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A B S T R A C T

We are developing a new technique for monitoring portal hypertension by the pressure gradient between the
portal vein and the inferior vena cava (PPG) based on non-invasive measurements (MRI images). Massive
parametrization and classification are required to investigate the underlying relationship between the porosity
and the stages of liver cirrhosis numerically, and the hepatic-portal venous system is a multi-scale system. Both
of them need high computational costs. The suitability of the lattice Boltzmann method for GPU (Graphics
Processing Unit) parallel computation provides an opportunity to overcome it. In this paper, we perform
GPU parallelization and optimization for the volumetric lattice Boltzmann method with arbitrary geometry
based on images. Three application cases, including pipe flow, hemodynamics in the portal venous system,
and hemodynamics in a simple hepatic-portal venous system, are employed to prove the method can be
applied in the hepatic-portal venous system based on accuracy and efficiency. The reliability of the model
is qualitatively validated by the analytical solution of velocity and pressure difference distribution of pipe
flow and quantitatively confirmed by the pulsatility of velocity and pressure difference that can be neglected
in the portal venous system. The performance of the application cases is examined with Intel Broadwell E5-
2683 v3@ 2.30 GHz (CPU) and NVIDIA Tesla V100 16GB (GPU). It shows the GPU algorithm for sparse
geometry (SPARSE) has a similar speed to the regular GPU algorithm for dense geometry (DENSE) when the
fluid volume fraction (𝑞) is close to 1. And SPARSE speeds up to 2.2 times compared with DENSE when 𝑞 is
in the range of 0.19∼0.27. Meanwhile, the saving ratio of memory cost depends on 𝑞. For a numerical case in
the hepatic-portal venous system, i.e., a large-scale system, parallel execution can be converged around half an
hour with SPARSE, while the memory spills the limitation with DENSE with a single GPU. Hence, multi-GPU
implementation is applied to release the limitation, and it can improve performance by increasing the number
of GPU cards. In summary, the method presented in the paper is feasibility applied in the hepatic-portal venous
system, laying the foundation of the new technique development.
1. Introduction

Portal hypertension is a clinical syndrome defined as increased
pressure in the portal venous system, mainly caused by cirrhosis, and
responsible for lethal complications such as ascites, gastro-esophageal
varices, variceal hemorrhage, and hepatic encephalopathy [1,2]. Espe-
cially, variceal bleeding has a mortality of 12%–20% at six weeks and
recurs in 2/3 within two years without adequate treatment [3]. The
pressure gradient between the portal vein and the inferior vena cava
(PPG) qualitatively characterizes portal hypertension. However, it is
rarely used in clinical because transhepatic or transvenous catheteriza-
tion has a high risk of intraperitoneal bleeding [4]. Monitoring hepatic
venous pressure gradient (HVPG) is recommended as a gold-standard
technique to assess portal hypertension [5]. However, it is limited to
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invasiveness which is harmful to the examinee. Therefore, there is a
critical needing for noninvasive techniques to measure the PPG/HVPG
with the characteristic of safe, accurate, and easy to operate. Recently,
Qi [6] developed a technique based on a computational hemodynamic
model with CTA images. A new indicator, virtual HVPG, was found to
correlate significantly with HVPG under moderate portal hypertension.
The major limitation is that it is relatively time-consuming, caused
by 3D model reconstructing and hemodynamic computing. Hence,
we develop a new computational hemodynamic model to access the
PPG based on the GPU-accelerated VLBM with MRI images. The main
challenge of our development is as follows: (1) Validate the efficiency
and accuracy of our technique. (2) Model the liver as porous media
with the image information of hepatic and portal venules and build
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Fig. 1. Flow chart of image-based computational hemodynamics technique.
the correlation between the porosity and the stage of liver cirrhosis
through a massive parametric study. Therefore, validating the feasi-
bility of our technique is the preliminary step to developing the new
technology that is expected to be a noninvasive and accurate method
for evaluating hepatic portal vein pressure. In this paper, we perform
GPU parallelization and optimization for VLBM in the hepatic-portal
venous system. The model of the liver will be discussed in the future.

Optimization of GPU acceleration for LBM has been developed
mainly in memory access patterns, register utilization, and overlap
of memory transfer and arithmetic operations. Memory access pattern
attracts the most attention in the literature as follows.

Propagation schemes: GPU parallelization of LBM majority parts in
each iteration are collision and streaming. Since collision occurs at
the local nodes and streaming requires information from neighbor-
ing nodes, the efforts on the fast access to the memory have been
on the development of propagation schemes [7] for the streaming
part. Shift algorithm with shared memory [8,9] was applied at the
beginning to avoid misaligned accessing at the expense of adding an
extra kernel to exchange data by GeForce 8800 Ultra. The propagation
scheme of the A–A pattern (only one set of distribution functions (DFs))
based on the shift algorithm with shared memory was developed [10]
in 2009. The A–A pattern reduced GPU memory by 50% compared
with the A–B pattern (two sets of DFs in memory). Shortly after, a
split propagation scheme (misaligned write) and reversed propagation
scheme (misaligned read) [11] were developed, which have a 15%
improvement compared with a shared memory scheme with the GTX
295.

Data layout : Two popular schemes include array of structure (AoS)
and structure of array (SoA). SoA switches from AoS for the opti-
mization of GPU parallelism [12]. It has a 7–10 times speed increase
compared with AoS by Tesla Kepler K20 [13]. Herschlag et al. [14]
applied collected SoA (CSoA) in the GPU architectures and accelerated
computational speed by 5%–20% compared with the SoA layout.

