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a b s t r a c t 

This work is part of our continuous research effort to reveal the underlying physics of bubble coales- 

cence in microfluidics through the GPU-accelerated lattice Boltzmann method. We numerically explore 

the mechanism of damped oscillation in microbubble coalescence characterized by the Ohnesorge ( Oh ) 

number. The focus is to address when and how a damped oscillation occurs during a coalescence pro- 

cess. Sixteen cases with a range of Oh numbers from 0.039 to 1.543, varying in liquid viscosity from 

0.002 to 0.08 kg /( m · s ) correspondingly, are systematically studied. First, a criterion of with or without 

damped oscillation has been established. It is found that a larger Oh enables faster/slower bubble coales- 

cence with/without damped oscillation when ( Oh < 0.477)/( Oh > 0.477) and the fastest coalescence falls 

at Oh ≈ 0.477. Second, the mechanism behind damped oscillation is explored in terms of the competition 

between driving and resisting forces. When Oh is small in the range of Oh < 0.477, the energy dissipation 

due to viscous effect is insignificant, sufficient surface energy initiates a strong inertia and overshoots 

the neck movement. It results in a successive energy transformation between surface energy and kinetic 

energy of the coalescing bubble. Through an analogy to the conventional damped harmonic oscillator, the 

saddle-point trajectory over the entire oscillation can be well predicted analytically. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Damped oscillation that switches the major axis between hori-

zontal and vertical direction with reducing amplitude of the major/

minor axis ratio is a unique behavior in microbubble coalescence.

While forced oscillation is specifically induced by various exter-

nal sources such as electrostatic force [1] , acoustic trap [2] , and

laser light [3] for the purpose of controlling bubble size and col-

lapse in different engineering and biomedical systems [4–6] , self-

oscillation is inherently driven by imbalance between the driven

and resistant forces. While the driving is from the surface tension

at the gas-liquid interface, the resistance is co-contributed by iner-

tial and viscous effects in the liquid side. Understanding the mech-

anism of self-oscillation is critically important to better utilize the

forced oscillation in real-world applications. Rayleigh [7] was the

pioneer who studied small-amplitude self-oscillation of an invis-

cid droplet from a pure mathematical point of view in 1879. Since

then, Rayleigh’s work has been extended toward physical environ-

ments by exploring the density effects of the surrounding fluid

[8] , the viscous effects [9] , and the initial condition effects [10] on

the oscillation. A relationship between Ohnesorge number( Oh , a di-
mensionless number that relates the viscous forces to inertial and 
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urface tension forces) and critical damping (corresponding to the

hortest coalescence time), for a droplet i.e. 0.71 < Oh < 0.76 was

ound [11] in the early 1990s. Stover et. al [12] were the first to

xperimentally study the microbubble oscillation and showed the

ffects of liquid viscosity and surface tension on the decay of the

amped oscillation. Recently, a benchmark study [13] exhibited the

ifferent morphological evolutions in the global coalescence from

wo equal-size spherical droplets to a stable single droplet with

inimal surface energy when the viscosity ratio of two-fluids is

ither low or high. In spite of the effort s in the past one and half

enturies, so far the underlying of self-oscillation is still in its in-

ant stage. 

Due to the delicate and ephemeral nature of microbubble co-

lescence, experimental exploration of the fundamental physics is

till exceptionally challenging. Whereas numerical simulation pro-

ides a unique and powerful capability to characterize the under-

ying mechanics of microbubble coalescence through parameteri-

ations and classification. Among different numerical schemes, the

inetic-based lattice Boltzmann method (LBM) [14,15] has demon-

trated its physical and computational advantages to simulate mul-

iphase flows [16,17] . In the past three decades, several multiphase

odels using LBM have been developed, including the color fluid

odel [18] , the pseudo-potential model [19] , the mean-field model

20] , the phase-field model [21] based on the free-energy theory

22] , and the entropic LBM [23] . These models have been con-

inuously refined and applied to simulate many multiphase flow
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roblems, (see general LBM reviews [16,17] and specific multiphase

