Journal of Petroleum Science and Engineering 156 (2017) 546-552

JOURNAL OF
PETROLEUM
SCIENCE &
ENGINEERING

‘‘‘‘‘‘‘‘ et

Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

—_—

\!) CrossMark

GPU-accelerated volumetric lattice Boltzmann method for porous
media flow

Senyou An*", Huidan(Whitney) Yu®", Jun Yao® "

@ School of Petroleum Engineering, China University of Petroleum, Qingdao, 266580, China
b Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA

ARTICLE INFO ABSTRACT

Keywords:

Porous media

GPU parallel

Volumetric lattice Boltzmann method
Digital core

Petroleum

The volumetric lattice Boltzmann method (VLBM) has been recently developed and validated for dealing with
flows in complex geometries. To reveal the intricate and arbitrary porous media skeleton, VLBM categorizes the
computational domain into fluid, solid, and boundary cells by introducing a volumetric parameter P(X), through
which the lattice Boltzmann equations are self-regularized. As a result, the no-slip bounce-back boundary con-
dition at the inter walls is integrated in the streaming term. Since its data structure is aligned and kernel pattern is
clear, VLBM is ideally suited for GPU parallelization. Using the P(X) in the streaming operation, branch diverse
can be effectively decreased. In this paper, we use several optimization methods, such as memory arrangement
and kernel design, to maximize the performance of parallelization for VLBM. As an application, we simulated
petroleum flow in a digital sandstone with two resolutions, 256° and 2562 x 512, and evaluated its permeability.
The best parallel performance reaches 808.7 MLUPS (Million Lattice Updates Per Second), which is 1421.3-times

speedup compared with the serial computation with allocated memory.

1. Introduction

The lattice Boltzmann method (LBM) (Benzi et al., 1992; Chen et al.,
1992) has become a popular alternative to traditional Navier-Stoke (NS)
equation solvers (e.g. finite element method, finite volume method),
especially for incompressible and time-dependent flow (Chen and Doo-
len, 1998; Aidun and Clausen, 2010). As a heritage from cellular au-
tomaton, the LBM simulates fluid dynamics via prescribed discrete
kinetic equations for time evolution of discrete particle density distri-
bution functions due to molecular interaction. The macroscopic proper-
ties such as velocity, pressure and wall shear stress, are the macro-scale
reflection of particle distribution. Mathematically, the incompressible
lattice Boltzmann equation can recover NS equations based on
BGK(Bhatnagar-Gross-Krook) collision approximation (Bhatnagar et al.,
1954) and Chapman-Enskog technique (Chapman and Cowling, 1970) to
the second-order accuracy in both space and time (Chen and Doo-
len, 1998).

In the traditional LBM, fluid particles are set on the node points and
the computational domain is usually characterilized by 0 and 1, repre-
senting fluid and solid. The particle distribution functions represent the
corresponding cell's density layout linked with momentum distribution.

* Corresponding author.
** Corresponding author.
E-mail addresses: whyu@iupui.edu (H. Yu), rcogfr upc@126.com (J. Yao).

http://dx.doi.org/10.1016/j.petrol.2017.06.031

Received 3 May 2017; Received in revised form 13 June 2017; Accepted 14 June 2017
Available online 17 June 2017

0920-4105/Published by Elsevier B.V.

In the iterative evolution, particles' collisions occur in host cells, and then
the particles stream to adjust grids along their velocity directions. When a
lattice cell is cut by arbitrarily curved boundaries, either a fluid or solid
node has to be determined via the volume fraction of solid. Such a
treatment may alter the real flow domain, which can be significantly in
accurate in porous media flow. To improve the accuracy, the computa-
tional resolution must be very fine, causing demandingly high compu-
tation cost. Unstructured mesh may ease the computation demand (Peng
etal., 1999; Li et al., 2005), but it is not applicable for porous media flow
because there will be difficulties in small isolated areas or extreme tip
points in random porous structure (Aavatsmark et al., 1998). The un-
structured mesh may also weaken those strong points of structured LBM
in GPU parallelization (Qian et al., 1995; Feichtinger et al., 2011).
Recently, Yu, et al. developed a mass-conserved volumetric lattice
Boltzmann method (VLBM) (Yu et al., 2014), in which fluid particles are
uniformly distributed in each lattice cell. The computational domain are
categorized through fluid, solid, and boundary cells by introducing a
volumetric parameter P(X), defining the solid fraction in each cell. The
volumatic lattice Boltzmann equations are self-regulated through P(X).
In VLBM, the no-slip bounce-back boundary condition at the inter walls is
integrated in the streaming term. The introduction of volumatic

mailto:whyu@iupui.edu
mailto:rcogfr_upc@126.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2017.06.031&domain=pdf
www.sciencedirect.com/science/journal/09204105
http://www.elsevier.com/locate/petrol
http://dx.doi.org/10.1016/j.petrol.2017.06.031
http://dx.doi.org/10.1016/j.petrol.2017.06.031
http://dx.doi.org/10.1016/j.petrol.2017.06.031

S. Anet al.

representation makes an enormous contribution to accurately describe
complex boundaries with no compromise of fine resolution, which is
great for porous media flow.