Memory addressing : Direct addressing scheme is universally em-
ployed in the dense computational domain. In the case of complex
geometry, the fluid volume fraction in the uniformed lattice domain
is small. For example, the portal venous system tested in the paper
has a fluid volume fraction that varies from 13% to 27%, i.e., the
majority of lattice information is superfluous. Meanwhile, the basis for
the feasibility of new technology is a large computational scale with a
fine resolution constrained by memory utilization. Therefore, indirect
addressing and semi-addressing schemes originally from the approach
of CPUs are necessarily applied to complex geometry. Compared with
direct address, they provide higher computational speed and lower
memory consumption when the fluid volume fractions are less than
0.5 [14]. Herschlage et al. [15] recommend the semi-addressing scheme
for complex geometry problems, which have 1.1–1.3 and 1.25–1.5
times acceleration through Tesla P100 and V100, respectively.

Two other aspects need to be addressed. Accessing register memory
consumes zero clock cycles per instruction compared to 400–600 cycles
for global memory. While the amount of registers is limited. An NVIDIA
2

compiler provides a flag limiting the register usage for register utiliza-
tion [16]. Meanwhile, two strategies for the overlap of memory transfer
and arithmetic operations include tiling the 3D lattice grid into smaller
3D blocks [17] and branch divergence removal [13]. Meanwhile, the
development of parallelization combined with GPU, CPU, and net-
work has recently been popular in solving multi-scale, multi-physics
research problems. The parallelization contains multi-GPU [18], LBM
code with CUDA and OpenMP for multi-GPU clusters [19], LBM with
CUDA and MPI [20], and a multi-node MPI/OpenMP LBM code with
OpenACC [21].

In this paper, we perform GPU parallelization and optimization
for the volumetric lattice Boltzmann method for image-based hemo-
dynamics in portal hypertension. The volumetric lattice Boltzmann
method was developed and refined by Yu’s group [22,23] and has been
verified as a reliable method to noninvasively quantify hemodynamic
abnormalities in human arteries [24–26] based on patient medical
imaging data. Combining features of GPU with VLBM is significant in
achieving an efficient GPU-VLBM algorithm. An A–B (2 sets of distri-
bution functions) pattern, dynamic allocation, SoA, pull propagation
scheme, semi-indirect addressing, register utilization, and multi-GPU
are employed in this paper. A pipe directly generated from images
full of the blood flow in the same order as the portal venous system
length scale is applied to validate the method’s reliability qualitatively.
And the accuracy of the method is quantitatively confirmed by the
pulsatility of velocity and pressure difference in the portal venous
system. The efficiency of the method is derived by the performance
of the model, which is tested by three different application cases,
including pipe flow, portal venous system, and portal-hepatic venous
system with Intel Broadwell E5-2683 v3@ 2.30 GHz (CPU) and NVIDIA
Tesla V100 16 GB (GPU). Finally, a summary discussion is provided.

2. Computational methodology

The flow chart of the image-based computational hemodynamics
technique shown in Fig. 1 contains pre-processing, kernel computa-
tional hemodynamics, and post-processing. The uniformed lattice mesh,
initial boundary, physical properties, and boundary conditions are the
pre-processing of the computational simulation. The uniformed lattice
mesh is generated from the arbitrary geometry reconstructed from
the patient-specific MRI images or extracted from the CAD software.
The boundary conditions are derived from the MRI images, which can
provide the two-dimensional velocity distribution in specific locations.
And the kernel part of computational hemodynamics is based on the
GPU-accelerated volumetric lattice Boltzmann method. Finally, the 4D
hemodynamical analysis is derived, including three-dimensional spatial
and one-dimensional temporal information, which can provide guide-
lines for the clinical diagnosis. This section presents the methodology
developed from the following three aspects: the volumetric lattice
Boltzmann method, lattice mesh generation, and GPU parallelism and
optimization.
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Fig. 2. Illustration of the volumetric parameter  and two scenarios of bounce-back
boundary treatment.

2.1. Volumetric lattice Boltzmann method

The volumetric lattice Boltzmann method is a mesoscopic method
for computational fluid dynamics in that fluid particles are uniformly
distributed in the lattice cells instead of at the lattice nodes, which
is indicated in the traditional lattice Boltzmann method. Except for
the inherent advantages of the lattice Boltzmann method, including
simple implementation, easy handling of complicated boundaries, and
well suited for GPU parallel computing, VLBM improves the efficiency
of solving arbitrary geometry with or without moving boundary by
introducing a volumetric parameter (𝐱, 𝑡) defined as the percentage
of the solid cells occupation in each unit lattice cell at the specific
time 𝑡. Hence, the computational domain can be distinguished by three
different types of cells, as Fig. 2 shows solid cells ( = 1), fluid cells
( = 0), and boundary cells 0 <  < 1. The detailed description of
the method of  generation, i.e., lattice mesh generation, is shown in
Section 2.2. The flow chart of VLBM is the same as traditional LBM,
including initial condition, LBM evolution, and boundary condition.
Still, the distribution functions are developed with volume-based cells,
and the boundary condition of walls is self-regularized by  and unified
with streaming propagation. In the simulation of the hemodynamics
in the portal venous system and portal-hepatic venous system, the
geometries system is assumed as a fluid domain with rigid walls,
i.e., fixed geometries ((𝐱, 𝑡) = (𝐱)) and the blood flow is treated as the
incompressible Newtonian flow. The governing equations of fluids with
arbitrary geometry, including continuity and Navier–Stokes equations,
can be simplified as follows.

