x; y� � I0�x; y� cos�ϕ − 2π∕3�; (1)

I2�x; y� � I0�x; y� � I0�x; y� cos�ϕ�; (2)

I3�x; y� � I0�x; y� � I0�x; y� cos�ϕ� 2π∕3�; (3)

where I0�x; y� is the average intensity, I00�x; y� the
intensity modulation, and ϕ�x; y� the phase to be
solved. Solving these equations simultaneously leads
to

ϕ�x; y� � tan−1

� ���
3

p
�I1 − I3�∕�2I2 − I1 − I3�

�
: (4)

Equation (4) provides the phase ranging �−π; π� with
2π discontinuities.

B. Squared Binary Method

Our recent study indicated that it is feasible to gen-
erate high-quality sinusoidal fringe patterns by
properly defocusing squared binary structured pat-
terns [10]. Therefore, instead of sending sinusoidal
fringe images to a focused projector, sinusoidal fringe
patterns can be generated by defocusing binary
structured ones. Figure 1 illustrates projector defo-
cusing at different degrees. In this experiment, the
projector projects squared binary structured pat-
terns onto a uniform white board where the camera
focuses. The projector defocusing is realized by ad-
justing the focal length of the projector gradually
from in focus to out of focus. This experiment shows
that if projector is properly defocused, seemingly si-
nusoidal fringe patterns can be generated. However,
the phase error will be significant if there is no error
compensation and the projector is not properly
defocused [14].

C. Sinusoidal Pulse Width Modulation

Recently, Ayubi et al. proposed an interesting techni-
que that can significantly reduce phase errors even
when the projector is not defocused properly for
SBM, which is known as the SPWM technique [11].
The SPWM is a well-studied technique in power elec-
tronics to generate sinusoidal signal in time by filter-
ing the binary signals. In brief, to generate low
frequency (f 0) sinusoidal fringe patterns, a higher-
frequency f c triangular wave Sm�f c� is used to mod-
ulate the desired ideal sinusoidal signal Si�f 0�:

Sm�f c�

�
�
2f cx− 2N x∈ �N∕f c; �2N� 1�∕�2f c��
−2f cx� 2N� 2 x∈ ��2N� 1�∕�2f c�; �N� 1�∕f c�

;(5)

Si�f 0� � 0.5� 0.5 cos�2πf 0x�: (6)

Here f c > f 0, and N is an integer.
The modulated fringe pattern for each point can

then be generated as follows:
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Ib�x; y� �
�
1 Sm�f c� > Si�f 0�;
0 otherwise

. (7)

Figure 2 illustrates the SPWM pattern generation
nature by modulating squared binary patterns with
triangular waveform.

Defocusing is essential to suppress the high-order
harmonics of the binary patterns while maintaining
the fundamental frequency (f 0). The idea of SPWM is
to shift the third and higher-order harmonics further
away from the fundamental frequency so that they
can be easier to be suppressed. Therefore, the modu-
lated signal can then be converted to ideal sinusoidal
signal by using a smaller size low-pass filter. In other
words, the projector can be less defocused for sinusoi-
dal fringe generation. By this means, the fringe
contrast can be increased, and the depth measure-
ment range can be increased comparing with the
SBM technique. This technique has been success-
fully demonstrated by Ayubi et al. to generate better
sinusoidal fringe patterns even with a smaller degree
of defocusing [11].

D. Optimal Pulse Width Modulation

We recently proposed OPWM to further improve the
defocusing technique [12]. This technique selectively
eliminates undesired frequency components by in-
serting different types of notches in a conventional
binary square wave. Then, with a slightly defocused
projector, ideal sinusoidal fringe patterns can be
generated.

