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Effects of initial conditions on the
coalescence of micro-bubbles

Rou Chen, Huidan(Whitney) Yu and Likun Zhu

Abstract

The effects of initial conditions on the coalescence of two equal-sized air micro-bubbles (R0) in water are studied using

the lattice Boltzmann method. The focus is on effects of two initial set-ups of parent bubbles, separated by a small

distance d and connected with a neck bridge radius r0, on the neck bridge growth at the early stage of the bubble

coalescence. A sophisticated free energy lattice Boltzmann method model based on the Cahn-Hilliard diffuse interface

approach is employed. This lattice Boltzmann method model has been demonstrated suitable for handling a large density

ratio of two fluids up to 1000 and capable of minimizing the nonphysical spurious current. In both initial scenarios, the

neck bridge evolution exhibits a half power-law scaling, r=R0 ¼ A0ðt=tiÞ
1=2 after a development time. The half power-law

agrees with the recent analytical prediction and experimental results. It has been found that smaller initial separation

distance or smaller initial neck bridge radius results in faster growth of neck bridge and bubble coalescence, which is

similar to the effects of these two initial scenarios on droplet coalescence. The physical mechanism behind each behavior

has been explored. For the initial connected case, faster neck growth and longer development time corresponding to

smaller initial neck radius is due to the significant bias between the capillary forces contributed by the meniscus curvature

and the neck bridge curvature, whereas in the case of initial separated scenario, faster growth and shorter development

time corresponding to shorter separation distance is due to the formation of elongated neck bridge. The prefactor A0

that represents the growth of neck bridge radius at the characteristic time ti captured in each case is in good agreement

with the experimental results.
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Introduction

Coalescence is a common process in gas–liquid sys-
tems. When two bubbles/droplets are close, a micro-
scopic connecting neck bridge will form and rapidly
grow tending to merge and minimize the surface area.
Studying the neck bridge (contact area) growth at the
early stage of coalescence is essential in understanding
the dynamics of bubble/droplet coalescence.1–5 Many
efforts have been focused on the neck bridge evolution
of droplet coalescence through numerical,6–8 experi-
mental9,10 and theoretical11 studies. The general under-
standing is that the neck bridge growth is governed by
both resisting force (inertial force and viscous force)
and driving force (capillarity force) characterized by
Ohnesorge number (viscous force versus inertial and
capillarity forces), Ohð� �h=

ffiffiffiffiffiffiffiffiffiffiffi
�h�L
p

Þ where L, �, �, �
are the characteristic length, e.g. droplet/bubble radius
R0, viscosity, density, and surface tension respectively.
The subscript hmeans the heavier fluid. For example, if
viscous effect is negligible (i.e.Oh� 1), the coalescence
of two identical droplets with radius R0 is dominated

by inertial force with a coalescence timescale

ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hR

3
0=�

q
(i.e. in the inertial regime).10 In this

regime, neck bridge evolution has been analytic-
ally,11,12 experimentally,13 and numerically6 studied.
The time evolution of the neck bridge radius r (defined
in Figure 1(b)) follows a power-law, r=R0 / ðt=tiÞ

1=2, in
the early stage of coalescence. When viscous force
becomes significant (i.e. Oh> 1), the coalescence time-
scale is determined by tv ¼ �R0=� (i.e. in the viscous
regime). Neck bridge evolution is found to be
r=R0 / t=tvlnðt=tv).

11 Paulsen et al.14 analytically
predicted that the neck bridge evolution of bubble
coalescence follows the same half power-law scaling,
i.e. r=R0 / ðt=tcÞ

1=2, in the inertial and viscous regimes
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where the characteristic time tc corresponds to ti and tv,
respectively. This prediction was confirmed by experi-
ment results.14