The VLBM is ideally suitable for GPU parallelization. Previously,
Wang, et al. parallelized VLBM for simulating blood flow in human ar-
teries (Wang et al., 2015). The performance was about 100 MLUPS
(Million Lattice node Updates Per Second). This parallel scheme ended
up with 10 MLUPS for crude oil flow in digital stone, implying a need of
more advanced parallel schemes. In this work, we parallelize the VLBM
by highly memory-efficient technologies, including memory arrange-
ment and kernel structure design. First, we have adopted the modified
tiling algorithm from Tran N P, et al. (Tran et al., 2015) to minimize the
effect of the uncoalesced accesses. Second, we develop a new allocation
method for CPU memory to guarantee enough continued space for
reading geometry data. Third, we optimize the parallelization by
removing branch divergences, arranging the register usage and
combining streaming and collision into a kernel to maximize the accel-
eration of computation. To demonstrate the application, we simulate
porous media flow in a digital core by using the GPU-accelerated VLBM.

The remainder of the paper is organized as follows. Section 2 in-
troduces the mathematical formulation of VLBM. The high-efficient GPU
parallelization for VLBM is presented in Sec.3. An application about
crude oil flow in porous media is studied in Sec.4. Finally, Sec.5 provides
a summary discussion and concludes the paper.

2. Volumetric lattice Boltzmnn method

The VLBM has been introduced in the previous paper in detail (Yu
etal., 2014). Herein, we just cite the foundational concepts and equations
for better comprehension of parallel computation. VLBM is designed to
accurately and conveniently deal with boundaries by defining solid
occupation function P(X). Just like Fig. 1, extracted for vertical direction
of the D3Q19 model, P(X’) = 0 is used to represent fluid domain, and the
shaded (solid) zone means P(x) = 1. When the cell is crossed by the
boundary line, it will have partial fluid and partial solid. Correspond-
ingly, the solid occupation function will be between 0 and 1. So the
arbitrary structure can be described with less grids compared with
traditional LBM.

The fluid particles are sited in lattice cells, as opposed to distributed
on the nodes in the conventional LBM. To reflect the effect of Pvalue
P(X), the distribution function is defined as n;(', t) = f;(, t)-P(X) with
velocity €’; occupying a lattice cell X; at time t and it deals with the time
evolution of the particle distribution function analogy to LBE.
(X + €At t+ Af) = ni (X, 1) + (X, 1) (@)
where Q;(%, t) is a collision term due to the molecule particles' motion
and the momentum exchange between them. The most common

nid Cell
14

(P=0)

| Cond

olid|Cell (P

Fig. 1. Illustration of volumetric representation of cells using solid ratio P: P = 0 (fluid),
P =1 (solid), 0<P<1 (boundary).

Journal of Petroleum Science and Engineering 156 (2017) 546-552

calculation for this part is the BGK model with a single-scale relaxation
time 7, as Eq. (2). Andi=0,1,2, ---, b represents predefined directions of
molecular motion.

1 .
Q(¥,1) = —[m(¥,1) — nf (¥, 1)] (&)
T
where the n{?(%, t) is the equilibrium function, which is formed as:
eq— — ?i'—> (?17)2 (7)2
n{?(X,t) = N(¥,t)o; l+j+ 20 + 20 3)

where N(X, t) = S m(%, t) is density at the current cell, w; is weight
fraction of ith velocity direction, and c; is speed velocity.

To avoid confusion, streaming and collision should be separated in
the calculation. After collision, temporary array ’postcollision” is defined
as ';(X, t), as the following equation:

' (?* 1) =

(%, 1) + (% ,1) 4

Streaming means that the fluid particles move from the current cell to
neighboring cells. The key point for VLBM is the streaming part, as it
considers the fluid volume fraction of boundary cells. Only a specific fluid
can stream to these cells, meaning the other part will be bounced back to
the host cell. As illustrated in Fig. 1, the 11, 5 and 12 direction velocities
contain two parts, particles streaming from previous cells (black solid
arrow) [1— P(X, t)|n'y(X — €;At, t) and bounce-back fluid from down-
wind boundary cells, P(X+ €uAt,)i (X;, t), as shown in
following equation:

n/(X,t+ At) = [1 — P(X,)]0 {(X — €At 1) + P(X

+?,‘*A[,[)n,i*(?;,[) (5)

where i* corresponds to the opposite velocity direction with i direction,

meaning € = — €; This modified streaming process ensures that

particles are advected or reflected to their appropriate places in the fluid
domain, but does not introduce any extra mass.