Figure 3 illustrates an OPWM pattern. The square
wave is chopped n times per half cycle. For a 2π per-
iodic waveform, the Fourier series coefficients are

a0 � 1
2π

Z
2π

θ�0
f �θ�dθ � 0.5; (8)

ak � 1
π

Z
2π

θ�0
f �θ� cos�kθ�dθ; (9)

bk � 1
π

Z
2π

θ�0
f �θ� sin�kθ�dθ. (10)
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Fig. 1. (Color online) Influences of different defocusing degrees on the squared binary pattern. (a)–(e) show the patterns when the
projector is nearly in focus to significantly defocused. (f)–(j) show the corresponding cross sections.
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Fig. 2. (Color online) Modulate sinusoidal waveform with binary structured patterns. (a) The sinusoidal and the modulation waveforms.
(b) The resultant binary waveform.
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Because of the half-cycle symmetry of the OPWM
wave, only odd-order harmonics exist. Furthermore,
bk can be simplified as

bk � 4
π

Z
2π

θ�0
f �θ� sin�kθ�dθ: (11)

For the binary OPWM waveform, f �θ�, we have

bk � 4
π

Z α1

0
sin�kθ�dθ� 4

π

Z α3

α2
sin�kθ�dθ�…

� 4
π

Z π∕2

αn
sin�kθ�dθ (12)

� 4
kπ �1 − cos kα1 � cos kα2 − cos kα3 �…� cos kαn�:

(13)

The n notches in the waveform create n degrees of
freedom. It can eliminate n − 1 number of selected
harmonics while keeping the fundamental frequency
component within a certain magnitude. To do this,
one can set the corresponding coefficients in the
above equation to be desired values (0 for the n − 1
harmonics to be eliminated and the desired magni-
tude for the fundamental frequency), and solve for
the angles for all notches [15]. For instance, to elim-
inate fifth, seventh, and 11th-order harmonics, two
notches could be set, and the following equations
could be formulated

b1 � 1 − cos�α1� � cos�α2� − cos�α3� � cos�α4�
� π∕4;

(14)

b5 � 1 − cos�5α1� � cos�5α2� − cos�5α3� � cos�5α4�
� 0.0; (15)

b7 � 1 − cos�7α1� � cos�7α2� − cos�7α3� � cos�7α4�
� 0.0; (16)

b11 � 1− cos�11α1�� cos�11α2�− cos�11α3��cos�11α4�
� 0.0: (17)

The nonlinear equations require an optimization
procedure to solve for the angles. Numerous research
has been conducted on how to solve for this type of
nonlinear equations. For example, some research has
been conducted to solve for transcendental equations
[16]. Because of the ability to eliminate undesired
high-order harmonics, OPWM waveform could be-
come sinusoidal after applying a low-pass filter,
which is similar to a small degree of defocusing.
Therefore, the depth measurement range can also
be increased in comparison with the SBM technique.

Figure 4 shows the representative binary patterns
for the SBM, SPWM, and OPWM. The fringe period
is 60 pixels, SPWM modulation frequency is 6 pixels
per period, and the OPWM is set to eliminate the
fifth- and seventh-order harmonics.

E. Phase Error Determination

For a 3D shape measurement technique based on
fringe analysis, because the 3D information is
retrieved from the phase, the measurement error
is typically determined by the phase error under
the same calibration circumstance. Therefore, evalu-
ating one technique can be realized by finding the
phase error caused by that technique.

It is important to note that it is very difficult for a
real measurement system to find the phase error it-
self from the defocused binary patterns because the
measured surface property may play a vital role, and
the lens distortion complicates the problem. To cir-
cumvent this problem, we use three additional fringe
patterns that are ideal sinusoidal fringe patterns
with the same phase shift and the same number of
pixels per fringe period. Therefore, for each measure-
ment, we have four phase values, ϕs�x; y� from the
ideal sinusoidal fringe pattern, ϕb�x; y� from the
SBM patterns, ϕp�x; y� from the SPWM patterns,
and ϕo�x; y� from the OPWM patterns. The phase er-
rors are defined as the differences between the phase
values obtained from the different methods and the
phase from the ideal sinusoidal fringe patterns:

Δϕb�x; y� � �ϕb�x; y� − ϕs�x; y�� mod 2π ; �18�

Fig. 3. Quarter-wave symmetric OPWM waveform.

