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a b s t r a c t

Solving Navier-Stokes equations for pore-scale porous media flows (PSPMFs) based on imaging data has
attracted increasing attention in the community of porous media flows due to a variety of application
needs. However, the existing numerical approach is laborious, complex, and error-prone utilizing an
ad-hoc coalition of software packages. The multidisciplinary tasks of image processing, computational
fluid modeling, and high performance computing together with their integration is overwhelming. We
present a unique and powerful computational platform, for PSPMFs with physical and computational
advantages. This systematic method is featured with (1) unified mesoscopic modeling, (2) GPU
(Graphic Processing Units) parallel computing, and (3) pore-structure upscaling. The multidisciplinary
tasks are innovatively integrated into one computational setup thus no software coalition is needed.
We use lattice Boltzmann method (LBM) to solve the level-set equation and NS equations successively,
thus image segmentation and computational fluid dynamics are seamlessly connected avoiding extra grid
and mesh generation or data transfer. The unified LBM modeling enables high efficient GPU parallelism
for scalable acceleration. Meanwhile, a new pore-structure upscaling scheme is developed and integrated
into downscale the fine grid mesh in the premise of ensuring accuracy. Two application studies demon-
strate the reliability, feasibility, and efficiency of this method for PSPMFs. It is believed to be the first-ever
integrated and accelerated computational package for studying PSPMFs and it is sustainable. We will
introduce more physical models such as interfacial dynamics for multiphase flows, fluid–structure inter-
action for deformable pore structure, non-Newtonian effects, etc. in the near future. Meanwhile, paral-
lelism based on multiple GPU cards for further acceleration is being investigated.

� 2017 Published by Elsevier Ltd.
1. Introduction

Porous media flows are ubiquitous in nature and engineering
applications. A few examples include the propagation of chemical
contaminants in underground hydrology field, ink permeation,
sedimentation, storage of hazardous wastes, flow in oil reservoirs,
and biological tissues. Conventionally, due to the lack of appropri-
ate research tools, porous media flow meant spatially and tempo-
rally averaged flow solved by phenomenologically and empirically
derived constitutive equations such as Darcy’s law [1]. In recent
years, pore-scale porous media flow (PSPMF) has attracted increas-
ing attentions by utilizing newly developed radiological imaging
techniques such as computed tomography (CT), nuclear magnetic
resonance spectroscopy (NMR), and magnetic resonance imaging
(MRI); thus the celebrated Navier-Stokes (NS) equations have
become the governing equations for porous media flows in pore
space. Experimental investigation of PSPMF is inherently difficult
due to the lack of optical access, whereas computational fluid
dynamics (CFD) is a promising alternative to be capable of solving
the complete fluid dynamics taking into account of heterogeneity,
complex pore inter-connectivity, and morphologies of porous
media [2,3]. In addition to the capability to access flows in pore
space, CFD has attractive advantages including low cost of facility,
personnel, and supplies, short and flexible time cycle, and easy
setup to mimic real-world flow conditions.

1.1. Existing CFD approach for pore-scale porous media flow

Existing CFD approaches for solving PSPMF based on imaging
data is laborious, complex, and error-prone, as schematized in
Fig. 1. From imaging data to numerical fluid dynamics, multidisci-
plinary tasks consist of 3-D reconstruction to extract pore-
structure from images, mesh generation to connect the segmented
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Fig. 1. Schematic of prevalent computational approach for solving PSPMF based on imaging data.
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image data to a CFD solver, and CFD simulation to solve the com-
plete fluid dynamics in pore space. These tasks, each of which is
tedious and requires a specific disciplinary training, are currently
accomplished through an ad-hoc coalition of software packages
(a few examples are shown in the red box). Such an approach
requires proficient skills in four disciplines. (1) Sufficient training
for CFD: Most existing CFD software consist of multiple but sepa-
rate modules thus requiring sophisticated CFD training for design
of complex 3-D meshes, selection of computational models and
physical attributes, and implementation of high-performance com-
puting. (2) Advanced level training for nondestructive image process-
ing: Radiological images inherently contain artifacts. Obscuration
of significant features or misinterpretation of attenuation values
of a single material in different image sections may significantly
complicate quantitative image analysis [4]. Commonly experi-
enced problems of X-ray images include high-frequency noise,
beam hardening, defective detector pixels, scattered X-rays or
poorly centered samples[5]. Therefore, being able to nondestruc-
tively extract pore structure in a large 3-D volume under given spa-
tial resolution is crucial. (3) Hands-on experience to connect
segmented pore structure to CFD software: each software has its
own data format for inputs and outputs. From an image segmenta-
tion software to a CFD software, it is required to deal with the 3-D
geometry formation and mesh generation by utilizing additional
software. This requirement demands adequate hands-on experi-
ence operating interdisciplinary software packages. (4) Capability
of high-performance computation associated with massive data han-
dling: the computational cost for a PSPMF is inherently significant
based on porosity and pore size distribution. For example, an
underground rock core usually contains pore scales across 2–3 dec-
ades, e.g. from 0.2 to 100 lm. If a high resolution Micro-CT with
pixel size 5 lm [6] is used to scan such a rock sample, a 0.5 cm3