The resulting density, velocity and pressure are obtained as follows:

p(X,1) = m(X,0)/[1 = P(¥,1)] (6)
W(F0) =Y Fm(¥,0 [S n(F) @
p(X,1) = po = c[p(X,1) = po] ®

where py and p, are original reference pressure and density, respectively.
3. GPU parallelization for VLBM

One of the most important strengths of LBM is ideally suitable for GPU
parallel. In this section, we introduce how to realize memory efficient
parallelization for D3Q19-based VLBM and optimize it to high speed,
including dynamic allocation, coalesced global memory, register
arrangement, and kernel structure design.

3.1. Dynamic allocation for CPU

The limits of CPU static zone memory and GPU device memory are
essential factors to block acceleration and improvement of model size,
especially when the big data file exists in the data transformation be-
tween host and device. For porous media flow, structure information and
hydrodynamic parameters (Pvalue, density, velocity and pressure), are
essential arrays to be defined for output in CPU host. Distribution func-
tion arrays are applied, initialized and updated in GPU directly.
Assuming the model size is 512 x 512 x 512 and all the data is float type,

S. An et al.

the needed memory for these four arrays will be exactly 2GB, meaning
the host should have more than 2GB to store this data as other few existed
variables. But if we need calculate wall share stress, e.g. in biomedical
field, or if the distribution function is also defined in CPU for previous
processing, the needed memory will be larger than 2GB. There are
typically file and static memory limits imposed by either an operating
system or system administrator that cap at about 2 GB in the host.
Nowadays, a single GPU card is capable of storing anywhere from 3 to
12 GB of data in memory, and multi-GPU technology will multiply in-
crease this memory. In order to fully utilize this space, the CPU part of
this algorithm relies on dynamic (heap) memory as opposed to statically
allocated (stack) memory.

If an uncompiled code were to attempt to use static allocation to
utilize the full capacity of a GPU, it would run into the 2 GB size limit as
the executable created by the compiler would either need to be larger
than the file size limit or exceed the static memory limit. Dynamic allo-
cation allows the operating system to provide as much memory as what is
available to provide by the CPU RAM. So the algorithm can fully utilize
the memory capacity of the GPU device when the dynamic memory is
declared. For the purposes of data copy between CPU host and GPU de-
vice, the transmission arrays should have logically contiguous memory.
The [new] keyword is a provided tool in C++ to allocate logically
contiguous dynamic memory. The [new] keyword is limited, however, to
dynamically allocating one dimensional arrays. We create a class in C++,
which would dynamically allocate a contiguous block of memory for
multidimensional arrays using this keyword. The class would then
internally translate the request from the 24 dimensional element to the
equivalent request in 1 dimension. This class is supposed to easily pass its
underlying data to the GPU and then easily retrieve the information from
the GPU and to manage allocation and deallocation of memory in an easy
way, the outline is shown as Fig. 2.

The Array2, Array3, and Array4 template classes were created to meet
these requirements. The template arguments is provided to specify the
number of values in each dimension like: Array3<float, NX, NY,
NZ > Pvalue, where each template argument after the first, such as NX,
can be a mutable unsigned long long integer. The first argument can be
changed to a double or whatever underlying data type is desired by the
user. Internally, the Array N family of classes manages the dynamic
memory by properly overloading the copy-constructor, destructor, and
assignment operators for the class. In order to transfer the class's un-
derlying data to and from the GPU, the public method data() is provided.
This method returns a pointer to the start of the contiguous 1D array that
can be read into or from a GPU card using the appropriate memcpy
command. Finally, array-like access is provided by overloading operator
[] at various levels so that the syntax and behavior is identical to what
one would expect from statically allocated multidimensional arrays. The
ArrayN family of classes should provide programmers who have been
using regular, statically allocated multidimensional arrays a quick and

//! copy constructor
Array(const Array & other)
{
allocate();
assign(other.m_data);

}

//! assignment operator
Array & operator=(Array other)
{

swap(other);

return *this;

}

Fig. 2. The declaration of arrays in CPU host.

Journal of Petroleum Science and Engineering 156 (2017) 546-552

easy way to update their programs to utilize the full memory capacity of
the GPU cards.

