
GPU-assisted high-resolution, real-time
3-D shape measurement

Song Zhang
Mathematics Department, Harvard University, One Oxford Street, Cambridge, MA 02138

szhang77@gmail.com

Dale Royer
Geometric Informatics Inc, Somerville, MA 02143

Shing-Tung Yau
Mathematics Department, Harvard University, One Oxford Street, Cambridge, MA 02138

Abstract: This paper describes a Graphics Processing Unit (GPU)-assisted
real-time three-dimensional shape measurement system. Our experiments
demonstrated that the absolute coordinates calculation and rendering speed
of a GPU is more than four times faster than that of a dual CPU workstation
with the same graphics card. By implementing the GPU into our system, we
realized simultaneous absolute coordinate acquisition, reconstruction and
display at 30 frames per second with a resolution of approximately 266K
points per frame. Moreover, a 2+1 phase-shifting algorithm was employed
to alleviate the measurement error caused by motion. Applications of
the system include medical imaging, manufacturing, entertainment, and
security.
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1. Introduction

High-resolution, real-time 3-D measurement is increasingly important with applications in
medical imaging, virtual reality, computer vision, computer graphics, etc. With the improve-
ments of the measurement hardware system, the data acquisition speed is faster and faster.
Viewing the measurement results interactively is highly desirable.

In general, for real-time measurement, the fewer fringe images used, the faster the speed
achieved. Algorithms based on single fringe image [1] or double fringe images [2, 3] can
achieve faster data acquisition speed than an algorithm based on three fringe images. How-
ever, since the phase cannot be resolved directly from the single or dual fringe images, the
measurement normally has strict requirements for the measurement environment or the com-
plexity of the geometric shape of the objects. In contrast, a three-step phase-shifting algorithm
is able to solve the phase uniquely from the fringe images. Therefore, for high-speed, accu-
rate measurement of complex geometric shapes, a three-step phase-shifting algorithm is the
first choice. By utilizing a fast three-step phase-shifting algorithm [4], Zhang and Huang suc-
cessfully developed a real-time 3-D shape measurement system that is able to simultaneously
realize acquisition, reconstruction and display at a speed of up to 40 fps for relative shape
measurement [5]. We recently developed a real-time system that can acquire the absolute coor-
dinates by coding a marker in the projected fringe images [6]. However, it is very difficult for
this system to compute the absolute coordinates and display the geometries in real time with
an ordinary computer. We found that the computation power of a dual Central Processing Unit
(CPU) (Pentium 4, 3.4GHz) Dell Workstation is not sufficient for the mathematically-intensive
absolute coordinate computations. To resolve this problem, we employ the Graphics Process-
ing Unit (GPU) to assist with coordinates computation and rendering. The principle of the GPU
will be discussed in Sec. 2.

To reduce the measurement errors due to vibration, Angel and Wizinowich proposed a 2+1
phase-shifting algorithm [7, 8]. In this approach, two fringe images having 90 ◦ phase-shift are
rapidly captured and a third, flat image is collected that is the average of two fringe images with
a phase shift of 180◦. This algorithm has found limited use because the small number of data
frames in this algorithm makes it susceptible to errors resulting from phase-shifter nonlinearity
and calibration [9]. In this research, we are trying to measuring dynamically changing objects.
The error caused by the motion of the object is similar to those caused by vibration. Moreover,
for our system using a digital video projector to create the fringe patterns, the errors resulting
from phase shifting are not there due to its digital fringe generation nature. In this research,
we used an algorithm similar to the Angel-Wizinowich algorithm, the difference between them
is that the third image can be directly captured by projecting a uniform flat image generated
by the computer. Hence, we only need to capture three fringe images rather than four. There-
fore, by implementing this algorithm into our real-time 3-D shape measurement system, we
maintain the measurement speed while reducing the errors caused by motion using a three-
step phase-shifting algorithm. The drawback of the 2+1 phase-shifting algorithm, however, we