∇ ⋅ 𝐮 = 0 (1)

𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 = −
∇𝑝
𝜌

+ 𝜐∇2𝐮 (2)

where 𝜐 is the kinematic viscosity of the fluid. The volumetric lattice
Boltzmann equations employed for recovering the governing equation
by Chapman–Enskog are synthesized from open Refs. [22,23] showing
as follows.

Collision operator: Setting the particle population distribution as
𝑛𝛼(𝐱, 𝑡), the volumetric lattice Boltzmann equation with collision oper-
ator indicated by a single relaxation time is

𝑛′𝛼(𝐱, 𝑡) = 𝑛𝛼(𝐱, 𝑡) +
1
𝜏
[

𝑛𝛼(𝐱, 𝑡) − 𝑛𝑒𝑞𝛼 (𝐱, 𝑡)
]

(3)

where 𝑛𝑒𝑞𝛼 (𝐱, 𝑡) is equilibrium particle population distribution equation
and determined by initial particle numbers per cell 𝑁0(= 1 − (𝐱)),
lattice speed 𝑐, discrete molecular velocities 𝐞𝛼 , weighting factors 𝜔𝛼 ,
and velocity 𝐮 as

𝑛𝑒𝑞𝛼 (𝐱, 𝑡) = 𝑁0𝜔𝛼

{

1 +
3𝐞𝛼 ⋅ 𝐮

2
+

9
(

𝐞𝛼 ⋅ 𝐮
)2

4
− 3𝐮 ⋅ 𝐮

2

}

(4)
3

𝑐 2𝑐 2𝑐
𝑐 = 𝛿𝑥∕𝛿𝑡 = 1, i.e., 𝛿𝑥 = 𝛿𝑡 = 1, meaning that the particles stream one
lattice unit per time step. For the three dimensional simulation, D3Q19
model is employed, the weighting factors 𝜔0 = 1∕3, 𝜔1−6 = 1∕18,
𝜔7−18 = 1∕36, and the discrete molecular velocities 𝐞0 = (0, 0, 0), 𝐞1−6 =
(±1, 0, 0), (0,±1, 0), (0, 0,±1), 𝐞7−18 = (±1,±1, 0), (±1, 0,±1), (0,±1,±1).

Streaming propagation: The generalized formulation of streaming
propagation reflects the flow of particles from one cell to the neighbor-
ing cells, including the fluid and the boundary cells. For the boundary
cells, the streaming algorithm is listed in Fig. 2 with two specific
scenarios. Assume cells B and D at 𝐱 + 𝐞𝛼𝛿𝑡 receive particles during
streaming from the adjacent cells A and C at position 𝐱, respectively.
Scenario 1 (𝐴 > 𝐵): the population of particles streaming from A
cell into B cell in the 𝐞𝛼 direction contains the particle population
from cell A to B(𝑛′𝐴𝛼

) and the bounce-back part of particles that flow
from cell B to A in the 𝐞𝛼∗ direction( 𝐴−𝐵

1−𝐵
𝑛′𝐵𝛼∗

, 𝛼∗ = −𝛼). Scenario 2
(𝐶 < 𝐷): cell D receives the particle population from cell C( 1−𝐷

1−𝐶
𝑛′𝐶𝛼

)
and bounces particle population in the opposite direction(𝐷−𝐶

1−𝐶
𝑛′𝐶𝛼

).
Therefore, the generalized streaming propagation is presented as

𝑛𝛼(𝐱 + 𝐞𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝐺𝛼(𝐱 + 𝐞𝛼𝛿𝑡)
1 − (𝐱 + 𝐞𝛼𝛿𝑡)

1 −  (𝐱)
𝑛′𝛼 (𝐱, 𝑡) +

[

1 − 𝐺𝛼(𝐱 + 𝐞𝛼𝛿𝑡)
]

[

𝑛′𝛼 (𝐱, 𝑡) +
 (𝐱) − (𝐱 + 𝐞𝛼𝛿𝑡)
1 − (𝐱 + 𝐞𝛼𝛿𝑡)

𝑛′𝛼∗ (𝐱 + 𝐞𝛼𝛿𝑡, 𝑡)
] (5)

where G is a parameter is introduced to identify the two different
scenarios.

𝐺𝑖(𝐱) =
{

1, if 
(

𝐱 + 𝐞𝛼𝛿𝑡
)

≥ (𝐱)
0, if 

(

𝐱 + 𝐞𝛼𝛿𝑡
)

< (𝐱)
(6)

The density and velocity can be computed by taking zeroth and
first moments of particle population distribution function 𝑛𝛼 as 𝜌(𝐱, 𝑡) =
∑

𝛼 𝑛𝛼(𝐱, 𝑡)∕(1 − (𝐱, 𝑡)) and 𝐮(𝐱, 𝑡) =
∑

𝛼 𝐞𝛼𝑛𝛼(𝐱, 𝑡)∕
∑

𝛼 𝑛𝛼(𝐱, 𝑡), respec-
tively. And the pressure can be derived by 𝛥𝑝(𝐱, 𝑡) = 𝛥𝜌(𝐱, 𝑡)∕3.