Fig. 4. (Color online) Example of three different patterns. (a) SBM pattern; (b) SPWM pattern; (c) OPWM pattern.
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Δϕp�x; y� � �ϕm�x; y� − ϕs�x; y�� mod 2π; �19�

Δϕo�x; y� � �ϕo�x; y� − ϕs�x; y�� mod 2π: �20�

Here mod is the modulus operator. It should be
noted that, theoretically, it does not need a modulus
operation to obtain phase error from the wrapped
phase since the patterns are perfectly aligned. How-
ever, due to camera sampling, the modulus operation
is practically required to remove the 1-pixel 2π phase
jump shift from the binary defocused phases to the
sinusoidal phase.

F. Influence of High-Order Harmonics on Phase

Since each harmonic will contribute to the profile of a
binary structured pattern, it would be desirable to
understand the influence of each harmonic’s contri-
bution to the phase error. The cross section of a
squared binary structured pattern is a square wave;
thus understanding the effect of a binary structured
pattern can be simplified to the study of a square
wave. A normalized square wave with a period of
2π can be written as

y�x� �
( 0 x ∈ ��2n − 1�π; 2nπ�
1 x ∈ �2nπ; �2n� 1�π� . (21)

Here, n is an integer number. The square wave can be
expanded as a Fourier series:

y�x� � 0.5�
X∞
k�0

2
�2k� 1�π sin��2k� 1�π�. (22)

For a three-step phase-shifting algorithm with equal
phase shift, our previous study [17] found that some
high-order harmonics will not induce measurement
errors. Specifically, we have demonstrated that the
3nth-order harmonics will not influence phase error
at all. If the high-order harmonics exist, the fringe
patterns can be described as

Ih1�x; y� � I0�x; y� � I00�x; y� cos�ϕ − 2π∕3�
�…Ik�x; y� cos��2k� 1��ϕ − 2π∕3��; (23)

Ih2�x; y� � I0�x; y� � I00�x; y� cos�ϕ�
�…Ik�x; y� cos��2k� 1�ϕ�; (24)

Ih3�x; y� � I0�x; y� � I00�x; y� cos�ϕ� 2π∕3�
�…Ik�x; y� cos��2k� 1��ϕ� 2π∕3��; (25)

where k � 1; 2; 3;… are integers in Eq. (22). When
just the 3nth-order harmonics exist (i.e., third,
ninth), Eq. (4) can be rewritten as

ϕ�x; y� � tan−1�
���
3

p
�Ih1 − Ih3�∕�2Ih2 − Ih1 − Ih3�� (26)

� tan−1�
���
3

p
�I1 − I3�∕�2I2 − I1 − I3��: (27)

From this equation, we can see that what matters is
the difference values of I1 − I3 and 2I2 − I1 − I3. It is
clear that when the 3nth-order harmonics exist, the
differences do not change, and no phase error will be
introduced. Therefore, these harmonics do not need
to be accounted to improve the measurement quality.

3. Optimization Criteria

A. SPWM

The difference between SBM and SPWM is that
SPWM utilizes a higher-frequency (f c) triangular
wave to modulate the ideal sinusoidal wave, shifting
the higher-order frequency harmonics further away
from the fundamental frequency f 0. The only variable
is the modulation frequency f c. Therefore, the goal of
SPWM optimization is to find an optimal modulation
frequency f oc so that the measurement quality will be
the best under all circumstances, i.e., different
amounts of defocusing for different fundamental fre-
quencies. In addition, to maintain the fundamental
difference between SPWM and SBM, the modulation
frequency must be much higher than the fundamen-
tal frequency, i.e., f c > f 0. The performance is evalu-
ated based upon the criteria of the introduced phase
error instead of the sinusoidality appearance.

B. OPWM

Because the OPWM technique has the ability to se-
lectively eliminate high-order harmonics, it provides
more flexibility to control the pattern structure,
while complicating the problem. The solution to the
nonlinear equation set is essentially a nonlinear op-
timization problem, which often leads to multiple so-
lutions. However, as addressed in Subsection 2.F., for
a three-step phase-shifting algorithm with equal
phase shift, we only need to eliminate the high-order
harmonics except those 3nth-order ones. This simpli-
fies the problem since there are fewer harmonics to
consider.