sample may result in a 10003 grid size, demanding very expensive
computation. Powerful computer resources (e.g. remote access
high-performance computing facility or supercomputers) are nec-
essary to meet the high computation cost. Therefore, sufficient
skills in parallel computation and large data handling are essential.
Overall, the multidisciplinary nature of the existing approach
makes it overwhelming to study PSPMFs. It is very important to
develop new computational methodology with integrated-
modeling and efficient computation.

1.2. Macroscopic vs. mesoscopic modeling for porous media flows

Macroscopic modeling is dominated in current CFD software
packages, which solves NS equations using Finite Element Method
in COMOSOL and Finite Volume Method in OpenFOAM and Fluent
for fluid dynamics. Modeling on this level has its inherent difficul-
ties for dealing with flows in 3-D arbitrary geometry such as por-
ous media. Existing software packages usually use unstructured
grids for adaptive subdivision for 3-D boundaries. As a result, bad
elements usually appear in complex pore structure, e.g. the tips
and small isolated space in digital core. PSPMF can be much more
easily modeled on microscopic modeling such as Molecular
Dynamics [7] but the computation cost is too high to meet the
needs of most applications. In between, particle-based macro-
scopic approach like smoothed particle hydrodynamics (SPH) [8]
or mesoscopic fluid solvers such as dissipative particle dynamics
[9] and lattice Boltzmann method (LBM) [10] have been known
more suitable for PSPMFs. Among those, SPH and LBM have been
widely employed, but SPH still needs further development on its
theoretical foundations [8]. Challenges exist in SPH to reproduce
the governing PDEs (partial differential equations) for the fluid
and solid mechanics [8]. Meanwhile, solving pore scale flow needs
very fine resolution thus fast computing demands. Whereas the
LBM has been proved well amenable for PSPMFs because it is not
only easy to handle complex and arbitrary pore structure [11–
13], but also ideally suited for high efficient GPU (Graphic Process-
ing Units) parallelization [14].

1.3. Lattice Boltzmann method for pore-scale porous media flows

The LBM deals with the time evolution of particle density distri-
bution function associated with a prescribed finite discrete set of
particle velocities on a lattice space [10]. Fluid particles are uni-
formly distributed at lattice nodes. They collide at the nodes and
then stream to the neighboring nodes along the defined directions.
The fluid dynamic variables are obtained via moments of the par-
ticle distribution functions. Through the Chapman-Enskog tech-
nique, it has been rigorously proven [15] that the lattice
Boltzmann equations recover NS equations to the second-order
accuracy in both space and time. There are three attractive advan-
tages of LBM for porous media flows. The first is the ease of han-
dling the complicated geometry of pores. The no-slip bounce-back
boundary condition [16] on local pore structure costs little imple-
mentation effort [17] and computational time [18]. The second is
the amenability of scalable parallelization over fine-grained parallel
architectures such as GPU accelerators [19]. The third is the suit-
ability of introducing intermolecular interactions for multiphase
flows [20] and recovering the appropriate multiphase dynamics
without a demanding computation cost [11]. Meanwhile, the
LBM has been extended to deal with image de-noising and seg-
mentation [21]. The inherent parallel data structure facilitates fast
surface reconstruction from 3-D radiological images with large
time steps and satisfied accuracy. Unified LBM modeling make it
possible to connect image segmentation and CFD seamlessly and
sufficiently utilize GPU acceleration.