BM reviews [24,25] , and therein references). We employ the free-

nergy modeling approach that has been continuously developed

nd refined in the last 10 years by the Lee group [26–29] and

t has been shown that the parasitic current (an artificial veloc-

ty field caused by discretization errors in the simulation of multi-

hase flows) has been eliminated [28] and large density gradients

f up to 10 0 0 [27] across the interface can be handled. As part

f the continuous effort to unveil the underlying physics of mi-

robubble coalescence, in this work, we explore the mechanism of

amped oscillation in microbubble coalescence from initially two

ouched equal size microbubbles to finally one coalesced bubble

ith minimum surface area. The focus is to address when and how

 damped oscillation occurs during a coalescence process in terms

f the Oh number. 

. Lattice Boltzmann modeling for fluid-gas flows 

The detail formulation of the lattice Boltzmann model can be

ound in the paper [30] . For the sake of comprehension and com-

letion, we concisely introduce the main idea and major equa-

ions here. A diffuse interface is applied to separate phases in the

odelling of multiphase flow. There are three governing equations

ncluding continuity equation, pressure evolution and momentum

quation as follows. The continuity equation can be written as the

ahn–Hilliard equation. 

 C/∂ t + u · ∇C = ∇ · (M∇μ) (1)

 p 1 /∂ t + ρc 2 s ∇ · u = 0 (2)

(∂ u /∂t + u · ∇ u ) = −∇ p 1 + μ∇ C + ∇ · η(∇ u + (∇ u ) T ) (3)

Here M ( > 0) is the mobility [31] and C is the composition,

is the chemical potential defined as μ = μ0 − κ∇ 

2 C in which

0 is the classical part of the chemical potential. In the vicin-

ty of the critical point, simplification of van der Waals equa-

ion of state can be made [32] for the control of interface thick-

ess and surface tension at equilibrium. In this case, we assume

hat the energy E 0 takes a form [33] of E 0 = βC 2 (C − 1) 2 with

being a constant. As a result, μ0 = ∂ E 0 /∂ C = 2 βC(C − 1)(2 C −
) . In an interface at equilibrium, the interface profile is C(z) =
 . 5 + 0 . 5 tanh (2 z/D ) where z is the distance normal to the inter-

ace and D is the numerical interface thickness, which is chosen

ased on accuracy and stability. Given D and β , one can compute

he gradient parameter κ = βD 

2 / 8 and the surface tension force

= 

√ 

2 κβ/ 6 . For a binary flow, we introduce the intermolecular

orce [28] as F = 

1 
3 ∇ ρc 2 − ∇ p 1 − C∇ μ where p 1 is the hydrody-

amic pressure, whereas the thermodynamic pressure p 0 is defined

y p 0 = C∂ E 0 /∂ C − E 0 = βC 2 (C − 1)(3 C − 1) . The total pressure is

p = p 0 + p 1 − κC∇ 

2 C + κ|∇C| 2 / 2 . 
The lattice Boltzmann equation (LBE) (before the time dis-

retization) including the intermolecular force reads [20] 

 f α/∂ t + e α · ∇ f α = −( f α − f eq 
α ) /λ + 

3 

c 2 
( e α − u ) · F f eq 

α (4)

here f α is the particle distribution function with discrete molecu-

ar velocity e α along the α-th direction and λ is the relaxation time

elated to the kinematic viscosity ν = 

1 
3 c 

2 λ. The equilibrium dis-

ribution function is defined as f 
eq 
α = ρω α[1 + 3( e α · u ) /c 2 + 9( e α ·

 ) 2 / (2 c 4 ) − 3 u 

2 / (2 c 2 )] where ω α is the weight associated with a

articular discretized velocity e α, ρ and u are macroscopic den-

ity and velocity respectively, and c = δx/δt = 1 in lattice units (i.e.,

t = δx = 1 ). 