Separated with small distance d or connected
with a small neck bridge radius r0, schematized in
Figure 1(a) and (b) respectively, are two typical initial
set-ups in the research of bubble/droplet coalescence.
In scenario (a), when the distance d is small enough,
two bubbles/droplets are attracted through Van de
Waals attraction force till bubbles/droplets touch
when the coalescence starts.15,16 Whereas in scenario
(b), the initial radius r0, corresponding to a meniscus
diameter � thus meniscus curvature K� ¼ 2=�, is usu-
ally due to small perturbation because the static touch
of two bubbles/droplets is not stable and the coales-
cence starts immediately. The effects of these two
scenarios on droplet coalescence have been studied
numerically.4 It has been observed that for scenario
(a), the bridge evolution is sensitive to the distance of
the initial separation, and for scenario (b), a slower
initial growth corresponds to a larger initial neck
bridge radius. The dynamics of microbubble coales-
cence under various influences are systematically
investigated. Recently, the effects of size inequality
of bubbles on the interfacial dynamics and coales-
cence time had been found that the coalescence time
exhibits power-law scaling to the size inequality of
parents bubbles17 has already been studied. The pre-
sent work is a part of continuous research effort on
the aforementioned subject.

The early stage of air (light fluid with subscript l)
microbubble coalescence in water (heavy fluid with
subscript h) is studied using lattice Boltzmann
method (LBM)18,19 under two initial conditions. The

focus is on how the initial setup of two bubbles affects
the early neck bridge evolution. These are numerical
evidence of the aforementioned half power-law scal-
ing.14 The kinetic-based LBM has emerged as an
alternative for simulating a broad class of complex
flows.20,21 In the past three decades, several multiphase
models using LBM have been developed, including the
color fluid model,22 the pseudo-potential model,23 the
mean-field model,24 the phase-field model25 based on
the free-energy theory,26 and the entropic LBM.27

These methods have been continuously refined and
applied to simulate many multiphase flow problems,
(see general LBM reviews20,21 and specific multiphase
LBM reviews,28,29 and therein references). The free-
energy modeling approach is employed that has been
continuously developed and refined in the last 10 years
by Lee group30–33 and it has been claimed that the
parasitic current has been eliminated32 and large dens-
ity gradient is up to 100031 across the interface.

The remainder of the paper is organized as follows:
the Lattice Boltzmann method for gas-liquid flows at
high-density ratio section describes the free-energy
LBM modeling and computational setup. Numerical
results are shown in the Numerical simulation and
results section, including validation through power-
law scaling and initial condition effects on the neck
bridge evolution at the early stage as well as the
exploration of the mechanism. The paper concludes
with the Summary and discussion section.

Lattice Boltzmann method for gas–liquid
flows at high-density ratio

The present work is a part of continuous effort to
explore the underlying mechanisms of the coalescence
of microbubbles. The detail formulation of the LBM
can be found in Chen et al.17 The related equations
are listed as follow.

Governing equations

For a binary flow, the governing equations including
Cahn-Hilliard equation, pressure evolution equation
and momentum equation are as follow

@C=@tþ u � rC ¼ r � ðMr�Þ ð1Þ

@p1=@tþ �c
2
sr � u ¼ 0 ð2Þ

�ð@u=@tþ u � ruÞ ¼ �rp1 þ �rCþ r � �ðruþ ðruÞ
T
Þ

ð3Þ

where C is composition, � is the chemical potential
defined as

� ¼ �0 � �r
2C ð4Þ

with �0ð¼ @E0=@CÞ the classical part of the chemical
potential. In this case, assume that the energy E0 takes

(a)

R0

R0

d

(b)

R0

R0

δ

r0

Figure 1. Schematics of two initial scenarios for two equal

bubbles with radius R0: (a) separated bubbles with distance d

and (b) connected bubbles with neck bridge radius r0 and

meniscus diameter �. The meniscus curvature is Kd ¼ 2=d.
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the following form34 of E0 ¼ �C
2ðC� 1Þ2 with �

being a constant. As a result, �0 ¼ @E0=@C ¼
2�CðC� 1Þð2C� 1ÞÞ. In an interface at equilibrium,
the interface profile of C is

CðzÞ ¼ 0:5þ 0:5 tanhð2z=DÞ ð5Þ

where z is the distance normal to the interface and D
is the (numerical) interface thickness, which is chosen
based on accuracy and stability. Given D and �, one
can compute the gradient parameter � ¼ �D2=8 and
the surface tension force � ¼

ffiffiffiffiffiffiffiffi
2��
p

=6.
The intermolecular force32 is introduced as

F ¼ ð1=3Þr�c2 � rp1 � Cr� where p1 is the hydro-
dynamic pressure, whereas the thermodynamic pres-
sure p0 is defined by p0 ¼ �0 � E0 ¼ �C