3.2. Coalesced global memory

Herein, we use the 1-D array to implement data organization for
multi-dimensional arrays to avoid extra de-referencing. For geometry
structure, the array needs N, x N, x N, elements (N, N, and N, are
width, height and depth of the grid). The distribution function n;(, t)
and post-collision array n’i(?, t) both have Ny x N, x N; x 19 elements.

This data is declared in the global memory, which belongs to the off-
chip memory (pink block), as shown in Fig. 3. The global memory is a
storage area available for all the thread blocks, through which data can
realize two-direction communication, and CPU can also input and output
information for the device. Just like the heap memory in host, global
memory allocations can persist throughout the duration of the applica-
tion until the execution of free order or the end of the program. The
bandwidth of global memory, however, significantly limits calculation
speed. In present technology, arranging data to apply bandwidth as
effectively as possible is an important step in optimization. For these
arrays, there are usually two common data organization schemes:

(1) Array of Structure (AoS): 19 distributions of each cell occupy 19
consecutive elements of the array. Its plated form is
n;[2%Nyx N, x19+ y*N,x19+ xx19+ i], and x, y and z are cor-
responding positions on the grid, for example the z direction po-
sition can be calculated with this equation: z = blockldx.
gxblockDim. z+ threadldx. z. This scheme is preferable for CPU
series parallelization, as the nodes will be implemented one by
one under the control of the main thread.

Structure of Array (SoA): the value of one distribution of all cells is
arranged consecutively in the memory. Herein, we use 19 arrays
to store the different data in the 19 directions of the D3Q19 model,
just like the direction 1, all n; s in the domain being stored in an
array. The structures of AoS and SoA are shown in Fig. 4.

(2

—

GPU Grid

Block(0,0,0) | Block(0,0,1)

Shared Memory
\

Shared Memory

Register | Register Register | Register

Memory

\ Global

Constant

Memory

Memory /

Memory

A

Texture Memory

11

CPU

Fig. 3. The illustration of GPU device memory.

S. Anet al.

Journal of Petroleum Science and Engineering 156 (2017) 546-552

‘ Thread0 Threadl Thread3 oo ‘
AoS TTFITTTJ—‘TFL‘TTJ—‘TFITT
’nO’nl n, ""nm Ny | n; n ""nls Np |0y 0Oy “°° Mg ‘
‘Threado ‘ Threadl ‘Thread3 ‘ ‘
n, | ng | N no‘no‘no‘no‘“"
SoA ng|ng[ng|n ‘nl ‘nl ‘nl ‘
n, | n, | 0, nz‘nz‘nz‘nz‘m‘
Nyg [Nyg) Myg nlS‘HIS‘HIS‘nw‘ ‘

Fig. 4. The AoS and SoA schemes.

The most effective way to access the global memory is to ensure that
all threads in a block can access a consecutive memory location (Luitjens,
2011). In the GPU, a warp is a unit made from 32 threads to access global
memory. If the memory address is continued and the visiting memory of a
warp is lower than the specific facility limit, the fast access can be ach-
ieved once. So, the SoA scheme is obviously suitable for the GPU grid
because it guarantees that different threads call for the consequent ad-
dresses (Delbosc et al., 2014).

3.3. Kernel design for GPU structure

As introduced in the previous section, the global memory belongs to
the off-chip memory, which has far lower accessing speed than the on-
chip memory (Panda et al., 2000). In most cases, accessing a register

consumes zero clock cycles per instruction (Reese and Zaranek, 2012),
compared to 400-800 cycles for global memory (Power et al., 2014). So
efficient utilization of cache space is extremely important in modern
embedded system applications based on processor cores. As shown in
Fig. 5, we try to decrease the visiting time to the global memory by
combining the streaming operation, hydrodynamic update and collision
operation into a kernel opposite two separated kernels.

In the evolution kernel, the needed parameters are defined in the
registers, and assigned values from the global memory. All subsequent
calculations are based on the variables defined in the registers. The
global memory arrays are updated before the end of the current kernel as
the register variables will be freed at the same time as the kernel ends. In
this part, only variables can be stored in the registers, which means that
the array should be separated, as structures or arrays are typically

__global _ void Ibm_evolution()

int tx = blockIdx.x*blockDim.x + threadldx.x;
int ty = blockldx.y*blockDim.y + threadldx.y;
int tz = blockldx.z*blockDim.z + threadldx.z;
int tid = tx*NY*NZ + ty*NZ + tz;

float Pf=D_ Pvalue[tid];

int id1, id2, id3, --- , id18;

float 10, f1, £2, f3 , --- ,f18;

float ux_r,uy r,uz r,den r;