#72476 - $15.00 USD Received 30 June 2006; revised 29 August 2006; accepted 30 August 2006

(C) 2006 OSA 2 October 2006 / Vol. 14,  No. 20 / OPTICS EXPRESS  9121



Fig. 1. GPU pipeline. Vertex data including vertex coordinates and vertex normal are sent
to the GPU. GPU generates the lighting of each vertex, creates the polygons and rasterizes
the pixels, then output the rasterized image to the display screen.

encountered was that the measurement result was noisier than that using the three-step phase-
shifting algorithm. By employing a GPU in our real-time system, our experiments show that
the acquisition, reconstruction, and display of the near full-resolution absolute coordinates can
be simultaneously realized at a frame rate of 30 fps, all in one ordinary computer.

Section 2 introduces the fundamentals of the GPU. Section 3 explains the principle. Section 4
shows experimental results. Section 5 concludes the paper.

2. Fundamentals of the GPU

A Graphics Processing Unit or GPU is a dedicated graphics rendering device
for a personal computer or game console. Modern GPUs are very efficient at
manipulating and displaying computer graphics, and their highly parallel structure
makes them more effective than typical CPUs for a range of complex algorithms
(http://en.wikipedia.org/wiki/Graphics_processing_unit). Modern CPUs have been increasing
their performance over the last decades. However, they encountered severe boundaries for pro-
gressing since such increments were mostly achieved by increasing clock frequency and im-
proving the manufacturing process. In contrast, GPUs boost their performance rapidly relying
on memory latency rather than on raw speed. By setting a streaming execution model, which re-
verses the bottleneck inherent to memory access, they achieved the improvements. Since there
are no memory hierarchy nor data dependencies in the streaming model, the pipeline maxi-
mizes throughput without being stalled. Therefore, whenever the GPU is consistently fed by
input data, performance boosts, leading to an extraordinarily scalable architecture [10]. By tak-
ing advantage of this streaming processing model, modern GPUs are outperforming their CPU
counterparts in some general-purpose applications, and the difference is expected to increase in
the future [11].

Figure 1 shows the GPU pipeline. CPU sends the vertex data including the vertex position
coordinates and vertex normal to GPU which generates the lighting of each vertex, creates
the polygons and rasterizes the pixels, then output the rasterized image to the display screen.
Modern GPUs allow user specified code to execute within both the vertex and pixel sections
of the pipeline which are called vertex shader and pixel shader, respectively. Vertex shaders
are applied for each vertex and are run on a programmable vertex processor. Vertex shaders
define a method to compute vector space transformations and other linearizable computations,
such as the calculations of the clip-space coordinate and the color of each vertex, etc. Figure 2
shows the diagram of the vertex shader. The vertex position coordinates and normal are usually
sent to the GPU. The input position is in the homogeneous coordinates form of (x,y,z,w).

#72476 - $15.00 USD Received 30 June 2006; revised 29 August 2006; accepted 30 August 2006

(C) 2006 OSA 2 October 2006 / Vol. 14,  No. 20 / OPTICS EXPRESS  9122



Fig. 2. Vertex shader. The input vertex data including vertex homogeneous position coor-
dinates and normals are sent to the vertex shader, the vertex shader generates the clip space
coordinates and the color of every single isolated vertex data. The GPU assembles the
polygons based on the order of the streaming data which are then put in the next pipeline.

The vertex shader generates the clip space coordinates (cx,cy,cz,cw) by multiplying the input
position coordinates with the model-view matrix. The color for each vertex is also needed to be
assigned for each vertex in order to visualize it. The vertex shader takes the input vertex normal
(nx,ny,nz) from CPU and computes the vertex color from the lighting condition in a form,
(r,g,b), for example. The vertex data is streamed into the GPU where the polygon vertices
are processed and assembled based on the order of the incoming data. The GPU handles the
transfer of streaming data to parallel computation automatically. Although the clock rate of a
GPU is significantly slower than that of a CPU (e.g. our system’s 425MHz Quadro FX 3450
GPU compared to our system’s 3.4GHz Pentium 4 CPU), it has multiple vertex processors (8)
acting in parallel, therefore, the throughput of the GPU can exceed that of the CPU. As GPUs
increase in complexity the number of vertex processors increase leading to great improvements
in performance. Pixel shaders are mostly used to compute color properties of each pixel. Pixel
shaders are applied for each pixel and are run on a pixel processor. They usually have much
more processing power than its vertex-oriented counterpart.