Defining a new particle distribution function g α = 

1 
3 f αc 2 +

(p 1 − 1 ρc 2 )
α(0) in which 
α( u ) = f 
eq 
α /ρ and taking the total
3 
erivative D t = ∂ t + e α · ∇ of g α result in 

 g α/∂ t + e α · ∇g α = −(g α − g eq 
α ) /λ + ( e α − u ) 

·
[ 

1 

3 

∇ρc 2 (
α − 
α(0)) − C∇μ
α

] 
(5) 

here the new equilibrium g 
eq 
α is g 

eq 
α = ω α[ p 1 + ρ(( e · u ) + 3( e α ·

 ) 2 / 2 c 2 − u 2 )] 

Discretizing Eq. (5) along characteristics over the time step δt ,

e obtain the LBE for g α

¯
 α(x + e αδt, t + δt) = ḡ α(x , t) − 1 

τ + 0 . 5 

( ̄g α − ḡ eq 
α ) 

∣∣
(x ,t) 

+(e α − u ) ·
[ 

1 

3 

δt∇ 

MD ρc 2 (
α(u ) − 
α(0)) 

−Cδt∇ 

MD μ
α

] ∣∣∣
(x ,t) 

(6) 

here ∇ 

MD and ∇ 

CD are referred to mixed difference approxi-

ation and central difference approximation respectively [29] and

(= λ/δt) is the non-dimensional relaxation time. In Eq. (6) , the

odified particle distribution function ḡ α and the equilibrium dis-

ribution function ḡ 
eq 
α are introduced to facilitate computation 

¯
 α = g α + 

1 

2 τ

(
g α − g eq 

α

)
− 1 

2 

δt ( e α − u ) 

·
[ 

1 

3 

∇ 

CD ρc 2 C ( 
α( u ) − 
α( 0 ) ) − C ∇ 

CD μ
α

] 
(7) 

¯
 

eq 
α = g eq 

α − 1 

2 

δt ( e α − u ) 

·
[ 

1 

3 

∇ 

CD ρc 2 ( 
α( u ) − 
α( 0 ) ) − C ∇ 

CD μ
α

] 
(8) 

he momentum and hydrodynamic pressure are the zeroth and

rst-order moment of ḡ α, computed as ρu = 

3 
c 2 

∑ 

e α ḡ α − δt 
2 C ∇ 

CD μ

nd p 1 = 

∑ 

ḡ α + 

δt 
6 u · ∇ 

CD ρc 2 

For the transformation of the composition C , a second distribu-

ion function is introduced in a simple format of h α = (C/ρ) f α and

 

eq 
α = (C/ρ) f eq 

α . Similarly, taking the total derivative D t of h α and

tilizing Eq. (1) yield 

¯
 α(x + e αδt, t + δt) = h̄ (x , t) − h̄ α − h̄ 

eq 
α | (x ,t) 

τ + 0 . 5 

+ δt( e α − u ) 

·
[ 
∇ 

MD C − 3 C 

ρc 2 

(∇ 

MD p 1 + C∇ 

MD μ
)] 


α| (x ,t) 

+ δtM∇ 

2 μ
α| (x ,t) (9) 

here the modified particle distribution function h̄ α and h̄ 
eq 
α are

efined as [29] 

¯
 α = h α + 

1 

2 τ
(h α − h 

eq 
α ) − δt 

2 

( e α − u ) 

·
[ 
∇ 

CD C − 3 C 

ρc 2 
(∇ 

CD p 1 + C∇ 

CD μ) 
] 

α (10) 

¯
 

eq 
α = h 

eq 
α − δt 

2 

( e α − u ) ·
[ 
∇ 

CD C − 3 C 

ρc 2 
(∇ 

CD p 1 +C∇ 

CD μ) 
] 

α (11)

The composition C is the zeroth-order moment of h̄ α com-

uted as C = 

∑ 

α
h̄ α + 0 . 5 δtM ∇ 

2 μ. The density ρ and the dimen-

ionless relaxation frequency (1/ τ ) are taken as linear functions

f the composition by ρ(C) = Cρ1 + (1 − C) ρ2 and 1 /τ (C) = C/τ1 +
(1 − C) /τ2 . 