2ðC� 1Þ
ð3C� 1Þ. The total pressure is p ¼ p0 þ p1�
�Cr2Cþ �jrCj2=2. When Ma is low, p1=p0 �
OðMa2Þ, and all thermodynamic quantities are inde-
pendent of the hydrodynamic pressure.35

Lattice Boltzmann equations for binary flow

Targeting to the numerical stability and elimination of
the spurious current caused by intermolecular force,
Lee and Lin30,31 adopted a new transformation tech-
nique, and then Lee continuously refined it based on
Cahn-Hilliard diffusion scheme to eliminate the spuri-
ous current due to incompressibility.32,33

A new particle distribution function is defined as
g	 ¼ f	c

2=3þ ð p1 � �c
2=3Þ�	ð0Þ, in which �	ðuÞ ¼

!	½1þ 3ðe	 � uÞ=c
2 þ 9ðe	 � uÞ

2=2c4 � 3u2=2c2�. Here
!	 is the weight coefficient, e	 is the discretized vel-
ocity, and c ¼ dx=dt ¼ 1 in lattice units (i.e.,�t ¼
�x ¼ 1). Taking the total derivative Dt ¼ @t þ e	 � r

of g	 results in

@g	=@tþ e	 � rg	 ¼ �ð g	 � geq	 Þ=


þ ðe	 � uÞ � ½ð1=3Þr�c2ð�	 � �	ð0ÞÞ � Cr��	�

ð6Þ

where the new equilibrium geq	 ¼ !	½ p1 þ �ððe � uÞþ
3ðe	 � uÞ

2=2c2 � u2Þ�. Discretizing equation (6)
along characteristics over the time step �t, the LBE
for g	 is

�g	ðxþ e	�t, tþ �tÞ ¼ �g	ðx, tÞ �
1


 þ 0:5
ð �g	 � �geq	 Þjðx, tÞ

þ ðe	 � uÞ � ½ð1=3Þ�trMD�c2ð�	ðuÞ

� �	ð0ÞÞ � C�trMD��	�jðx, tÞ

ð7Þ

where rMD means mixed difference approximation,
and rCD means central difference approximation33

and the non-dimensional relaxation time 
 ¼ 3�=�t,
in which � is the kinematic viscosity. In equation
(7), the modified particle distribution function �g	
and the equilibrium distribution function �geq	 are

introduced to facilitate computation

�g	 ¼ g	 þ ½1=ð2
Þ� g	 � geq	
� �

� ð1=2Þ�t ea � uð Þ

� ð1=3ÞrCD�c2 �	 uð Þ � �	 0ð Þð Þ � CrCD� �	
� �

ð8Þ

�geq	 ¼ geq	 � ð1=2Þ�t ea � uð Þ � ½ð1=3ÞrCD�c2

ð �	ðuÞ � �	ð0ÞÞ � CrCD� �	�
ð9Þ

The hydrodynamic pressure and momentum can
be computed by taking the zeroth and first moments
of �g	.

p1 ¼
X

�g	 þ ð�t=6Þu � r
CD�c2 ð10Þ

�u ¼ ð3=c2Þ
X

ea �g	 � ð�t=2ÞCr
CD� ð11Þ

For the transformation of the composition C, a
second distribution function is introduced in a
simple format of h	 ¼ ðC=�Þ f	 and heq	 ¼ ðC=�Þ f

eq
	 .