The advancement of the GPU has lead to a programmable graphics pipeline. The pipeline
can be split into two phases: polygon assembly and polygon rasterization [12]. During polygon
assembly the vertex position coordinates, normals, and lighting properties are specified as well
as their order within the drawn polygon. During rasterization, the polygon is drawn pixel by
pixel on the scene. Currently, the GPU is mainly utilized for rasterization of 3-D primitives,
which are often strenuous on the CPU. However, as more complex computations are evaluated
on the graphics hardware, a significant increase in computer performance can be achieved by
developing GPU-based algorithms. With the introduction of the Cg (C for Graphics) language,
programming the pipeline is simplified [13]. Moreover, the GPU isolates vertex data and pixel
data so that they can be processed in parallel. This parallel computation structure increases the
performance dramatically. In this research, we take advantage of the fast parallel computation
and rendering power of GPUs to assist our high-resolution, real-time 3-D shape measurement.

3. Principle

Phase-shifting-based methods for 3-D shape measurement are widely used for optical metrol-
ogy. For these methods, a number of fringe images are recorded (normally larger than or equal
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to three) and the phase is extracted from the fringes. In general, the more fringe images used, the
better the accuracy achieved. Various phase-shifting methods have been developed, including
three-step, four-step, and five-step algorithms [14]. For real-time, accurate, 3-D shape measure-
ment, a three-step phase-shifting algorithm is normally employed [15].

3.1. Three-step phase shifting algorithm

The intensity of the fringe images for a three-step phase shifting algorithm with a phase shift
of 2π/3 can be written as,

I1(x,y) = I′(x,y)+ I′′(x,y)cos(φ(x,y)−2π/3), (1)

I2(x,y) = I′(x,y)+ I′′(x,y)cos(φ(x,y)), (2)

I3(x,y) = I′(x,y)+ I′′(x,y)cos(φ(x,y)+2π/3), (3)

where I ′(x,y) represents the average intensity, I ′′(x,y) the intensity modulation, and φ(x,y) the
phase to be resolved. Solving these equations simultaneously, we can obtain the phase

φ(x,y) = tan−1

√
3(I1 − I3)

2I2− I1− I3
, (4)

and the data modulation

γ(x,y) =
I′′(x,y)
I′(x,y)

=

√
3(I1− I3)2 +(2I2− I1− I3)2

I1 + I2 + I3
. (5)

3.2. 2+1 phase-shifting algorithm

Although the three-step phase-shifting algorithm has the advantages of its symmetry, the
measurement error is sensitive to any fringe image errors caused by various sources, such as
motion blur. To alleviate this problem, in this research, we replace the third image by a uni-
form flat image, which is the 2+1 phase shifting algorithm. The intensity of the fringe images
therefore becomes,

I1 = I′(x,y)+ I′′(x,y)sin(φ(x,y)), (6)

I2 = I′(x,y)+ I′′(x,y)cos(φ(x,y)), (7)

I3 = I′(x,y). (8)

Solving these equations simultaneously, the phase and the data modulation are,

φ(x,y) = tan−1 I1 − I3
I2 − I3

, (9)

and

γ(x,y) =
I′′(x,y)
I′(x,y)

=

√
(I1 − I3)2 +(I2− I3)2

I3
, (10)

respectively. Where phase φ(x,y) in Eq. (4) or Eq. (9) is the so-called modulo 2π at each
pixel, whose value ranges from 0 to 2π . If the fringe patterns have multiple fringes, phase
unwrapping is necessary to remove the sawtooth-like discontinuities and obtain a continuous
phase map [16]. In this research, we employed a multi-level quality-guided phase unwrapping
algorithm that is robust and fast. The detailed algorithm is in a paper under revision at current
stage [17]. Once the continuous phase map is obtained, the phase at each pixel can be converted
to xyz coordinates of the corresponding point on the object surface through calibration [18].
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Data modulation γ(x,y) in Eq. (5) or Eq. (10) has a value between 0 and 1 and can be used to
determine the quality of the phase data at each pixel with 1 being the best.