2.2. Lattice mesh generation

For image-based computational hemodynamics, the specific geome-
try is generated from the image segmentation of medical images and
exported in STL format, a standard output format for 3D printing
(experimental investigation) and rapid prototyping (visualization). And
the lattice mesh for the VLBM simulation is generated by calculating the
volumetric parameter (𝐱, 𝑡) from STL data. First, read facets orienta-
tion and vertex positions of unstructured triangulated mesh and transfer
them in the Cartesian coordinate system by the existing open-source
packages of READ_stl.m and VOXELSE.m, respectively. Then, generate
a signed distance field by calculating the distance function 𝜙(𝐱, 𝑡) to
the geometry surface with the open-source code of ac-reinit.m: 𝜙(𝐱, 𝑡)
is positive, if the position of 𝐱 is inside the surface, 𝜙(𝐱, 𝑡) is negative, if
position of 𝐱 is outside the surface, and 𝜙(𝐱, 𝑡)=0, if position of 𝐱 is on
the surface. Finally, the volumetric parameter (𝐱, 𝑡) can be computed
based on the sign of the distance function 𝜙(𝐱, 𝑡). Here taking 2-D cells
indicated in Fig. 2 as an example to represent how to calculate (𝐱, 𝑡). If
all four vertex distance functions of a 2-D cell are negative, the 2-D cell
is outside the boundary. Hence, (𝐱, 𝑡) = 1. While all four vertexes with
the positive distance function, the 2-D cell is inside the boundary. Thus,
(𝐱, 𝑡) = 0. Otherwise, the four vertexes distance function of the 2-D cell
consists of partial inside and partial outside the boundary. The 2-D cell
needs to be clarified by refined mesh through interpolation. Assume the
2-D cell is divided into 𝑞2 mesh cells if the distance function of the mesh
cell is negative, 𝑉 𝑖

𝑠 = 1, 𝑖 = 1, 2,… , 𝑞2. Otherwise, 𝑉𝑠 = 0. Hence, (𝐱, 𝑡)
is obtained by (𝐱, 𝑡) =

∑𝑞2
𝑖=1 𝑉

𝑖
𝑠 ∕𝑞

2. 83 mesh cells are usually applied in
the 3D simulation.
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Fig. 3. Flow chart of GPU Implementation.

2.3. GPU parallelism and optimization

GPU acceleration has been practiced in our research group for a
couple of years for different research areas such as turbulence [27],
biomedical flows [28,29], and porous media flows [30,31]. The general
flow chart of GPU implementation is indicated in Fig. 3. The difference
between GPU parallel and CPU serial is the algorithms used for the LBM
implementation. To achieve an efficient GPU-LBM algorithm, memory
access patterns, register utilization, and overlap of memory transfer and
arithmetic operations are the three main aspects to be optimized. For
the memory access patterns, an A–B (2 sets of distribution functions)
pattern (avoid data dependency), ‘pull’ scheme (propagation scheme),
SoA (data layout), and semi-indirect addressing (memory addressing)
are selected in our simulation. Dynamic allocation, register utilization,
and multi-GPU are the other critically needed parallel algorithms that
can improve the efficiency and capability of the hemodynamic simula-
tion. The detailed description of the parallel algorithms is illustrated as
follows.

2.3.1. Dynamic allocation
By default, the compiled model for a code has the characteristic that

the instructions and parameters of the code must be linked in the 2 GB
static continuous address space. This limitation takes the dominant
effect in impeding the simulation of large-scale problems. For example,
two set of distribution functions of the lattice Boltzmann model (38
arrays) and flow properties in the biomedical flow, including density,
velocity, and pressure(5 arrays), are essential to be defined in the CPU
host. From the experience of investigating the hepatic-portal venous
4

Fig. 4. Propagation scheme: pull scheme with misaligned read and aligned write. The
state before streaming and after streaming are represented by the black solid and red
dashed arrow line respectively.

Fig. 5. Data layout: SoA.

system, the mesh size is around 586 × 532 × 442, and the needed
memory for our calculations is around 30 GB (for total cells) and 8 GB
(for fluid cells). Both of them are much larger than 2 GB. Nowadays,
a single NVIDIA GPU card has up to 80 GB of memory for computing.
Hence, it is critical to find a way to release this limitation. Dynamic
memory (heap) instead of static memory (stack) was applied in our
simulations. Dynamic memory (heap) randomly allocates portions from
a large pool of memory. However, the transmission array should be
logically contiguous when the data copy from the CPU (host) to GPU
(device). Hence, in our algorithm, a class of the variable has been
developed to manage the allocation and deallocation of memory and
utilize the full memory capacity of the GPU cards. The procedures of
operation are listed as

• The class can dynamically allocate memory in one dimension
array, and each variable only uses a total of 5 × sizeof(float)
or sizeof(double) on the stack. Each variable includes three di-
mensions in different directions, one variable of fluid properties,
and data precision. The illustration is like Array3 < precision; 3
dimensions in different directions > a variable of fluid property.
Take volumetric parameter  as an example: the class is Array3
< double; nx; ny; nz >  .

• Assign the memory in an array on the heap in orders in a
continuous block through the copy constructor.

• Swapped and destroyed the information, which is related to
assignment operators to release the memory.

2.3.2. Propagation scheme
The ‘pull’ scheme has the opposite propagation direction in contrast

to the conventional LBM streaming. The distribution function reads
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a

Fig. 6. A computational domain contains fluid, boundary and solid cells with white, light and deep orange, respectively. (a) 3D index memory ordering 𝑎[𝑖][𝑗][𝑘] and direct
ddressing 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑖 × 𝑛𝑦 × 𝑛𝑧 + 𝑗 × 𝑛𝑧 + 𝑘, (b) 1D index memory ordering 𝑎[𝑖] and semi-addressing 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥[𝑖] × 𝑛𝑦 × 𝑛𝑧 + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦[𝑖] × 𝑛𝑧 + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧[𝑖].
Fig. 7. A schematic of data transfer between GPUs.

from the adjacent cells (black solid arrow lines), and the values propa-
gate to the local cell after streaming (red dashed arrow lines), as Fig. 4
illustrates. Then the data stored in the cell can be used for collision
directly. In the implementation, it yields misaligned read and aligned
write. Since misaligned read is faster than misaligned write in the
GPU [11], the ‘pull’ scheme is employed in our simulation.