Similarly, taking the total derivative Dt of h	 and uti-
lizing equation (1) yield

�h	 xþ e	�t, tþ �tð Þ ¼ �h	 x, tð Þ �
�h	 � �heq	
� �

j x, tð Þ


 þ 0:5

þ �t e	 � uð Þ � ½rMDC

�
3C

�c2
rMDpþ CrMD�
� �

� �	j x, tð Þ

þ �tMr2� �	j x, tð Þ

ð12Þ

and the modified particle distribution function �h	 and
�heq	 is defined as33

�h	 ¼ h	 þ
1

2

ðh	 � heq	 Þ �

�t

2
ðea � uÞ

� rCDC�
3C

�c2
ðrCDpþ CrCD�Þ

� �
�	

ð13Þ

�heq	 ¼ heq	 �
�t

2
ðea � uÞ � ½rCDC�

3C

�c2
ðrCDpþ CrCD�Þ��	

ð14Þ

The composition C can be computed by taking the
zeroth moment of �h	

C ¼
X

�h	 þ 0:5�tMr2� ð15Þ

The density � and the dimensionless relaxation fre-
quency (1=
) are taken as linear functions of the com-
position by

�ðCÞ ¼ C�1 þ ð1� CÞ�2, 1=
ðCÞ ¼ C=
1 þ ð1� CÞ=
2

ð16Þ
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As discussed in Lee,32 the interfacial mobility M
in equation ð15Þ plays a role in suppressing the non-
physical parasitic currents caused by the numerical
discretization. In the present study, Mð¼ 6:67Þ is set
as suggested.

While the formation of LBEs above seems compli-
cated, the implementation of them is straightforward
as follows.

Parameters in lattice unit. �h, �l, �, D¼ 4, � ¼ 12�=D,
� ¼ 3=2�D, M¼ 6.67, 
h, 
l.

Initial conditions. p1 ¼ 0, ui ¼ 0, C, �, 
, �, heq, and geq

are calculated by equations (5), (16), (16), (4), (14),
and (9) respectively.

Iteration
.

1. Collision: the right-hand sides of equations (12)
and (7), respectively.

2. Streaming: the left-hand sides of equations (12)
and (7), respectively.

3. Variable update: C, �, 
, �u, p1, h
eq, and geq by

equations (15), (16), (16), (11), (10), (14), and (9)
correspondingly.

Numerical simulation and results

The early-stage coalescence (t5 5 ms) of two identical
air micro-bubbles are studied, R0(¼20 mm) sitting at
the center of a square domain filled with water.
The side length of the domain is 100 mm. For the pur-
pose of exploring the effects of initial conditions of the
bubbles on the bubble coalescence, two conditions are
considered, as schematized in Figure 1. In case (a),
the bubbles are separated by a distance d. It is
known15,36,37 that when the separation of two bubbles
is within the effective range of intermolecular attrac-
tion force, the attraction force will drive the bubbles
moving toward. When the bubbles are touched, a
bridge is formed and then the bubble coalescence
starts. Figure 2 shows the instantaneous velocity
vector fields right before and right after the neck
bridge forms. Small separation distance is selected to
ensure the occurrence of coalescence. The ratio of sep-
aration distance and bubble radius, �d ð� d=R0),
varies from 0.008 to 0.042. In case (b), the bubbles
are connected with an initial neck bridge radius r0
which is taken by initial perturbation to propa-
gate.4,6,9 The ratio of initial bridge neck radius and
bubble radius �rð� r0=R0Þ changes from 0.16 to 0.38.
The domain boundaries in vertical and horizontal dir-
ections are periodic. The density and viscosity of the
water and air are �h ¼ 103ðkg=m3

Þ, �l ¼ 1:2ðkg=m3
Þ

and �h ¼ 10�3kg=ðmsÞ, �l ¼ 1:98� 10�5kg=ðmsÞ,
respectively, resulting in the density ratio 833 and vis-
cosity ratio 50.5 of water vs. air. The surface tension
between water and air is assumed to be
� ¼ 7:2� 10�2N=m. Such a physical setup was used

in the entire study unless otherwise indicated. D2Q9
lattice model19 is applied in the simulation.