In this work, we present a novel computational method, to solve
PSPMFs based on imaging data. This method is featured with (1)
unified mesoscopic modeling, (2) GPU parallel computing, and
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(3) pore-structure upscaling. The multidisciplinary tasks men-
tioned in Section 1.1 are innovatively integrated into one computa-
tional setup thus no software coalition is needed. We use LBM to
solve the level-set equation and NS equations successively, thus
image segmentation and CFD are seamlessly connected avoiding
extra grid and mesh generation or data transfer. The unified LBM
modeling enables high efficient GPU parallelism for scalable accel-
eration. Meanwhile, a new pore-structure upscaling scheme is
developed and integrated into downscale the fine grid mesh in
the premise of ensuring accuracy. Two application studies demon-
strate the reliability, feasibility, and efficiency of this computa-
tional approach for PSPMFs.

The remainder of the paper is organized as follows. In Section 2,
we introduce the computational methodology including unified
LBM modeling, GPU parallelism, and pore-structure upscaling
scheme. Applications studies are presented in Section 3. Finally,
Section 4 provides a summary discussion and concludes the paper.

2. Computational methodology

This systematic computational platform integrate mesoscopic
modeling with GPU parallelism for solving image-based PSPMFs.
For the purpose of expanding the capability of this method to deal
with realistic porous media systems, in the order of cm3 compara-
ble to the system size studied in laboratory experiment, pore-
structure upscaling scheme is developed and integrated.

2.1. Unified LBM modeling for image segmentation and fluid dynamics

First, the pore structure is extracted on a uniform lattice mesh
from provided image data with certain resolution. The pore struc-
ture, expressed by the volumetric ratio of solid versus fluid of each
lattice cell, is then fed to the next step for solving fluid dynamics
using volumetric LBM. The KEY of seamless connection is the cal-
culation of solid volumetric ratio in each cell after the image
segmentation.

2.1.1. Lattice Boltzmann method for 3-D image segmentation
Level-set method (LSM) [22] has been one of the most impor-

tant tools for image segmentation. It uses a PDE to model and track
evolving fronts in a discrete domain by maintaining and updating a
distance field to the fronts. The distance field implicitly represents
the geometric contours or surfaces when the fronts converge at the
boundary of the aimed object. Let I0ðx; tÞ be the original 3-D vol-
ume data of images and denote C the evolving surface with the
inward normal direction N in. Define a signed distance field /ðx; tÞ
based on the surface C (as shown in Fig. 2): /ðx; tÞ < 0 if
/ðx; tÞ 2 C, /ðx; tÞ > 0 if /ðx; tÞ R C, and /ðx; tÞ ¼ 0 if /ðx; tÞ is on
C. Meanwhile, jr/j ¼ 1 for a distance field. A level set equation
models the time evolution of the distance field /ðx; tÞ as
@/=@t ¼ r � ðgr/Þ þ bg ð1Þ
Fig. 2. Signed distance field.
where b is an adjustable constant and g is an edge-stopping func-

tion [22] defined by g ¼ 1=ð1þ jrG� I0j2Þ [23] where the term
jrG� I0j denotes the gradient of a convolution between the original
image I0ðxÞ and a Gaussian kernel Gðx; tÞ. A level set solver con-
verges when /ðx; tÞ is no longer evolving according to g defined
on I0ðx; tÞ based on image attributes. Then C represents the bound-
ary of the preferred object over I0ðx; tÞ. Traditionally, the level set
equation is solved explicitly, which requires very small time steps
for stable computation and hence the entire iterations are rather
time-consuming. An implicit approach [24] would be more efficient
to reduce the number of iterations by relaxing the stability con-
straint, but it is difficult to be parallelized since it solves a matrix
inverse problem. Other methods such as narrow band [25] and
Multigrid [26] could improve the computation speed by reducing
the computing domain. However, in GPU implementation, these
methods need to use complex virtual memory paging schemes for
handling the irregular computing domain, resulting in low perfor-
mance due to the CPU-GPU communication latency and GPU mem-
ory management latency [27].