In other words, the most dominant phase error is
caused by fifth- and seventh-order harmonics. There-
fore, if we could remove these two frequency compo-
nents, the measurement error should be very small
since the next harmonics introducing the phase error
is the 11th order. For the defocusing technique, it
is quite easy to suppress the 11th order and above
harmonics by slightly defocusing the projector.

4. Simulations

A. Simulation on Influence of High-Order Harmonics

Our first simulation is to verify the influence of high-
order harmonics on phase error. This simulation was
carried out by analyzing the phase error introduced
by each frequency harmonics. Equation (22) indi-
cates that the magnitudes of high-order harmonics
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decrease gradually. This means that when the order
is very high (e.g., higher than 11th order), its induced
error could be negligible.

To demonstrate this, we firstly determine the the-
oretical phase error on each harmonics. The phase
error was determined by combining the fundamental
frequency with only one higher-order component, i.e.,
the signal can be described as

Ik�x; y� � 0.5� 2
3π sin�f 0x�

� 2
�2k� 1�π sin��2k� 1�f 0x�: �28�

A three-step phase-shifting with equal phase shift
was used to determine the phase, and the associated
phase error was calculated by comparing against the
ideal one. Figure 5 shows the influence of each indi-
vidual harmonic on phase error. This confirms that

no phase error is introduced by 3nth-order harmo-
nics, and the phase error decreases when the other
harmonic order increases. This indicates that it is
not sufficient to look at the appearance of fringe pat-
terns nor their frequency spectra [18]. Example in
Fig. 5 clearly shows that the less sinusoidal patterns
could have less phase errors (thus better measure-
ment quality) than those seemingly better sinusoidal
patterns.

B. Simulation on SPWM Optimization

The defocusing effect can be approximated as a Gaus-
sian smoothing filter. A 2D Gaussian filter is usually
defined as

G�x; y� � 1

2πσ2 e
−
�x−�x�2��y−�y�2

2σ2 . (29)

Here σ is standard deviation and �x and �y are mean
values of the x and y axis, respectively.
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Fig. 5. (Color online) Influence of high-order harmonics on phase error. (a) Fringe pattern containing � 11th-order harmonics compo-
nents. (b) Cross-section of (a). (c) Frequency spectrum of (b). (d) Phase error for signal in (b); (e)–(h) The corresponding results when the
signal includes the fundamental, third, and ninth-order harmonics.
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Fig. 6. (Color online) Influence of modulation frequency and fringe pitch on phase error with a nearly focused projector. (a) The square
binary pattern after defocusing. (b) Phase error changes with modulation frequencies for different fringe pitches (P � 36� 6 × n,
n � 1;2;…10). (c) Phase error changes with the fringe pitches P (modulation period T � 6 pixels).
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For our case, because the structured stripes are
either vertical or horizontal, only one cross section
perpendicular to the fringe stripes needs to be con-
sidered, which means the problem is reduced to
1D. A 1D Gaussian filter is defined as

G�x� � 1������
2π

p
σ
e−

�x−�x�2
2σ2 . (30)

We first simulate the defocusing effect by applying
a Gaussian filter to the signal. The degree of defo-
cusing can be represented as the breadth of the
Gaussian filter that is determined by the standard
deviation and the filter size. We applied a small
Gaussian filter with size of 11 and standard devia-
tion of 1.83 pixels twice to emulate that the nearly
focused case. Figure 6(a) shows the square binary
pattern after applying the filter. It can be seen that
the binary structure is very clear, which emulates the
pattern generated by a nearly focused projector. In

the simulation shown in Fig. 6(b), we determined
how the modulation frequency affects the measure-
ment error for different fringe pitches, P, the number
of pixels per fringe period. To minimize the digital
effect on phase shift and binarization, an increment
of 6 pixels is used for the binary patterns, and an in-
crement of 2 pixels is used for the modulation pulse
width to ensure the symmetry of a triangular wave-
form. The fringe pitch P starts with 42 pixels because
when it is very small, the error appears random
(mainly because of the digital effect). This simulation
result shows that when the modulation pulse width
is 6 pixels, the phase error for almost all the fringe
pitches at their valley points, meaning that 6 pixel
modulation frequency period could be the optimal
one to use.