/I Calculate the needed neighbor ID.
idl = (tx + 1)*NY*NZ + ty*NZ + tz;

id18 = tx*NY*NZ + (ty -)*NZ +tz - 1;

/I Streaming based VLBM streaming equation.

f0 = £0.o0ld[tid];

fl = (1 - Pf)*fl.old[id2] + D_Pvalue[id2] * f2.o0ld[tid];

/I Compute velocity and density.
/I Collision

/I Write velocity and density to global memory

}

/I Load distribution functions from global memory to registers and stream.

f18 = (1 - PH*f18.0ld[id15] + D_Pvalue[id15] * f15.old[tid];

fO=(1-1/tau)*f0 + equilibrium(0, den_r, ux_r, uy r, uz r)/ tau;

f18 = (1 - 1/ tau)*f18 + equilibrium(18, den_r, ux_r, uy r, uz r)/ tau;
/I Write all the distribution functions to global memory

'

Define physical parameters and
read in P(x,?) in host (CPU)

v

Declare variables and
initialization

Copy information from CPU
host to GPU device

v

| Evolution kernel |

y

| Boundary update kernel |

Iteration
Ends?

| Finally results output |

End

Fig. 5. Flow chart of GPU parallelism of VLBM (right) and the corresponding code for evolution kernel (left).

549

S. Anet al.

addressed in local memory. The local memory is an abstraction of global
memory, not a physical memory type. Its scope is local to the thread and
it resides off-chip, which makes it as expensive to access as global
memory. Furthermore, the register memory is small, usually 32 bits per
register (the total number of registers available per block is 65,536 for
Tesla K20). The compiler will also make use of local memory when it
determines that there is not enough register space to hold the variables,
and this process is called register spilling.

In VLBM, the streaming evolution is more complex than the tradi-
tional node-based LBM, as it requires more variables, including neigh-
boring information in addition to local P(X) (geometry information).
Thus, the balance between the latency from off-chip memory accesses
and the occupancy of computational resources needs to be considered.
For a GPU facility with computational capability of 3.5 (e.g Tesla K20),
the maximum number of threads per streaming multiprocessor (SM) is
2048; the max warps per SM is 64 and the max blocks per SM is 16. So,
the maximum number of registers per thread can be calculated: 336 =
32. To reach the best performance, all these limiting conditions should be
taken into account. The following are three common principles in the
design of grid and block size.

e The number of threads in a block should be a multiple of 32, if the
data structure allows.

e The size of a block should be at least 128 (2048 + 16). Here, we
arrange 256 threads in a block.

e The size of a grid (the number of blocks) is far lager than the number
of SMs.

Under these limits, the local variables in the evolution kernel are
further optimized to satisfy the register resource limit. For simple oper-
ations that can be calculated easily, we don't declare them to be the
memory variables. Besides, the indexing address of distributions is
calculated directly without declaration, as shown in the schematic code
of Fig. 5. We can reduce the register demand to 29 (less than 32), which
means that the active warp has 100% occupancy. Actually, many re-
searches find 66% is enough to saturate the bandwidth at present level
(Luitjens and Rennich, 2011). Therefore, even though bandwidth may

Journal of Petroleum Science and Engineering 156 (2017) 546-552

improve in the near future, we still can use this implementation to
meet it.

3.4. Automatic optimization in the VLBM

Streaming and collision are two basic terms both in the VLBM and in
the traditional node-based LBM. Collision has no special design for
calculation, as it has a simple self-based data structure as shown in Eq.
(2). In this paper, the streaming term is designed as a pull model in the
VLBM, and occupancy function P(X) can avoid branch divergence
automatically.

As introduced in Section 3.2, coalescing global memory access is of
great importance to improve performance. To guarantee the memory
access can achieve the best bandwidth performance, the addresses should
be in a continuous 128-byte range. Usually, the LBM algorithms do the
calculations in the current host cell, and the particles stream to its
neighbors in the subsequent operation, as illustrated in Fig. 6. In this
scheme, the read offset is aligned and the write offset is misaligned. Just
like direction 1 and 2 in the D3Q19 model, the update positions are
shifted to the places that do not belong to the 128-byte portion while the
thread indexes do not change correspondingly. The other method is the
pull scheme, which reverses the push structure by exchanging the order
of reading and writing for cells. First, the particle distribution functions
in adjacent cells are read and streamed to the current cell. Then the
collision processing is implemented, and the updated data is written to
the various directions in the host cell. For pull structure, alignment oc-
curs in writing, and the reading is unaligned. Since considering the cost
of the uncoalesced reading is smaller than the cost of the uncoalesced
writing, the pull scheme is adopt for the VLBM, which is reflected in
Eq. (5).