We employ the LBM to solve the level set equation, i.e. Eq. (1),
which can be considered as a diffusion equation with an external
force term. Since Eq. (1) does not have the nonlinear advection
term compared with the NS equations, the lattice nodes can be
simply connected by only the orthogonal links leading to a D3Q7
model (Fig. 3). Let hiðx; tÞ be the distance distribution function
along the direction of eiðx; tÞði ¼ 0;1; . . . ;6Þ, the lattice Boltzmann
equation for hiðx; tÞ reads

hiðxþ eiDt; t þ DtÞ ¼ hiðx; tÞ � ½hiðx; tÞ � heq
i ðx; tÞ�=s/ þ Dt � Fiðx; tÞ

ð2Þ

where heq
i ðx; tÞ ¼ /ðx; tÞ=7, Fiðx; tÞ ¼ bg=7 and s/ ¼ 0:5þ 3gDt. After

each step of collision and streaming, the distance function is
obtained by /ðxÞ ¼PihiðxÞ and the corresponding distance distri-
bution function and equilibria, hiðx; tÞ and heq

i ðx; tÞ, are updated by
hiðx; tÞ ¼ heq

i ðx; tÞ ¼ /ðx; tÞ=7. Boundary conditions are simply han-
dled by the bounce-back at image edges. Through the Chapman-
Enskog analysis [28], Eq. (2) recovers Eq. (1). At artery boundary,
there exists a large gradient of the grayscale values so that g ! 0
and /ðxÞ converges on the boundary. Since g and Dt are both greater
than zero, s/ > 0:5 is guaranteed, which is required for the stability
of LBM simulation [29]. The LBM has no strong stability restriction
on Dt, large iteration steps are allowed to achieve fast computation
in contrast to the explicit finite methods.
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2.1.2. Volumetric lattice Boltzmann method (VLBM) for fluid dynamics
The volumetric LBM (VLBM) was specifically developed for solv-

ing fluid dynamics in arbitrarily moving boundaries [30]. In this
work, we consider rigid pore structure, thus the formation is sim-
plified than that in the original method. In VLBM, the fluid particles
are uniformly distributed in lattice cells, as opposed to sitting at
lattice nodes in conventional node-based LBM. We introduce
niðx; tÞ representing particle population in cell x at time t with
velocity ei and deal with the time evolution of particle population,

niðxþ eit; t þ DtÞ ¼ niðx; tÞ � ½niðx; tÞ � neq
i ðx; tÞ�=s ð3Þ

where neq
i ðx; tÞ is the equilibrium particle population, ið¼ 0;1; . . . ; bÞ

is the predefined directions of molecular motion, and s is relaxation
time. The neq

i ðx; tÞ, ei and b. pend on the selection of lattice model. In
this work, we use the popular 3-D lattice with 19 molecular direc-
tions (b ¼ 18), called D3Q19 model (Fig. 4). The discrete molecular
velocities are

ei ¼
ð0;0;0Þc; i ¼ 0
ð�1;0;0Þc; ð0;�1;0Þc; ð0; 0;�1Þc; i ¼ 1� 6
ð�1;�1;0Þc; ð�1; 0;�1Þc; ð0;�1;�1Þc; i ¼ 7� 18

8><
>: ð4Þ

The equilibria of particle population are

neq
i ðx; tÞ ¼ Nxi 1þ 3ei � u

c2
þ 9ðei � uÞ2
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Fig. 4. D3Q19 lattice model.

Fig. 5. (a) Illustration of three types of cells in VLBM represented by solid volume ratio
P-value calculation for a boundary cell using signed distance field / obtained from the
where c ¼ Dx=Dt ¼ 1 in lattice units. The weighting factors xi are
x0 ¼ 1=3, x1�6 ¼ 1=18, and x7�18 ¼ 1=36. The mass and momen-

tum conservations are strictly enforced by Nðx; tÞ ¼Pb
i¼0niðx; tÞ

and uðx; tÞ ¼Pb
i¼0einiðx; tÞ=Nðx; tÞ, respectively.