Since our research focuses on real-time 3-D shape measurement automatically, determining
the phase automatically from three fringe images is very important. Due to the symmetry of the
three step phase shifting algorithm [14], or the the fast three step phase shifting algorithm [4],
the three fringe images do not need to be identified to resolve the phase. However, for the
2+1 phase shifting algorithm, the three fringe images have to be uniquely identified in order to
correctly wrap the phase. In this research, the fringe images are identified by analyzing the three
fringe images automatically. In order to detect the three fringe images, the flat fringe image has
to be identified first. We define a functional

Δi = ∑
x
|∂ Ii(x,y)

∂x
|+∑

y
|∂ Ii(x,y)

∂y
| (11)

to find the flat image. The fringe image with the minimum value is the flat image since this
image has less intensity variations than the other two fringe images have. Because three im-
ages are projected and captured sequentially and repeatedly, the other two images are uniquely
determined once the flat image is known.

3.3. Absolute phase to absolute coordinate conversion

In this research, we used the system calibration method discussed in Ref. ([18]). Once the
system is calibrated, we obtain the camera parameter matrix Ac and projector matrix Ap,

Ac =

⎡

⎣
ac

11, ac
12, ac

13, ac
14

ac
21, ac

22, ac
23, ac

24
ac

31, ac
32, ac

33, ac
34

⎤

⎦ , (12)

Ap =

⎡

⎣
ap

11, ap
12, ap

13, ap
14

ap
21, ap

22, ap
23, ap

24
ap

31, ap
32, ap

33, ap
34

⎤

⎦ . (13)

These matrices include the translation and rotation matrices from the camera or projector co-
ordinates to the world coordinates. The relationships between the world coordinates (x,y,z)
(or the absolute coordinates) and the camera pixel coordinates (u c,vc) and the projector pixel
coordinates (up,vp) are

sc [
uc, vc, 1

]T = Ac [
x, y, z, 1

]T
, (14)

sp [
up, vp, 1

]T = Ap [
x, y, z, 1

]T
, (15)

where sc,sp are camera and projector scaling factor, respectively.
Once the absolute phase φa is obtained, the relationship between the camera coordinates and

the projector coordinates can be established,

φa(uc,vc) = φ p
a (up) = φa. (16)

Since the projector fringe image is composed of uniform stripes, assume the fringe image has
a fringe pitch P, the number of pixels per fringe period, and the total number of pixels in the x
direction being W p,

up = φ c
a ×P/(2π)+W p/2. (17)

Term W p/2 in this equation is used to convert the center of the projected fringe image to be
absolute phase 0.
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Fig. 3. Our vertex shader. Three absolute phases of one triangle and one vertex index are
sent to the GPU. The GPU computes the absolute coordinates for each vertex. The normal
for one vertex can then be computed on the GPU.

From Eqs. (12)-(17), we can obtain

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
ac

11 −ucac
31 ac

12 −ucac
32 ac

13−ucac
33

ac
21 − vcac

31 ac
22 − vcac

32 ac
23 − vcac

33
ap

11 −upap
31 ap

12 −upap
32 ap

13−upap
33

⎤

⎦

−1 ⎡

⎣
ucac

34−ac
14

vcac
34 −ac

24
upap

34−ap
14

⎤

⎦ . (18)

It can be seen that the coordinate calculations involve mathematically intensive matrix compu-
tations. It will put burden on the CPU if all the computations are done by CPU, which makes
the real-time reconstruction and display difficult for an ordinary computer. On the contrary, a
GPU can perform these computations efficiently, which will be discussed in the next section.