Another simulation was carried out to determine
whether the SPWM technique can improve the qual-
ity of 3D shape measurement by reducing measure-
ment error. Figure 6(c) shows the results. This
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Fig. 7. (Color online) Influence of modulation frequency and fringe pitch on phase error with a significantly defocused projector. (a) The
square binary pattern after defocusing. (b) Phase error changes with modulation frequencies for different fringe pitches (P � 36� 6 × n,
n � 1;2;…10). (c) Phase error changes with the fringe pitches P (modulation period T � 6 pixels).
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Fig. 8. (Color online) OPWMoptimization example. The first row shows a bad OPWMpattern, and the second row shows the good OPWM
pattern. (a) One of the three phase-shifted OPWM patterns. (b) The frequency spectra before smoothing. (c) The frequency spectra after
applying a smoothing filter. (d) The phase error. (e) One of the three phase-shifted OPWM patterns. (f) The frequency spectra before
smoothing. (g) The frequency spectra after applying a smoothing filter. (h) The phase error.
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simulation is to compare the phase error between the
original binary patterns and the SPWM patterns un-
der the same condition with different fringe pitches.
Again the SPWM period T was chosen to be 6 pixels
to minimize the error. This simulation shows that
when the fringe pitch is larger than 56, the modu-
lated patterns give smaller phase error. However,
when the fringe pitch is small, the original squared
binary pattern actually works better. One interesting
thing to notice is that when the period of fringe pat-
terns increases, the phase error does not signifi-
cantly increase for the SPWM technique.

We then applied the same Gaussian filter 20 times
to represent the significantly defocused cases. The
corresponding results are shown in Fig. 7. This simu-
lation shows that when the patterns are significantly
defocused, a modulation period of 6 pixels still
gives close to the minimum errors for different fre-
quency of fringe patterns, while between 6 and 12

pixels, the results are decent. However, in comparison
with the phase error for the traditional binary meth-
od, only after the fringe pitch increases to a certain
level, this SPWM method will perform better.

Finding the optimal pulse width to minimize the
phase error should be the criteria for evaluating
the performance of different patterns. This simula-
tion results show that: (1) the SPWM technique
actually deteriorates the measurement quality if
the fringe pitch is smaller than a certain number;
(2) the optimal modulation period is consistently 6
pixels if the projector is nearly focused; and (3) the
optimal modulation period ranges 6–10 pixels if
the projector is significantly defocused.

C. Simulation on OPWM optimization

The simulation presented in Section 4.A. shows that
3nth-order harmonics do not introduce any phase
error for a three-step phase-shifting algorithm with
equal phase shift. Therefore, these frequency compo-
nents should not be considered during the opti-
mization procedure. In other words, although the
third-order harmonics have more influence on the
square wave than the fifth and seventh, we do not
need to consider its influence on our measurement
accuracy.

Figure 8(a) and 8(e) show two different OPWMpat-
terns with a fringe pitch of 90 pixels. Figures. 8(b)
and 8(f) show their corresponding frequency spectra.
It clearly shows that Fig. 8(f) has smaller fifth and
seventh harmonics magnitudes than those shown
in Fig. 8(b); therefore, its performance should be
better. These patterns were then smoothed by a
Gaussian filter (size of 11 with a standard deviation
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Fig. 9. (Color online) Validation of the ideal sinusoidal fringe pat-
terns utilized as reference. (a) The unwrapped phase map. (b) The
actual phase error that will be coupled into the real measurement.
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Fig. 10. (Color online) Experimental results on modulation frequency selections. The fringe pitches used here are 42, 60, 72, 90, 102, and
150 pixels. (a) The binary square pattern when the projector is nearly focused. (b) The cross section of (a). (c) The results when the projector
is nearly focused; (d)–(f) show the corresponding results when the projector is significantly defocused.
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of 5 pixels). Figures 8(c) and 8(g) show the Fourier
spectra after applying the smoothing filter. Most of
the high-order harmonics were completely sup-
pressed by the smoothing filter for the better de-
signed OPWMpattern shown in Fig. 8(e). Finally, the
phase errors shown in Figs. 8(d) and 8(h) confirm
that if the fifth and seventh harmonics are well elimi-
nated, the phase error would be very small.