Warp is the actual unit being controlled in the GPU SM. The coed is
compiled together for the 32 kernels in a warp and executed with
different input data. If the treads diverge in different directions by using
[if] or other judging keywords, the performance will be significantly
affected. Under this condition, the different members will choose
different paths, and these paths are serialized to wait for each other. So
the branch divergence should be avoided to realize the real parallelism.

f
5 N /]

oL LN

Read Offset

Write Offset

—>

>

&

TN

/11

Read Offset Write Offset

Fig. 6. In the shift algorithm, lattice extension and offsets for memory operations are utilized. There are two offsets: one for reading and one for writing. The upper one is push scheme, and

lower one is pull scheme.

S. An et al.

Fig. 7. Three dimensional gray image (a) of core with resolution 3.7 m/pixel.

For porous media, the first operation is to separate solid and fluid cells
within the node-based LBM. Otherwise, the calculation will occur in the
solid cells, which will result in complete failure. To solve this problem,
some researchers proposed extracting the fluid cells and recording the
positions of their neighbors. However, the fluid proportion cannot be too
big for this method (usually less than 35%) to ensure that the cycles'
consumption of position array access is less than the fluid cell judgment.
We do not need these special operations for the VLBM because of the
existence of function P(X'). Nothing can steam into the solid cells as the
upwind distribution function should multiply the current cell's fluid
section. In addition, the distribution functions in solid cells are all zero,
which won't bring extra particles to fluid cells.

If we use specific conditions to find boundary layers, it also will
induce branch divergence. In order to avoid using if-statements, one solid
layer is attached per face to set the seal boundary perpendicular to the
flow direction. The inlet and outlet boundaries are updated based on non-
equilibrium processing. This boundary-updated step is realized in
another kernel.

4. Application study

A sandstone is used in this paper to demonstrate the efficiency of GPU
parallelism for the VLBM. One cylindrical core plug is drilled from the
stone with a length of 4 cm and a diameter of 10 mm. Due to different
phases having various X-ray absorption rates, the digital core is described
by gray value between 0 and 255 after the CT scanning. Then the sub-

{
i

‘
. ”'
6

4

e
\'!
e
-

-~
-

Fig. 8. The velocity field distribution in digital core model.

Journal of Petroleum Science and Engineering 156 (2017) 546-552

Table 1
The results of GPU acceleration.

Model Size GPU MLUPS(GPU) MLUPS(CPU) Acceleration
256 x 256 x 256 K20 450.7 0.680 662.8

256 x 256 x 256 K40 749.1 1101.6

256 x 256 x 512 K40 808.7 0.569 1421.3

volume data (256 x 256 x 256 and 256 x 256 x 512) is cut from the
original image, as shown in Fig. 7. The step between the raw image and
flow simulation is 3D structure reconstruction, which is a complex
operation for conventional NS equation solvers (e.g. COMSOL, FLUENT).
When the VLBM is used to solve these equations, regular mesh is ob-
tained without other extra smoothing or unture representational opera-
tions. For seamless connection with the VLBM, the distance field is
calculated based on level-set equation (Wang et al., 2011; Thommes
et al., 2009; Balla-Arabe et al., 2013), which is modified by introducing
multi-seed initial contours to guarantee that the segmentation can be as
close as possible to the real image. After the segmentation, the P(X) field
is calculated using the distance field and local refining method (Yu
et al., 2014).

The constant pressures are set at inlet and outlet boundaries to
simulate the reservoir development method with constant pressure dif-
ference. Specifically, the pressure difference is AP = 10*Pa in this algo-
rithm. The used crude oil has following properties: the API gravity is
25.7, the dynamic viscosity is 13.5mPa-s and the fluid is incompressible.
Then, the fluid flow is simulated in this domain to obtain the velocity
field as shown in Fig. 8. Correspondingly, the permeability K can be
calculated based on Darcy's equation (An et al, 2016) K=
QuL/AAP = 113.5mD.

We carried out the computation on two different facilities: one has a
NVIDIA Tesla K20 GPU card, which has 2496 CUDA cores with 706 MHz
clock frequency and 5 GB globe memory; the other owns a NVIDIA Tesla
K40 GPU card with 2880 CUDA cores, 745 MHz clock frequency and
12 GB globe memory from Maverick in XSEDE. To evaluate the GPU
parallel performance, the serial computation is performed with a Dell
C8220 CPU, which has 16 computing cores with 2.7 GHZ and 32 GB
DDR3 Random Access Memory (RAM).