3.4. GPU aided computation and rendering

In this research, we use the vertex shader of the GPU to compute the coordinates, the normal
and the color from the absolute phase. The absolute phase of each vertex and its index are
encoded as the position coordinates of the vertex data and are sent to GPU. Since the input
position coordinate of the vertex shader has four components, the absolute phase of three ver-
tices of a triangle and one vertex index are put into the four elements of the vertex position
coordinates and are sent at a time. For example, we assume that three vertices of one triangle
v0, v1 and v2 of one triangle have absolute phase φ0, φ1 and φ2, respectively, and v0 has index
id0 in the phase image. The position coordinate input of the vertex data is (φ 0,φ1,φ2, id0). Since
the relationship between the three vertices is known, the indices of the other two vertices are
uniquely determined from the index of v 0. Therefore, the absolute coordinates for each vertex
can be computed using Eq. (18). Once the absolute coordinates are known, the vertex normal
(nx,ny,nz)0 for vertex v0 can be computed on the GPU from the three vertices of the triangle.
Once the vertex normal is known, the color (r,g,b)0 for this vertex can be calculated from the
light condition setup. Vertex data for vertex v0 will be used for the following pipeline, while the
other two vertex data are discarded from this vertex shader. Figure 3 shows the diagram of our
vertex shader. Once the coordinates and the normal for each vertex are known, the GPU then
generates the clip-space coordinates and lighting. Finally, the streaming points are assembled
into polygon sets and rendered by the GPU.

Table 1 shows the comparison between the computation and rendering results using the CPU
and the GPU. In this experiments, all the programs are written in C++ under Microsoft Visual
C++.net 2005 environment, and exactly the same algorithm is implemented both in CPU and
GPU. From this table we can see that the GPU boosts the computation and rendering speed
dramatically. For the full resolution image (532 × 500), our NVidia Quadro FX 3450 graphics
card can do 25.56 fps while the 3.4GHz CPU can only do 6 fps with the same graphics card.
The speed of the GPU is more than 4 times faster than that of the CPU. However, in real
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(a) I1. (b) I2. (c) I3. (d) 3-D geometry.

Fig. 4. Measurement results of a static object using the 2+1 phase-shifting algorithm.

measurement of a human face, only about half of the pixels need to be rendered since the
background is not displayed. In this case, the GPU can do more than 30 fps. It should be noted
that even with a fairly cheap ATI 9800 XT graphics card, computing and rendering one quarter
of the points can be as fast as 53.37 fps, which can keep up with our data acquisition speed.
It should be noted that all the coordinates and color data are remain in GPU. Of course, the
3-D coordinates data can be transferred back to CPU but in a very slow manner due the current
architecture design of the graphics card.

Table 1. Comparison between the computation and rendering with GPU and CPU

CPU (fps) GPU (fps)
Image Size 3.2GHz 3.4GHz ATI 9800 XT Quadro FX 1400 Quadro FX 3450
532×500 5.50 6.00 13.56 20.35 25.56
266×250 21.28 23.15 53.37 78.05 102.81
177×167 46.50 51.06 111.29 157.71 222.56
133×125 79.50 89.93 179.45 246.15 372.82

Note: Quadro FX 1400 and Quadro FX 3450 are NVidia graphics cards. The computers are Dell Precision 670
Workstations with Dual CPUs, Pentium 4, 3.2GHz and 3.4GHz respectively.

4. Experiments

To verify the performance of the 2+1 phase-shifting algorithm, we implemented this algorithm
into our pre-developed real-time 3-D shape measurement system by replacing the three-step
phase-shifting algorithm [6]. Figure 4 shows one measurement of a stationary object. Fig-
ure 4(a)-4(c) shows three fringe images captured by the system, and Fig. 4(d) shows the re-
constructed 3-D result. It clearly shows that this algorithm can measure a stationery object
satisfactorily. It should be noted that we use a 5× 5 Gaussian filter to smooth the geometry
in order to reduce the random measurement noise and all 3-D data presented in this paper are
smoothed by the same Gaussian filter.