5. Experiments

A. Experimental System Setup

Experiments were also performed to verify the
simulation results. In this research, we used a
digital-light-processing projector (Model: Samsung
SP-P310MEMX) and a digital CCD camera (Model:
Jai Pulnix TM-6740CL). The camera uses a 16mm fo-
cal lengthMega-pixel lens (Model: ComputarM1614-
MP) at F∕1.4 to 16C. The camera resolution is 640 ×
480 with a maximum frame rate of 200 frames∕sec.
The camera pixel size is 7.4 × 7.4 μm2. The projector
has a resolution of 800 × 600 with a projection dis-
tance of 0.49–2.80 m.

B. Validation of Ideal Sinusoidal Fringe Pattern
Generation

This experiment is to verify that the adopted conven-
tional sinusoidal method does not bring significant
phase error, since we used the phase obtained from
these patterns as our reference. In the experiments,
auniformwhite platewasused to quantitatively show
the introduced phase errors by thismethod. Since the
projector is a nonlinear device, the projection nonli-
nearity needs to be corrected. In this research, we
used the method proposed in [4] to actively change
the patterns before projection. Figure 9(a) shows

one cross section of the unwrapped phase map. The
larger profile was introduced by 3D shape measure-
ment system (e.g., lens distortions, board flatness).
The general profile will not introduce additional
phase error since it is systematically caused by the
hardware system, rather than the fringe quality.
The phase error was obtained by removing the gener-
al profile of the unwrapped phase, which is shown in
Fig. 9(b). It can be seen that the projection nonlinear
influence was effectively alleviated and the intro-
duced random error is negligible in comparison with
the digitization error.

C. Validation of Optimal Modulation Frequency Selection
for SPWM

The optimal modulation frequency determined from
Section 4 was then validated by experiments.
Figure 10(a) shows the square binary pattern when
the projector is nearly focused and Fig. 10(b) shows
the cross section. Figure10(c) shows the experimental
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Fig. 11. (Color online) OPWM optimization results. (a) The SBM pattern with 90 pixels per period. (b) OPWM pattern with third-order
harmonics but without fifth- or seventh-order harmonics. (c) OPWM pattern with fifth- and seventh-order harmonics but without third-
order harmonics. (d) Frequency spectra of the SBM pattern shown in (a). (e) Frequency spectra of the OPWM pattern in (b). (f) Frequency
spectra of the OPWM pattern shown in (c).
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results for SPWM patterns with different pitches
when the projector is nearly focused. It indeed
verifies that in most cases, the optimal modulation
period is 6 pixels. When the projector is significantly
defocused, the corresponding results are shown
in Fig. 10(d)–10(f). Again, it agrees with our simula-
tion very well: the optimal modulation period ranges
6–10 pixels.

D. Validation of OPWM

To verify the performance of different OPWM pat-
terns, we designed two different OPWM patterns

to compare with the SBM patterns. Figure 11(a)
shows the SBM pattern and the Fourier spectra of
the cross section is shown in Fig. 11(d). Figure 11(b)
shows the OPWM patterns with fifth and seventh-
order harmonics well eliminated but with the third-
order harmonics, and its Fourier spectra is shown in
Fig. 11(e). Figure 11(c) shows another OPWM pat-
tern with third-order harmonics eliminated but
keeping the fifth- and seventh-order harmonics,
and Fig. 11(f) shows its Fourier spectra. The phase
errors of these three sets of patterns are shown in
Fig. 12. From this experiment, we can see that the
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Fig. 13. (Color online) Comparisons among SBM, SPWM, and OPWM under their respective optimal conditions. (a) The projector is
nearly focused. (b) The projector is significantly defocused.