The calculation performance is examined via MLUPS (Million Lattice
node Updates Per Second). As the static memory is not enough for the
pure C algorithm, the functional keyword [new]| is used to apply for dy-
namic memory in heap memory, which lowers the access speed. For the
256 x 256 x 512 model, the average speed is 61 steps per hour. Corre-
spondingly, the MLUPS is 0.569. When the code is paralleled by the GPU
introduced in previous content, the MLUPS is 808.7 with a speed of 24.1
steps/min, accelerating the CPU serial computation by 1421.3 times, as
shown in Table 1. Wang et al. proposes GPU parallelization for the VLBM
and applies it to carotid hemodynamics based on a Geforce GTX 780
GPU, in which the MLUPS is 129.5 for 133 x 125 x 352 model (Wang
et al., 2015). Their inlet and outlet boundaries are based on velocity
profile, which is more simple than the no-equilibrium pressure boundary
used in our algorithm. In addition, the Geforce GTX 780 GPU is better
than the K20 in calculation performance. Therefore, there is an obvious
improvement in the GPU acceleration in our optimized code.

5. Summary and discussion

We have presented a high-efficient GPU parallelization for VLBM and
applied it to a simulation of crude oil flow in a digital reservoir stone. For
the sample with resolution 2562 x 512, we have achieved 808.7 MLUPS
and 1421.3 times speedup to serial computation utilizing one single GPU
card (NVIDIA Tesla K40). The algorithm includes the following tech-
nical features.

e The host memory allocates the continued memory in heap zone to
read structure information (P(X) data file).

S. An et al

e A tiling optimization with data layout changes is designed for coa-
lesced global memory to overcome bandwidth limit of off-chip
memory and achieve special unit access.

e A pull scheme is used for the streaming term in VLBM to allow
uncoalesced Read Offset and vcoalesced Write Offset.

e The kernel organization is optimized by combining streaming evo-
lution, collision updating and boundary refreshing into a kernel.
Therefore, we can read pertinent variables once from global memory,
meaning the cache can be used as effectively as possible.

e Branch divergence is avoided inherently due to the introduction of
P(X) in VLBM.

All these key points have been implemented in the application study,
resulting in a significant acceleration. We will work on more applicable
studies in the field of petroleum engineering by integrating more physical
models such as interfacial dynamics for multiphase flows, fluid-structure
interaction for deformable pore structure, non-Newtonian effects, etc.
However, more sophisticated modeling means higher computational
expense. We are currently working on the multi-GPU-card implementa-
tion for VLBM. We will focus on the critical steps for implementing
asynchronous data communication between GPUs, which includes
transfer between the compute nodes. Once faster computation, e.g. 2000
MLUPS, is available, the important phenomena of crude oil flow in digital
stone such as relative phase permeability curve and acid reaction be-
tween fluid and solid can be accurately explored.

Acknowledgment

This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is support by (1) International Research
Development Fund (IRDF) of IUPUI, (2) the National Natural Science
Foundation of China (No.51490654), and (3) Program of Innovation
Projects (YCXJ2016021).

References

Aavatsmark, 1., Barkve, T., Bge, O., Mannseth, T., 1998. Discretization on unstructured
grids for inhomogeneous, anisotropic media. part i: derivation of the methods. SIAM
J. Sci. Comput. 19, 1700-1716.

Aidun, C.K., Clausen, J.R., 2010. Lattice-boltzmann method for complex flows. Annu.
Rev. fluid Mech. 42, 439-472.

An, S., Yao, J., Yang, Y., Zhang, L., Zhao, J., Gao, Y., 2016. Influence of pore structure
parameters on flow characteristics based on a digital rock and the pore network
model. J. Nat. Gas Sci. Eng. 31, 156-163.

552

Journal of Petroleum Science and Engineering 156 (2017) 546-552

Balla-Arabe, S., Gao, X., Wang, B., 2013. A fast and robust level set method for image
segmentation using fuzzy clustering and lattice boltzmann method. IEEE Trans.
Cybern. 43, 910-920.

Benzi, R., Succi, S., Vergassola, M., 1992. The lattice boltzmann equation: theory and
applications. Phys. Rep. 222, 145-197.

Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems. Phys. Rev.
94, 511.

Chapman, S., Cowling, T.G., 1970. The Mathematical Theory of Non-uniform Gases: an
Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in
Gases. Cambridge university press.

Chen, S., Doolen, G.D., 1998. Lattice boltzmann method for fluid flows. Annu. Rev. Fluid
Mech. 30, 329-364.

Chen, H., Chen, S., Matthaeus, W.H., 1992. Recovery of the navier-stokes equations using
a lattice-gas boltzmann method. Phys. Rev. A 45, R5339.