We also measured a human face with expressions, Fig. 5 shows one typical frame. During
the experiment, the subject was asked to do various facial expressions continuously. It can be
seen that the face can be clearly captured with details.

We then implemented our GPU aided computation and rendering program into our system.
In this experiment, we used an NVidia Quadro FX 3450 graphics card. The graphics card has
256MB of memory clocked at 500 MHz. The GPU is clocked at 425 MHz. It has 8 vertex
shader and 24 pixel shader units. The computer we used was a Dell Precision Workstation
670 with Dual Pentium 4, 3.4GHz CPUs and 3.0GB memory. The video in Fig. 6 shows the
experiment. It can be seen from this video that the data acquisition, reconstruction and display
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(a) I1. (b) I2. (c) I3.

(d) 3-D geometry. (e) Another view angle. (f) Zoom-in view.

Fig. 5. Measurement result of human face.

are simultaneously realized at 30 fps. The rendered 3-D geometry can keep up with the subject
movements well. This video demonstrated that the absolute coordinates of the object can be
computed and reconstructed in real-time.

5. Conclusions and Future Works

This paper presented GPU-assisted real-time 3-D shape measurement using a 2+1 phase shift-
ing algorithm. By taking advantage of the processing and rendering power of a NVidia FX 3450
Graphics Card, the absolute coordinates of the objects, sampled at 532×500 points per frame,
can be computed and rendered at 25.56 fps. Otherwise, if the coordinates computation is done in
a Dell Precision 670 Workstation with a Dual Pentium 4, 3.4GHz CPU and then displayed with
the same graphics card, the speed would reduce to approximately 6 fps excluding the phase
wrapping and unwrapping cost. By putting the CPU’s coordinate computation burden on the
GPU, we realized a simultaneous acquisition, reconstruction, and display at 30 fps with almost
full resolution for absolute coordinates, all in an ordinary computer. We replaced the three-step
phase-shifting algorithm of our previous system with the 2+1 phase-shifting algorithm. The
measurement errors caused by motion were alleviated significantly. With this new algorithm,
the ordinary expression of a human face can be captured with better quality than our previous
system. Moreover, the 2-D texture image quality is much higher since the texture image can be
captured when the projector is projecting the flat images. For a three-step phase-shifting algo-
rithm, the flat 2-D image can be computed, however, if one of the three fringe images are not
ideally sinusoidal with the exact phase shift used, the flat image quality will drop significantly.

#72476 - $15.00 USD Received 30 June 2006; revised 29 August 2006; accepted 30 August 2006

(C) 2006 OSA 2 October 2006 / Vol. 14,  No. 20 / OPTICS EXPRESS  9128



Fig. 6. (2.32MB) Real-time acquired, reconstructed, and displayed 3-D absolute coordi-
nates at 30 fps.

Even though this system was able to acquire the 3-D geometric shape in real-time at 30
fps and the 2+1 phase-shifting algorithm can alleviate the errors caused by motion, we still
encounter significant measurement errors of faster motion such as facial geometry changes
when speaking. Our future work is to improve the data acquisition speed so that the errors
caused by motion will be reduced.

Acknowledgement

We thanks Xiaomei Hao for serving as model to test our system, thanks the members of Geo-
metric Informatics Inc for their cooperation for this research. This work was done in Geometric
Informatics Inc, funded by the Advanced Technology Program (ATP) of the National Institute
of Standards and Technology (NIST).

#72476 - $15.00 USD Received 30 June 2006; revised 29 August 2006; accepted 30 August 2006

(C) 2006 OSA 2 October 2006 / Vol. 14,  No. 20 / OPTICS EXPRESS  9129

http://www.opticsexpress.org/viewmedia.cfm?id=114589&seq=1