Fig. 14. (Color online) 3D complex shape measurement under different amounts of defocusing. The first row shows the result when the
projector is nearly focused, and the second row shows the results when the projector is significantly defocused. (a) Binary pattern when
projector is nearly focused. (b) 3D result using SBM patterns. (c) 3D result using SPWM patterns. (d) 3D result using OPWM patterns.
(e) Binary pattern when projector is more defocused. (f) 3D result using SBM patterns. (g) 3D result using SPWM patterns. (h) 3D result
using OPWM patterns.
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fifth and seventh harmonics could cause severe
phase errors. On the other hand, the phase error is
really small when the magnitude of the third-order
harmonic is very large. This finding matches well
with our simulation. This means if those undesired
harmonics are well eliminated, the phase errors will
become small enough for measurement. However,
this experiment also shows that if the OPWM pat-
tern (as shown in the OPWM pattern 2) was poorly
designed, it could drastically deteriorate the mea-
surement quality.

E. Comparison among SBM, SPWM, and OPWM

Experimentswerealso carried out to compare theper-
formance of different techniques under their respec-
tive optimal conditions. In this set of experiments,
againwe considered two cases, the nearly focused pro-
jector and the significantly defocused projector. The
SPWM and OPWM patterns were optimized accord-
ing to the findings discussed above. Figure 13(a)
shows the error comparison results with a nearly fo-
cused projector. Figure 13(b) shows the results when
theprojector is significantlydefocused.Fromtheseex-
periments, we can see that when the projector is
nearly focused, the OPWM performs the best while
the SPWM performs better than SBM if the fringe
pitch is large. When the projector is significantly de-
focused, the SBM performs similarly as the OPWM
technique when the fringe is dense, while the SBM
performs theworstwhen the fringe stripe is verywide.

F. Complex Shape Measurement

Additional experiments were conducted to measure
complex 3D shape using these techniques and to com-
pare their performance visually. In this experiment,
we used P � 60 pixels fringe patterns for all three
methods and performed the measurement when the
projector is nearly focused and significantly defo-
cused. Figure 14(a) shows one of the fringe patterns
for the SBM patterns when the projector is nearly
focused; it clearly shows the binary structure.
Figures 14(b)–14(d) respectively show the recon-
structed 3D results from SBM, SPWM, and OPWM
patternswhen the projector is nearly focused. This ex-
periment indeed shows that the SPWMperforms bet-
ter than theSBM,while theOPWMperforms thebest.

Figure 14(e) shows one of the fringe patterns for
the SBM patterns when the projector is significantly
defocused, and the patterns are close to being sinu-
soidal. 3D shape measurement results under this
degree of defocusing are shown in Figs. 14(f)–14(h).
Under this condition, all methods, as expected, result
in reasonable good-quality 3D shape measurement,
with the OPWM delivering the best result again.
It should be noted that this system was calibrated
using the reference-plane based method described
in [19], and the phase was unwrapped using the qual-
ity-guided phase-unwrapping algorithm presented
in [20]. Even though the calibration method used
is not very accurate, it helps to present the 3D data
for visual comparison.

6. Conclusion

This paper has presented some comparisons among
the recently proposed three binary defocusing tech-
niques: SBM, SPWM, and OPWM. To achieve this,
different breaths of fringe patterns were projected
for test. The projector was set to be nearly focused
and be significantly defocused. The phase errors
were obtained by comparing phase maps from those
three patterns with sinusoidal pattern. In this paper,
the optimization for designing SPWM and OPWM
patterns were also presented. Finally, our experi-
ments have found that: (1) the OPWM performs
the best if it was well optimized, (2) the SBM per-
forms well when the fringe stripe is narrow or the
projector is well defocused, and (3) the SPWM per-
forms better than the SBM in most cases when the
fringe stripe is wide enough. We hope this presenta-
tion would be helpful for those who would like to use
the binary defocusing techniques for 3D shape mea-
surement, as this paper can guide them to select
the proper method under their measurement
conditions.

The authors would like to thank Leah Merner for
her proofreading this paper.
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