First, convergence check through the power-law
scaling of neck bridge evolution is performed to find
out an appropriate resolution. Selecting �d ¼ 0:017
and Oh ¼ 2:6� 10�2 (inertial regime) and varying
five spatial resolutions of 2002, 4002, 6002, 8002, 10002

for the flow domain. It is found that in all the
five cases, the time evolution of neck bridge radius r

follows power-law r=R0 ¼ A0ðt=tiÞ
1=2, in which

ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hR

3
0=�

q
¼ 10:5 ms, and t is measured from the

instant of bubble coalescence, with varying A0, as
shown in Table 1. The neck bridge radius r is deter-
mined through a contour line of C¼ 0.4. As the reso-
lution increases, A0 converges to 1.06 with reducing
relative errors. To avoid high computation cost, 6002

is selected as the typical resolution to produce
the results for the present study. The half power-law
scaling, r=R0 / ðt=tiÞ

1=2, meets the analytical predic-
tion.14 The prefactor A0 ¼ 1:05 for this resolution is
within the range of experimental measurements1,38

1.09	 0.08, for air bubbles coalescence in water.

Figure 2. Instantaneous velocity fields right before (a) and

right after (b) two bubbles are connected forming a neck

bridge.
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Effects of initial neck bridge radius r0 on neck
bridge evolution

In this section, five cases with the relative radii of the
initial neck bridge, �rð¼ r0=RÞ ¼ 0:16, 0:20, 0:28, 0:33,
and 0.38, are investigated. Figure 3 shows the neck
bridge evolution of a representative case (�r ¼ 0:28).
It can be seen in Figure 3(a) that after a development
time, the relative growth of neck bridge, ðr� r0Þ=R0,
becomes linear to ðt=tiÞ

1=2, which is equivalent to the
half power-law of ðr� r0Þ=R0 ¼ 0:81ðt=tiÞ

1=2. The half

power-law scaling has been predicted analytically,11

which has been confirmed in recent experiments.14

The result is a numerical confirmation of the half
power-law scaling. In order to understand the under-
lying physics of the early neck growth, the driving
mechanism to the coalescence in this early stage is
closely looked into. Figure 3(b) shows the neck
bridge development in the development time from a
to d and half power-law scaling regime from d to f
indicated in Figure 3(a). As the neck bridge radius r
increases gradually, pushing the bottom of the neck
up, the meniscus gradually rounds up with increased
diameter �. Table 2 lists the curvature of meniscus
(K� ¼ 2=�) vs. curvature of neck bridge (Kr ¼ 1=r) at
the corresponding time sequence. At initial time
(point a), the neck bridge radius is set to be small
and corresponds a steep meniscus, resulting in the
curvature of the meniscus 5600 times larger than the
curvature of the neck bridge. This implies that the
initial growth of the neck bridge is driven by the
curvature of the meniscus within a very short time
period ( 0:01ti) from point a to d, the meniscus curva-
ture K� rapidly reduces by 29311% from 1000.0 to 3.4
mm�1 while the neck curvature Kr only reduces around
21% from 0.179 to 0.147 mm�1, toward a more
balanced driving mechanism contributed by both
meniscus curvature and neck bridge curvature. In
the time period of half power-law scaling from time
point d to f, it is seen that the ratio of the two curva-
tures is around 15. Thus, the time development before
the half-power law scaling is due to the significantly
unbalanced capillary force of the meniscus curvature
and the neck curvature.

The time evolutions of the neck bridge with differ-
ent initial neck bridge radius are plotted in Figure 3,
distinguished by the dimensionless parameter
�rð¼ r0=R0Þ. The solid line corresponds to the repre-
sentative case discussed above. While each initial
radius case has a similar tendency of the neck
growth to the representative case, it is seen that smal-
ler �r (from bottom up) results in faster growth of the
neck bridge, meaning that smaller initial neck bridge
leads to faster coalescence at the early stage. It is
noticed that the plotted power-law scaling is

(t/t
i
)1/2

(r
-r

0)
/R

0

0 0.1 0.2 0.3
0

0.1

0.2

(a)

(b)

γr=0.28

A0=0.81
Development Time

a
b

d

b
c

e

f

b

f

r

δ

a

e

c

d

Figure 3. (a) A representative neck bridge evolution for the

case of gr ¼ 0:28. (b) Sequence of meniscus development and

neck growth across development time (from a to d) and half

power-law scaling time (from d to f).