. Numerical study 

The objective of the current study is to address two questions

or two equal-size microbubbles that coalesce. First, when does

elf-oscillation occur? Second, how is a damped oscillation driven

nd developed? 
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Fig. 1. A typical microbubble coalescence process with damped oscillation in a microfluidic channel from (a)initially touched bubbles to (b) neck bridge evolution through 

(c)-(f) oscillation with damping axis ratio toward (g) a coalesced bubble with the minimum surface area. ρ l / ρh and ηl / ηh are density and dynamic viscosity of gas/liquid 

respectively. D x and D y are the distances between bubble edge and the mass center O in the horizontal and vertical directions respectively, and �(= D y /D x ) is the shape 

factor of the coalescing bubble. 

Table 1 

Sixteen cases with identical physical and computational conditions except for the fluid viscosity ηh , thus different Oh numbers. 

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ηh × 10 3 ( kg/m ·s ) 2.0 3.5 6.5 9.2 13.7 18.0 21.0 24.7 27.5 35.0 40.0 45.0 50.0 55.0 70.0 80.0 

Oh × 10 0.39 0.67 1.25 1.77 2.64 3.47 4.07 4.77 5.30 6.75 7.72 8.68 9.65 10.61 13.51 15.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Time evolution of shape factor ( � = D y /D x ) of 5 representative cases during 

bubble coalescence. Two distinct coalescence phenomena, with and without oscilla- 

tions when Oh < 0.477 and Oh > 0.477 respectively, are identified. Oh = 0 . 477 serves 

as the dividing edge of them. 
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3.1. Computational set-up 

As schematized in Fig. 1 (a), two equal-size microbubbles are set

in the center of a microfluidic channel with a square domain of

100 2 ( μm 

2 ). Subscripts of “h” and “l” denote the heavy (liquid) and

light (gas) fluid respectively. The gas is fixed to air with density

ρl = 1 . 28 kg/m 

3 and dynamic viscosity ηl = 1 . 74 × 10 −5 kg/(m · s) .

The density of liquid is fixed as ρh = 1840 kg/m 

3 but varies the

viscosity ηh from 0.002 to 0 . 08 kg/(m · s) . Constant surface tension,

σ = 7 . 3 × 10 −2 N/m , is assumed. This physical setting results in a

range of Oh (≡ ηh / 
√ 

ρh σR ) numbers from 0.039 to 1.543. The ini-

tial bubble radius R is 20 μm . D x and D y are the distances between

the bubble edge and the mass center O in the horizontal and ver-

tical directions respectively. A shape factor, defined as � = D y /D x ,

is to track the interface of the coalescing bubble, starting from 0

(initial touched bubble) and ending at 1 (single coalesced bubble),

as schematized in Fig. 1 . In our previous study [34] , a switching

of the major axis of the coalescing bubble between the horizon-

tal and vertical directions was observed, when the Oh number is

relatively small, in the post-coalescence corresponding to the pe-

riod from (c) to (g) in Fig. 1 . Since the shape factor � is reduc-

ing, this phenomenon is called damped oscillation. In general, the

bubble coalescence can be categorized into three types of damp-

ing: underdamping (with a visible oscillation of �), overdamping

(invisible oscillation of �) and critical damping (invisible oscilla-

tion with the shortest time to reach � = 1 ). The in-house, GPU-

accelerated LBM code based on the free-energy model is used for

all the simulation in this work. The reliability of this LBM model

has been demonstrated in some application studies [30,34,35] pre-

viously through comparisons with analytical solutions and experi-

mental/computational results. The spatial resolution was selected

600 2 through a convergence check [34] . The periodic boundary

condition is applied in both directions. 

3.2. Numerical results 

In this part, we explore when and how a damped oscillation

occurs during a coalescence through a systematic study. Table 1

shows the sixteen cases with identical physical and computational

conditions except for the fluid viscosity ηh and corresponding dif-

ferent Oh numbers. 

Fig. 2 shows the time evaluation of the shape factor, �(= D y /

D x ) , of 5 representative cases with Oh = 0 . 039 , 0 . 177 , 0 . 477 , 0 . 675 ,

and 0.964. The Oh value clearly affects the coalescence style. On

one side when Oh < 0.477, the blue lines with solid symbols exhibit

damped oscillation, indicating the axis switching of the coalescing

bubble between horizontal and vertical directions with reducing
he amplitude of � toward a final circular bubble. The smaller the

h number, the stronger the oscillation. On the other side when

h > 0.477, the green lines with empty symbols show asymptotic

rowth of the shape factor toward the end of the coalescence when

= 1 . 0 , implying that the coalescing bubble retains its major axis

n the horizontal direction in the entire process of coalescence

ith no oscillation. In between, Oh = 0 . 477 serves as the dividing

dge for the two distinct coalescence styles. 