2.3.3. Data layout
Coalesced memory access efficiently reduces the memory latency of

a GPU program that results in acceleration. Coalesced memory access
means all the threads in a block access the memory address simultane-
ously. It has been reported that the Structure of Array (SoA) scheme is
suitable for GPU acceleration [32]. Hence, multiple-dimension arrays
are expanded into one-dimension arrays. We take the D3Q19 model
and assume the mesh size 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 to show the data layout in
the GPU. Regularly, the distribution function stores as a 4D array on
the CPU, such as 𝑓 [𝑥][𝑦][𝑧][𝑖]. Here x, y, and z represent the space;
𝑖 ranges from 0 to 18 represent the direction of discrete velocity in
the volumetric lattice Boltzmann method. Different structures of one-
dimensional arrays in the GPU lead to varying effects on the GPU
acceleration. The value of one distribution of all cells in the whole com-
putational domain occupies consecutive elements in memory, which
is indicated in Fig. 5 . The distribution functions are addressed as
𝑓 [𝑖×𝑛𝑧×𝑛𝑦×𝑛𝑥+𝑥×𝑛𝑦×𝑛𝑧+𝑦×𝑛𝑧+𝑧]. In this scheme, the number of
threads of distribution functions within a wrap (32 threads) can access
consecutive memory.

2.3.4. Memory ordering and memory addressing
The geometry employed for analyzing image-based hemodynam-

ics is sparse. And the solid cells in the geometry cost the most for
memory storage, but they are excluded from the calculation. From
our cases, the fluid volume fraction (𝑞) in the hepatic-portal venous
system is 𝑞 = 0.2 ∽ 0.3, i.e., 70% − 80% of the requested memory is
wasted. Hence, 1D index memory ordering and semi-addressing are
significantly employed to enhance the efficiency of the calculation. As
Fig. 6 shows, a computational domain with mesh size 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
(i.e., 7 × 3 × 1) is taken as an example to indicate the algorithm,
5

which includes one fluid cell (white), seven boundary cells (light
orange) and thirteen solid cells (deep orange). The memory cost of
traditional 3D index memory ordering 𝑎[𝑖][𝑗][𝑘] and direct addressing
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑖×𝑛𝑦×𝑛𝑧+ 𝑗 ×𝑛𝑧+𝑘 (i.e., 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑖×3+ 𝑗+𝑘)
(Fig. 6(a)) contains two sets of distribution functions (38 arrays) and
flow properties (5 arrays) for each cell, i.e., 𝐧𝐱 × 𝐧𝐲 × 𝐧𝐳 × (𝟑𝟖 + 𝟓).
While the requested memory storage for 1D index memory ordering 𝑎[𝑖]
and semi-addressing 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥[𝑖]×𝑛𝑦×𝑛𝑧+𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦[𝑖]×
𝑛𝑧+𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧[𝑖] (i.e., 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥[𝑖]×3×1+𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦[𝑖]×
1+𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧[𝑖]) (Fig. 6(b)) including, two sets of distribution functions
(38 arrays) and flow properties (5 arrays) for 8(⇔ 𝑞 × 𝑛𝑥 × 𝑛𝑦 ×
𝑛𝑧) fluid+boundary cells and one solid cell (can be ignored for the
large computational domain), and position information (1 array for
PositionIndex of each cell + 3 array for i, j,k of fluid+boundary cells),
i.e. 𝐪 × 𝐧𝐱 × 𝐧𝐲 × 𝐧𝐳 × 𝟒𝟑 + 𝐧𝐱 × 𝐧𝐲 × 𝐧𝐳 + 𝐪 × 𝐧𝐱 × 𝐧𝐲 × 𝐧𝐳 × 𝟑. Hence,
the memory cost for the new one is 46𝑞∕43 + 1∕43 times that of
the traditional algorithm. That means when 𝑞 is smaller, 1D index
memory ordering and semi-addressing algorithms take more advantage
of memory storage.

2.3.5. Register utilization
CUDA provides a memory hierarchy, including device memory

(global, constant, and texture memory) and on-chip memory (register,
shared memory, and local memory), which has the main differences
in latency and memory storage limitation. Global memory is the main
part of the device memory, which has a large storage memory and
a high latency of 400–800 cycles [33]. The register is an on-chip
resource distributed to each thread with nearly zero cycle latency.
Hence, register memory is better to be applied in the optimization
due to the low latency. The amount of registers is limited, a block
contains 65,536 registers for Tesla V100, and the memory for each
register is 32-bit. If too many registers are assigned in each thread,
it cannot take full utilization in the memory. For example, 43 registers
are needed in the D3Q19 per thread and 1024 threads in one block.
43K registers will be used in one block. In this case, the remaining 22K
registers are unused, and only one block is applied in the simulation.
Then the registers get approximately 60% utilization. The utilization
of register memory effectively in each thread is critical in GPU opti-
mization. The selection of the grid and block size is a scheme to get
higher register memory utilization which can be predicted by the tool
‘‘CUDA_Occupancy_Calculator’’ provided by CUDA.