Delbosc, N., Summers, J.L., Khan, A., Kapur, N., Noakes, C.J., 2014. Optimized
implementation of the lattice boltzmann method on a graphics processing unit
towards real-time fluid simulation. Comput. Math. Appl. 67, 462-475.

Feichtinger, C., Habich, J., Kostler, H., Hager, G., Riide, U., Wellein, G., 2011. A flexible
patch-based lattice boltzmann parallelization approach for heterogeneous gpu—cpu
clusters. Parallel Comput. 37, 536-549.

Li, Y., LeBoeuf, E.J., Basu, P., 2005. Least-squares finite-element scheme for the lattice
boltzmann method on an unstructured mesh. Phys. Rev. E 72, 046711.

Luitjens, J., 2011. Global Memory Usage and Strategy, Technical Report. Technical
report. NVIDIA Corporation.

Luitjens, J., Rennich, S., 2011. Cuda warps and occupancy. GPU Comput. Webinar 11.

Panda, P.R., Dutt, N.D., Nicolau, A., 2000. On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems. ACM Trans. Des. Autom.
Electron. Syst. (TODAES) 5, 682-704.

Peng, G., Xi, H., Duncan, C., Chou, S.-H., 1999. Finite volume scheme for the lattice
boltzmann method on unstructured meshes. Phys. Rev. E 59, 4675.

Power, J., Hill, M.D., Wood, D.A., 2014. Supporting x86-64 address translation for 100s of
gpu lanes. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, pp. 568-578.

Qian, Y.-H., Succi, S., Orszag, S., 1995. Recent advances in lattice boltzmann computing.
Annu. Rev. Comput. Phys. 3, 195-242.

Reese, J., Zaranek, S., 2012. Gpu Programming in Matlab, MathWorks News&Notes. The
MathWorks Inc, Natick, MA, pp. 22-25.

Thommes, G., Becker, J., Junk, M., Vaikuntam, A.K., Kehrwald, D., Klar, A., Steiner, K.,
Wiegmann, A., 2009. A lattice boltzmann method for immiscible multiphase flow
simulations using the level set method. J. Comput. Phys. 228, 1139-1156.

Tran, N.-P., Lee, M., Choi, D.H., 2015. Memory-efficient parallelization of 3d lattice
boltzmann flow solver on a gpu. In: 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC). IEEE, pp. 315-324.

Wang, Z., Yan, Z., Chen, G., 2011. Lattice boltzmann method of active contour for image
segmentation. In: 2011 Sixth International Conference on Image and Graphics (ICIG).
IEEE, pp. 338-343.

Wang, Z., Zhao, Y., Sawchuck, A.P., Dalsing, M.C., Yu, H.W., 2015. Gpu acceleration of
volumetric lattice Boltzmann method for patient-specific computational
hemodynamics. Comput. Fluids 115, 192-200.

Yu, H., Chen, X., Wang, Z., Deep, D., Lima, E., Zhao, Y., Teague, S.D., 2014. Mass-
conserved volumetric lattice boltzmann method for complex flows with willfully
moving boundaries. Phys. Rev. E 89, 063304.

http://refhub.elsevier.com/S0920-4105(17)30526-0/sref1
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref1
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref1
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref1
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref2
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref2
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref2
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref3
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref3
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref3
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref3
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref4
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref4
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref4
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref4
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref5
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref5
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref5
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref6
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref6
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref6
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref7
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref7
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref7
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref8
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref8
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref8
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref9
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref9
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref10
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref10
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref10
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref10
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref11
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref12
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref12
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref13
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref13
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref14
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref15
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref15
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref15
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref15
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref16
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref16
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref17
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref17
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref17
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref17
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref18
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref18
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref18
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref19
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref19
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref19
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref19
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref20
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref20
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref20
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref20
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref20
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref21
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref21
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref21
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref21
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref22
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref22
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref22
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref22
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref23
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref23
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref23
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref23
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref24
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref24
http://refhub.elsevier.com/S0920-4105(17)30526-0/sref24

	GPU-accelerated volumetric lattice Boltzmann method for porous media flow
	1. Introduction
	2. Volumetric lattice Boltzmnn method
	3. GPU parallelization for VLBM
	3.1. Dynamic allocation for CPU
	3.2. Coalesced global memory
	3.3. Kernel design for GPU structure
	3.4. Automatic optimization in the VLBM

	4. Application study
	5. Summary and discussion
	Acknowledgment
	References