Table 2. Curvature of meniscus (K�) vs. curvature of

neck bridge (Kr) at representative time points indicated in

Figure 3(a).

Time

Point � r K�ð¼ 2=�Þ Kr ¼ ð1=rÞ K�=Kr

A 0.002 5.6 1000.0 0.179 5600

b 0.067 6.3 29.9 0.159 188

c 0.417 6.6 4.8 0.152 32

d 0.583 6.8 3.4 0.147 23

e 0.833 7.1 2.4 0.141 17

f 1.250 7.6 1.6 0.132 12

Note: Units: � and r (mm). K� and Kr (mm�1).

Table 1. Resolution convergence check.

Resolution 2002 4002 6002 8002 10002

A0 0.9181 1.1017 1.050 1.056 1.060

Relative

error

13.39% 4.06% 0.94% 0.37% 0

Note: The relative error is for the finest resolution.
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ðr� r0Þ=R0 ¼ A0ðt=tiÞ
1=2 for the purpose to compare

different initial neck bridge radius r0. Meanwhile,
smaller �r exhibits faster neck bridge evolution. This
is understandable. Smaller �r corresponds to larger
initial curvature of meniscus, resulting in large capil-
lary force to drive the neck growth, leading to faster
coalescence. Corresponding to the smallest �r ¼ 0:16
(long-dash line), the initial curvature of meniscus and
neck bridge is as high as 2985 as opposed to 1000 of
the representative case (solid line). These effects of
initial neck bridge radius on micro-bubble coalescence
are similar to those on droplet coalescence.4

Effects of initial separation distance (d) on neck
bridge evolution

In this part, five cases with different initial separation
distance d, distinguished by �d ð¼ d=R0Þ ¼ 0:008,
0:017, 0:025, 0:033, 0:042, are investigated. The time
evolutions of the neck bridge are plotted in
Figure 5. Once again, the half power-law scaling
after a development time is seen in each separation
case, which is another numerical confirmation for
the analytical prediction.11 It is seen that smaller sep-
aration distance (bottom up) leads to faster neck
growth, thus faster coalescence, and shorter develop-
ment time. Table 3 lists the development time for each
case. The smallest �d case starts the half power-law

almost immediately when two bubbles attach.
Whereas the largest �d case takes 0:289ti before start-
ing the half power-law. The development time for this
initial scenario is the result of elongated neck forma-
tion, as explored in a study of the effects of initial
separation distance to the neck growth in droplet
coalescence.4 As the initial separation d is small
enough, within the effective range of the intermolecu-
lar attraction force, the attraction force between the
two approaching surfaces initiates the thinning and
rupture of the liquid film between two bubbles and
forms a gas bridge. The film thinning leads to an
elongated neck bridge in the horizontal direction.
As seen in Figure 6 for two initial separation distance
cases with � ¼ 0:008 (a) and 0.042 (b), respectively,
smaller separation distance forms shorter neck
bridge with larger curvature of meniscus. The larger
meniscus curvature leads to faster neck growth thus
faster coalescence, as have been discussed above.

The prefactor A0 represents the relative neck bridge
radius r=R0 at t¼ ti. Table 3 shows that for the

(t/ti)
1/2

(r
-r

0)
/R

0

0 0.1 0.2 0.3
0

0.1

0.2

0.16
0.20
0.28
0.33
0.38

A0=1.01

A0=0.71

γr

Figure 4. Effects of initial neck bridge radius (rr ¼ r0=R0) on

the growth of the neck bridge radius (r=R0). The solid line

corresponds to the representative case in Figure 3.

(t/ti)
1/2

r/
R

0

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.008
0.017
0.025
0.033
0.042

A0=1.05

A0=1.13

γd

Figure 5. Effects of initial separation distance (rd ¼ d=R0) on

the growth of the neck bridge radius (r=R0).

(a)

δ

(b)

δ

Figure 6. Effects of initial separation distance on the forma-

tion of elongated neck bridge in horizontal direction, (a)

rd ¼ 0:008 and (b) rd ¼ 0:042.

Table 3. Effect of �d on the development time.