2.3.6. Multi-GPU
Multi-GPU parallelism is critically needed in problems that need

high resolution. The basic idea of the multi-GPU is splitting the total
memory into several parts, which depends on the number of GPU
cards and the costing memory, and then reading and writing data
with these cards. Before doing the multi-GPU parallel, two properties
of the device should be checked. Firstly, can the device do peer-to-
peer communication (P2P)? And then, how many GPU cards can be
applied in a calculation? As Fig. 7 shows, there are three computational
data regions in each GPU card, including internal (white region), halo

(orange region), and padding part (green region). First, compute the
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Fig. 8. (a) Schematics for a pipe flow with parabolic velocity inlet. (b) The comparison of the velocity distribution along 𝑥-axis direction in center of the Plane A and (c) pressure
difference along centerline between simulation and the analytical solution. Black points are recorded from simulation and the black line is generated from the analytical solution.
internal, halo, and padding parts in a GPU device with a stream, then
exchange halo data between neighboring GPUs in different streams to
update the data of padding. For example, the halo regions in ‘GPU 0’
will be transferred to the beginning padding part of ‘GPU 1’, and the
padding part in the ‘GPU 0’ will get the information in the halo regions
in the ‘GPU 1’. Next, synchronize computation on all devices before
proceeding to the next iteration by the function of cudaDeviceSynchro-
nize(). Last, the data from all the devices will be written in the CPU
part, ignoring the padding part.

3. Application studies

In order to present the feasibility of the technology we developed for
investigating the hemodynamics in the hepatic-portal venous system,
the accuracy and efficiency of the model are presented by three differ-
ent application cases, including pipe flow, hemodynamics in the portal
venous system, and hemodynamics in a simple hepatic-portal venous
system. All the application cases are examined with the Intel Broadwell
E5-2683 v3@ 2.30 GHz (CPU) and NVIDIA Tesla V100 16 GB (GPU).
MFLUPS (million fluid lattice updates per second) and memory cost are
key parameters to characterize the computational performance test.

3.1. Pipe flow

A blood flow in a pipe with length (𝐿) 0.064 m and diameter
(𝐷) 0.016 m is selected in the range of length and diameter of the
portal vein, and the geometry information is directly from the image.
The density and kinematic viscosity of blood is 𝜌 = 1060 kg∕m3 and
𝜈 = 3.3 × 10−6 m∕s2, respectively. As shown in Fig. 8(a), the blood is
driven by the velocity with a parabolic profile in the 𝑧-axis direction
and the maximum velocity(𝑈𝑧𝑚𝑎𝑥) is set as 0.1 m∕s which is dependent
on the blood flow rate of the portal vein. In this case, the outlet
boundary is fully developed boundary condition. For such a flow, the
analytical solution of the velocity profile distributed in the XY-plane is
𝑈𝑧 = 𝑈𝑧𝑚𝑎𝑥(1 − 4((𝑥 − 𝑅)2 + (𝑦 − 𝑅)2)∕𝐷2), and the pressure difference
from an outlet along the 𝑧-axis direction is ▵ 𝑃 = 16𝜌𝜈𝑈𝑧𝑚𝑎𝑥𝑧∕(𝑔𝐷2).
The spatial resolution selection is the primary step for simulation which
is dependent on the convergence check of velocity and relative error
between the simulated (𝑉 𝑠) and the analytical velocity (𝑉 𝑎). The point
(0.001, 0.008, 0.032) m in Plane A is selected as the test point due to the
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Table 1
The relative error between the simulated and analytical velocity and convergence check
at point (0.0001,0.0008,0.0032) m when the spatial resolution varies from 162 × 61 to
1282 × 505 with four levels.

Resolution 162 × 61 642 × 249 802 × 313 1282 × 505
𝑉 𝑠 (m∕s) 0.01901 0.02225 0.02321 0.02322
𝑉 𝑎 (m∕s) 0.02344
(𝑉 𝑠 − 𝑉 𝑎)∕𝑉 𝑎 (%) 18.90 5.05 0.97 0.90
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (%) 14.3 4.1 0.7 /

point close to the wall has a sensitive connection with the resolution. As
Table 1 listed, 80 × 80 × 313 is chosen to conduct the test with consid-
eration of computational cost and accuracy. Based on the appropriate
resolution, we select Plane A and the centerline of the pipe to record
the velocity profile along the 𝑥-axis direction with 𝑦 = 0.008 m and
pressure difference along the 𝑧-axis direction, respectively. As Fig. 8(b)
and (c) indicated, both velocity distribution and pressure differences
are in good agreement with the analytical solution. Hence, the test
case confirms that the technology we developed is reasonable for the
analysis of image-based computational fluid dynamics.

From our experience in GPU acceleration, the speed-up of GPU algo-
rithm for regular dense geometry and CPU-serial is around 4000 with
the Intel Broadwell E5-2683 v3@ 2.30 GHz (CPU) and NVIDIA Tesla
V100 16 GB (GPU). Here, we focus on the speed-up and memory saving
ratio between the GPU algorithm of regular dense geometry (DENSE)
and sparse geometry (SPARSE). The main differences between DENSE
and SPARSE are in memory ordering and addressing. The performance
of GPU acceleration of pipe with fluid volume fraction 𝑞 = 0.766 is
indicated in Table 2 for three different resolutions through speed-up
and memory saving ratio. The speed-up of different resolutions is nearly
the same. SPARSE is faster when the mesh size is smaller. And the
memory saving ratio between DENSE and SPARSE is 0.85 which is
related to the fluid volume fraction. Hence, the SPARSE has a similar
performance to DENSE when the fluid volume fraction is close to 1.