Another effect of Oh numbers on bubble coalescence is the

oalescence time, denoted as T in μs , from two equal, initially-

ouched bubbles to finally one circular bubble when the minimum

urface area, no matter with or without oscillations, as shown in

ig. 3 . When the Oh number is small (in blue) where damped os-

illation is involved, increasing the Oh number can significantly

educe the coalescence time T . Whereas when the Oh number is

arge (in green) with no oscillation, increasing that Oh number

auses larger T meaning longer coalescence process. For the Oh

esolution selected in this study, there exists a critical Oh num-

er, i.e. 0.477 (in red), that corresponds the shortest coalescence

ime. If considering a continuous Oh range, the critical Oh num-

er should be identified in the range from 0.407 to 0.530. To the

uthors’ best knowledge, such criteria for with and without oscil-

ation of microbubble coalescence is a first-time finding. A similar

riterion for droplets were previously discovered, from which the

ritical Oh number is believed to be between 0.71 to 0.76 [11] . 

We now explore the mechanism behind these two distinct coa-

escence phenomena in terms of the competition between driving
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Fig. 3. Effects of Oh on the bubble coalescence time T . Blue (solid)/green (dash) 

lines correspond to small/large Oh ranges. When Oh is small/large, increasing Oh 

reduces/increases coalescence time. The critical Oh (= 0 . 477) corresponds to the 

shortest coalescence time that distinguishes the two distinct coalescence phenom- 

ena. 
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Eq. (13) . 
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p  
nd resisting forces at different Oh ranges. Since, in all the study

ases listed in Table 1 , only liquid viscosity varies, causing the vari-

tion of the Oh number while all other parameters remain the

ame. We only consider the imbalance of surface tension at inter-

ace and viscous resistance from liquid in this part. Surface energy

ue to the surface tension can be divided into two parts. One is

eleased to produce kinetic energy to drive the coalescence, which

an be called useful energy. The other part is dissipated due to the

iscous effect. 

First, we focus on the left side (in blue) in Fig. 3 . In this regime,

he viscosity is relatively small, thus the coalescence is dominated

y surface tension. To better describe the phenomenon, we stick

o the top half of the coalescing bubble and the middle point of

he interface (called the saddle point). Once the neck is formed,

ee Fig. 1 (b), the surface tension induces a strong acceleration of

he saddle point away from the bubble center, converting surface

nergy to kinetic energy. When the interface gets flat, the velocity

agnitude of the saddle point reaches the maximum as all of the

seful surface energy has been converted to the kinetic energy for

he interface motion. Due to the inertia, D y continues to increase

nd the interface becomes a convex shape, Fig. 1 (c), generating sur-

ace tension. The velocity of the saddle point slows down as the

inetic energy is being converted to surface energy. When all the

seful kinetic energy becomes surface energy, D y reaches its peak

nd surface tension gets to the maximum Fig. 1 (d). The process

rom (c) to (d) illustrates the switching of the major axis from hor-

zontal to vertical directions. The similar transformation between

urface energy and kinetic energy occurs to switch the major axis

rom vertical to horizontal directions, Fig. 1 (d) and (e), in the op-

osite direction, completing the first cycle of the oscillation. Be-

ause of the existence of the energy dissipation, useful energy is

osing and the amplitude of D y is reduced when the saddle point

s back to its lowest location. Such cycles repeat with smaller and

maller amplitudes till it reaches the final stable coalesced bubble.

n Fig. 3 , it is seen that smaller Oh results in faster growth and a

igher peak of �. This is because smaller energy dissipation per-

its more useful surface energy to drive the bubble to coalesce. If

e consider that the surface tension acts as a restoring force, the

urrounding fluid acts as a mass, and viscosity damps the motion,

he 1-D motion of the saddle point can be modelled as a damped

armonic oscillator [36] 