�d 0.008 0.017 0.025 0.033 0.042

Development

Time (t=ti)
0 0.0076 0.0196 0.0256 0.289

A0 1.05 1.08 1.12 1.12 1.13
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varying initial separation distance cases, A0 varies
marginally from 1.05 to 1.13. This is in good agree-
ment with the experimental results. Table 4 shows A0

values of different liquids. The experimental cases are
all in the inertial regime, the same as the present
study. It seems that A0 is closely related to the density
of liquid. Larger liquid density results in smaller A0.
The current work studies air bubble coalescence in
water with the liquid density of �h ¼ 1000 kg=m3.
The range of A0 in the present work agrees well
with the experimental results.

Summary and discussion

In this paper, the effects of two initial set-ups, i.e.
separated and connected bubbles, have been studied
respectively, on the neck bridge evolution using the
LBM. To insure the reliability of the results, conver-
gence check and validation have been carefully per-
formed. Simulation results show that the two initial
conditions have significant influence on the neck
growth thus the coalescence dynamics. In both initial
scenarios, the neck bridge evolution exhibits half
power-law scaling, r=R0 ¼ A0ðt=tiÞ

1=2 after a develop-
ment time. The half power-law agrees with the recent
analytical prediction and experimental results. It has
been found that small initial separation distance or
small initial neck bridge radius results in faster
growth of neck bridge and bubble coalescence,
which is similar to the effects of these two initial scen-
arios on droplet coalescence. The physical mechanism
behind the development time is explored. For the ini-
tial connected case, smaller neck bridge radius corres-
ponds to steeper meniscus at the liquid side, leading to
significantly larger curvature of meniscus than that of
neck bridge. The development time is to lessen the
significant bias and enable contributions from both
curvatures of meniscus and neck bridge to capillary
forces. Whereas for the initial separated case, the thin-
ning of liquid film between two bubbles causes elon-
gated neck bridge in the approaching direction of two
bubbles due to intermolecular attraction. In the range
of intermolecular attraction, smaller separation dis-
tance leads to a steeper meniscus (equivalent to larger
curvature or larger capillary force). This explains why
smaller separation distance shows faster neck growth.
Meanwhile, smaller separation distance forms smaller
elongated neck bridge and thus causes shorter

development time to start the half power-law scaling.
The values of the prefactor A0 in the power-law scaling
for all the cases are in good agreement with the experi-
mental results. These simulation results are expected to
provide informative guidance for initial set-up of
numerical simulation of bubble coalescence.
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Appendix

Notation

A0 prefactor of power-law scaling
c lattice velocity in LBM
C composition
d separation distance
D numerical interface thickness
e	 discretized velocity in LBM
F intermolecular force
g	 particle distribution function which is

used to recover momentum and pres-

sure evolution equation
geq	 equilibrium distribution function of g	
�g	 modified particle distribution function

of g	
�geq	 modified equilibrium distribution func-

tion of g	
h	 particle distribution function which is

used to recover Cahn-Hilliard evolution

equation
heq	 equilibrium distribution function of h	
�h	 Modified particle distribution function

of h	
�heq	 modified equilibrium distribution func-

tion of h	
K� curvature of meniscus
Kr curvature of neck bridge
L characteristic length
M mobility
Oh Ohnesorge number
p total pressure
p0 thermodynamic pressure
p1 dynamic pressure
r neck bridge radius
r0 initial neck bridge radius
R0 bubble radius
t time of neck bridge evolution
ti timescale in the inertial regime
tv timescale in the viscous regime
u velocity of fluid
w	 weight in the particle distribution

function
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b constant in the classical part of the
chemical potential

gd the ratio of separation distance and
bubble radius

gr the ratio of initial neck bridge radius
and bubble radius

�� particle distribution function
d diameter of meniscus
dt time in lattice unit
dx length in lattice unit
Z local dynamic viscosity
Zh dynamic viscosity of heavy fluid

Zl dynamic viscosity of light fluid
k gradient parameter
� chemical potential
�0 classical part of the chemical potential
n local kinematic visocity
r local density
rh density of heavy fluid
rl density of light fluid
s surface tension

 non-dimensional relaxation time
rCD central difference approximation
rMD mixed difference approximation
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