3.2. Hemodynamics in the portal venous system

In this section, the accuracy and efficiency of the technology we
developed for image-based sparse geometry are presented by analyzing
hemodynamics in the portal vein system. Here, we take one anonymous
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Fig. 9. (a) Schematics for the portal venous system with parabolic velocity inlet (SMV and SV) and outlet (PV). Slice 1 is a representative plane extracted to analyze the
characteristics of the flow field. (b) The pulsatile flow rate of PV (solid black line), SMV (dash–dot blue line), and SV (dash red line) obtained from the MRI images, and three
representative time point 1(circle), 2(triangle), and 3(rectangle) which has the maximum, mean, and minimum velocity of PV are selected to study the effect of pulsatile. (c)
Velocity distribution of Slice 1, the dash–dot white line is the centerline of Slice 1 in the 𝑦-direction. (d) The velocity profile of the centerline of Slice 1, A, B, and C are three
representative points for the convergence check.
Table 2
The GPU performance of pipe flow with 𝑞 = 0.766 for SPARSE comparing with DENSE with speed-up and memory saving ratio through three
different resolutions.
Resolution Speed (MFLUPS) Speed-up Memory cost (GB) Saving ratio

DENSE SPARSE DENSE SPARSE

64 × 64 × 249 1937 2172 1.12 0.23 0.19 0.83
128 × 128 × 507 1966 1975 1.00 1.85 1.57 0.85
184 × 184 × 731 1993 1810 0.91 5.52 4.70 0.85
Table 3
The convergence check at point A, B, and C when the spatial resolution varies from 73 × 80 × 96 to 184 × 200 × 242 with four levels.
Resolution 73 × 80 × 96 103 × 112 × 135 132 × 143 × 174 184 × 200 × 242
𝑉𝑧𝐴 (m∕s) 0.0780 0.0723 0.0684 0.0678
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐴 (%) 7.88 5.77 0.84 /
𝑉𝑧𝐵 (m∕s) −0.0098 −0.0063 −0.0059 −0.0058
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐵 (%) 36.03 6.06 0.96 /
𝑉𝑧𝐶 (m∕s) 0.0100 0.0081 0.0086 0.0087
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐶 (%) 18.47 6.40 0.83 /
patient with portal hypertension cases as an example. The model of
the portal venous system (Fig. 9(a)) is segmented from the patient’s
MRI medical images, including the superior mesenteric vein (SMV),
splenic vein (SV), and portal vein (PV). And blood flow rate of the
SMV, SV, and PV in a cardiac cycle (Fig. 9(b)) is recorded from the
corresponding MRI images. Three representative time points, 1, 2, and
3, are selected to analyze the hemodynamics in the portal venous
system. The point 1 (circle), 2 (triangle), and 3 (rectangle) are the
time points 𝑡 = 0.07, 0.48, 0.62 s, which have the maximum, mean, and
minimum velocity of PV, respectively. Slice 1, located in the middle of
the 𝑧-direction of the portal venous system, is a representative plane
extracted to analyze the characteristics of the flow field. The velocity
distribution of Slice 1 is indicated in Fig. 9(c). Three representative
points, A, B, and C, in the velocity profile (Fig. 9(d)) along the cen-
terline of the Slice 1 are selected as the tracing points to get the
appropriate resolution for simulation. Quantitatively, the convergence
check is shown in Table 3 with the specific point A, B, and C. With the
suitable resolution 132 × 143 × 174, the 3D flow fields of the three
representative times are shown in Fig. 10(a), (b), and (c) stands for the
different time points. As time varies, the velocity magnitude varies, but
the velocity distribution is similar.

Hence, a hypothesis that the blood flow rate of the portal venous
system can be treated as steady flow instead of pulsatile flow is gener-
ated. The boundary condition of the portal venous system is changed as
a constant velocity to verify this hypothesis. And the constant velocity
boundary is selected from three representative time points of PV and
SMV, which can be treated as three specific steady cases. Due to mass
conservation, the velocity of SV is dependent on the flow rate of PV
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and SMV. Slice 1 extracted from 3D geometry, as Fig. 9(a) showing,
is selected as the representative plane. It can be observed that the
velocity distribution is similar in the large velocity magnitude and
slight difference when the velocity magnitude is close to 0, comparing
the velocity distribution of Slice 1 of steady flow (Fig. 11(a)) with the
pulsatile flow (Fig. 11(b)) at the same time. Therefore, the velocity
of a vein can be treated as a steady flow consistent with the general
knowledge of medicine.

Meanwhile, the pressure difference between PV and SV is captured
as 3.43, 5.51, 7.71 Pa at time points 1, 2, and 3, respectively. Compared
with the normal pressure difference of the hepatic-portal venous system
5 mmgh, the pressure difference in the portal venous system can be
neglected, which is consistent with clinical treatment. As a result, the
model can be considered reasonable with qualitative observation.

The performance of GPU acceleration of the portal venous system is
indicated in Table 4. Here, we only take three anonymous patient cases
as the sample. The fluid volume fraction 𝑞 for case1–3 is 0.131, 0.192,
and 0.242, respectively. The speed-up is up to 2.2 between SPARSE and
DENSE. And the memory saving ratio between DENSE and SPARSE is
0.15 − 0.28, which depends on 𝑞.