 

′ ρR 

3 
d 2 D 

2 
y 

2 
+ B 

′ ρνR 

dD y + C ′ σD y = 0 (12)

dt dt r  
here A 

′ , B ′ , C ′ are dimensionless geometric parameters to be de-

ermined. The damped oscillation of the saddle point can be de-

ived as the solution of the Eq. (12) 

 y = Ae 
−Bνt 

R 2 sin 

(
C 

√ 

σ

ρR 

3 
t 

)
(13) 

n which A (integral constant to be determined), B (= 

B ′ 
2 A ′ , and

 

( 

= 
√ 

C ′ 
A ′ −

B ′ 
A ′ 

2 
Oh 2 

4 

) 

correspond to the amplitude coefficient, decay

actor, and the oscillation period respectively. We select three rep-

esentative cases of Oh = 0 . 067 , 0.125 and 0.177 and use the nu-

erical results to determine A, B , and C respectively with the start

oint D y = R e . As shown in Fig. 4 , the oscillating trajectories of the

addle point with reduced amplitudes (symbols) are well-captured

y the damped harmonic oscillator model (solid lines). 

Then, we look at the green side in Fig. 3 . In this regime, the vis-

osity is large enough to resist the coalescence. Each of the green

ines in Fig. 2 shows a monotonic growth of the shape factor from

 to 1, indicating that no oscillation occurs in the coalescence.

hen Oh increases, the coalescence time increases. This is under-

tandable because the larger Oh means large resistance thus this

lows down the coalescence process. 

. Summary & future work 

Using the GPU-accelerated LBM simulation, we are able to sys-

ematically investigate the effects of Oh number on the global

oalescence process in a microchannel. Sixteen cases with the

h number from 0.039 to 1.543, by varying the liquid viscosity

rom 0.0020 to 0.08 kg/(m ·s) while keeping other parameters un-

hanged, are studied. By tracking the time evolution of the shaper

actor �, we identified two distinct coalescence phenomena. In the

egion of Oh < 0.477, damped oscillation is observed. The oscilla-

ion is more intensive when Oh is smaller, and resulting a longer

ime to complete the global oscillation. While Oh > 0.477, the shape

actor asymptotically increases from 0 to 1 and the global coales-

ence time increases with the increase of Oh . The mechanism be-

ind the different coalescence behavior is explored in terms of the

ompetition of the surface tension driving and viscous resisting.

hen Oh < 0.477, the viscous force is small thus energy dissipa-

ion is insignificant. The bubble coalescence is dominated by the

urface tension force. The transformation between the surface en-

rgy and kinetic energy with energy dissipation causes the damped

scillation of microbubble coalescence. Smaller Oh number cases

ossess more useful surface energy to drive stronger oscillation,

esulting in longer coalescence time. The damped oscillation can
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be modeled as a damped harmonic oscillator that has an analyti-

cal solution. The numerical simulation has a good agreement with

the analytical prediction. Whereas in the range of Oh > 0.477, the

viscous force becomes significant. The neck growth is much slower

and no overshooting of the bubble interface occurs and the shape

factor asymptotically grows from 0 to 1. It is seen that a larger Oh

number corresponds with longer coalescence time, implying the

role of the viscous effect. In between the two regimes, a critical

Oh = (0 . 477) number is identified, corresponding to the smallest

coalescence time. It should be noted that the observed critical Oh

number is based on the discretization of Oh in the current study.

Strictly speaking, when consider a continuous Oh range, the critical

Oh number should fall in the range between 0.407 and 0.530. Such

a criterion of with and without damped oscillation determined by

Oh number are consistent to the drop coalescence that has pre-

sented in open data. To authors’ best knowledge, the finding of

the critical Oh number that separates the two regimes correspond-

ing to the distinct coalescence behavior for microbubble is believed

to be the first. There are further questions to be investigated: (1)

What determines the critical Oh number? (2) what occurs if the

initial two microbubbles are unequal? (3) what will be different if

the bubble coalescence occurs on a solid surface? Some of them

are being addressed and the results will be presented in near fu-

ture. 
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