3.3. Hemodynamics in hepatic-portal venous system

Based on the GPU performance tested by the portal venous system,
we take the appropriate resolution of the portal venous system to build
a portal venous system with a mesh size of 586 × 532 × 442. As
Fig. 12(a) shows portal venous system consists of three hepatic veins

(HV) extending from the inferior vena cava (IVC), liver, and portal
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Fig. 10. The 3D flow fields of the three representative time 𝑡 = 0.07, 0.48, 0.62 s for (a), (b), and (c) respectively.
Fig. 11. Comparing (a) Velocity magnitude distribution in Slice 1 of three specific steady cases: (a-1)∼(a-3) constant velocity boundary condition of time points 1∼3 of PV and
SMV with (b-1)∼(b-3) Velocity magnitude distribution in Slice 1 of pulsatile flow at the corresponding time 𝑡 = 0.07, 0.48, 0.62 s.
Table 4
The GPU performance of portal venous system for SPARSE comparing with DENSE with speed-up and memory saving ratio through three
different patient cases.
Case Resolution Speed (MFLUPS) Speed-up Memory cost (GB) Saving ratio

DENSE SPARSE DENSE SPARSE

1 (𝑞 = 0.131)
132 × 143 × 174 676 1487 2.20 0.73 0.11 0.15
184 × 200 × 242 779 1532 1.97 1.99 0.31 0.15
224 × 243 × 294 822 1513 1.84 3.58 0.55 0.15

2 (𝑞 = 0.192)
184 × 145 × 184 831 1245 1.50 1.10 0.24 0.22
224 × 176 × 224 863 1230 1.43 1.97 0.44 0.22
264 × 208 × 263 952 1651 1.73 3.23 0.72 0.22

3 (𝑞 = 0.242)
184 × 173 × 159 890 1937 2.18 1.13 0.31 0.28
224 × 210 × 193 914 1659 1.82 2.03 0.56 0.28
268 × 252 × 231 945 1778 1.88 3.49 0.97 0.28
venous system. The liver can be modeled as porous media to study
portal hypertension quantitatively which will be discussed in a future
paper. Here we treat the liver as a chamber, i.e., the porosity is 1 with
full of blood flow, to see the possibility of simulation with existing
computer hardware. The velocity magnitude distribution of the blood
flow in the hepatic-portal venous system is shown in Fig. 12(b). The
direction of the flow and velocity in the hepatic vein is much larger
than others is reasonable. With DENSE, the memory cost is 30.80 GB.
It cannot be done on a single GPU 16 GB. Here, we apply Multi-GPU for
DENSE. Table 5 separately exhibits the GPU acceleration by two, three,
or four GPU cards. The performance accelerates when the number of
GPU cards increases. With SPARSE, the memory cost is 9.25 GB, the
memory saving ratio is 0.3, and the speed is 1378 MLUPS. In other
8

words, a numerical case can be done around half an hour with parallel
execution of SPARSE, whereas it takes 83 days with serial execution
from our previous experience.

4. Summary & future work

To develop a new technique monitoring portal hypertension by PPG
based on non-invasive measurement (MRI images) instead of current
invasive measurement, massive parametrization and classification are
required. Meanwhile, the hepatic-portal venous system used for sim-
ulation consists of HV extending from IVC, liver, and portal venous
system, which has a large computational domain. Hence, combining
the features of GPU with VLBM is significant in achieving an efficient
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Fig. 12. (a) Schematics for hepatic-portal venous system with parabolic velocity inlet (SMV, SV, IVC before HV) and outlet (IVC after HV). Two PVs and three HVs are connected
with liver. (b) Velocity magnitude distribution of the blood flow in hepatic-portal venous system.
Table 5
The GPU performance of hepatic-portal venous system with 𝑞 = 0.266 for SPARSE comparing with multi-GPU DENSE with speed-up through
different numbers of GPU card.
Resolution Speed (MFLUPS) Memory cost (GB)

DENSE (GPU no.) SPARSE DENSE SPARSE

586 × 532 × 442 (𝑞 = 0.266) 2 3 4 1378 30.80 9.25
2037 2824 3751
GPU-VLBM algorithm. In this paper, GPU parallelization and opti-
mization for the volumetric lattice Boltzmann model are performed,
including an A–B (2 sets of distribution functions) pattern, dynamic
allocation, SoA, ‘push’ propagation scheme, semi-indirect addressing,
register utilization, and multi-GPU. Three different application cases,
including pipe flow, hemodynamics in the portal venous system, and
hemodynamics in the hepatic-portal venous system, are employed to
prove the feasibility of the method based on accuracy and efficiency.
From our previous experience [27,30] in the GPU acceleration, the
speed-up of DENSE compared with CPU-serial is around 4000 by the
Intel Broadwell E5-2683 v3@ 2.30 GHz (CPU) and NVIDIA TeslaV100
16 GB (GPU). In this paper, we focus on the speed-up and memory
saving ratio between DENSE and SPARSE. The results derived from the
paper are summarized as follows:

• The reliability of the model is validated qualitatively by the
analytical solution of velocity and pressure difference distribution
of pipe flow and quantitatively by the portal venous system so
that the pulsatility of velocity and pressure difference can be
neglected.

• The performance of the application cases shows that the SPARSE
presented in the paper has a similar speed with DENSE when
the fluid volume fraction (𝑞) is close to 1. While SPARSE speed
up to 2.2 times compared with DENSE when q is in the range
of 0.19∼0.27. Correspondingly, the memory cost saving ratio is
dependent on 𝑞. In this condition, a numerical case in the hepatic-
portal venous system can be converged for around half an hour
with parallel execution of SPARSE. The time for simulation will
be decreased by the number of GPU cards increasing with the
multi-GPU implementation.

In summary, the method proposed in the paper to investigate a new
technique to monitor portal hypertension in the hepatic-portal venous
system is the feasibility. While the developing liver model is still a huge
challenge. We still work on the liver model based on the fractal theory.
This new technology is believed to improve patient care and clinical
decision-making in the future.
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