Similar to the concept of volume of fluid (VOF) [31] used to track
interfaces between two fluids, the VLBM uses the occupation of
solid volume PðxÞ, defined by the ratio of solid volume DVSðx; tÞ to
lattice volumeDVðx; tÞ, to express the arbitrary boundary. As shown
in Fig. 5(a), the solid black curve depicts a boundary separating fluid
(empty) and solid (shaded) domains. Cells adjacent to the boundary
may be occupied entirely by either solid or fluid, while others may
have partial fluid and partial solid volumes. In the whole domain,
cells are categorized through three distinct cell types: fluid cell
(P ¼ 0), solid cell (P ¼ 1), and boundary cell (0 < P < 1). It is noted
that the relation between the particle distribution function f i in the
conventional node-based LBM and the particle population ni in the
VLBM is f iðx; tÞ ¼ niðx; tÞ=½1� PðxÞ� taking the total volume of a cell
to be unity. Unlike VOF that constructs a convection equation for
the volume ratio function to track the interface, the VLBM divides
the time evolution equation, Eq. (3), into two processes taking into
account the arbitrary boundary through PðxÞ .

� Collision:

n0
iðx; tÞ ¼ niðx; tÞ � ½niðx; tÞ � neq

i ðx; tÞ�=s ð6Þ
where n0

iðx; tÞ represents the ‘‘post-collision” particle population.
For a rigid boundary, this process is similar to node-based LBM.

� Streaming: In boundary cells, only an appropriate volume frac-
tion of fluid particles will be able to stream to its neighboring
cell. A streaming in VLBM consists of two operations: (i) stream-
ing from its upwind neighboring cells, ½1� PðxÞ� � n0

iðx� eiDt; tÞ
and (ii) bounce-back from the downwind cells, Pðxþ ei�DtÞ�
n0
i� ðx; tÞ where i� corresponds to the direction opposite to the

ith direction ei� ¼ �ei. Thus, particles in cell x at time t þ Dt after
a streaming operation are as follows
n00
i ðx; t þ DtÞ ¼ ½1� PðxÞ�n0

iðx� eiDtÞ þ Pðxþ ei�DtÞn0
i� ðx; tÞ ð7Þ

This modified streaming process ensures that particles are
advected to their appropriate places in the fluid domain but
doesn’t introduce any extra mass. In fluid cells where PðxÞ ¼ 0,
Eq. (7) reduces to the counterpart of node-based LBE where only
upwind streaming occurs.

2.1.3. Seamless connection between image segmentation and CFD
It is noted that in VLBM all the equations together with no-slip

boundary condition are self-regularized through the solid occupa-
P: P ¼ 0 (fluid cell), P ¼ 1 (solid cell), 0 < P < 1 (boundary cell). (b) Schematic of
image sigmentation.
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tion function PðxÞ. Thus, calculating PðxÞ of each cell in the entire
domain after the image segmentation is the key to the success of
seamless connection between image segmentation and CFD. It
turns out that the calculation of PðxÞ from the signed distance field
/ðxÞ is rather easy. In what follows, we use 2-D mesh as an exam-
ple to illustrate the algorithm to calculate PðxÞ. In the distance field
/ðxÞ, the zero level set of /ðxÞ ¼ 0 represents the wall of the pores.
The sign of / at each lattice node indicates whether the node is in
solid or fluid region. For a particular cell with four nodes, if all four
/ values are negative, the cell is a fluid cell with P ¼ 0. If all four /
values are positive, the cell is a solid cell with P ¼ 1. The remaining
cells are boundary cells with mixed positive and negative / values
at the four nodes. This is because a boundary cell is occupied by
partial solid and partial fluid.

Take an example of the grey cell in Fig. 5(b), we now described
the two steps about how to calculate the solid volume ratio PðxÞ in
the boundary cell located at x, of which /i at each node i (i = 1–4),
either positive or negative, is known after the image segmentation.
First, uniformly divide the cell into a refined grid with q2 sub-cells.
The /(xs) value of each sub-cell can be interpolated from the / val-
ues at the four nodes based on its center location xs. Second, we

calculate the total solid volume in the boundary cell. If the jth

sub-cell is solid with /ðxsÞ > 0, we set V j
sðxsÞ ¼ 1. Otherwise, we

set V j
sðxsÞ ¼ 0. The solid volume ratio of the boundary cell is calcu-

lated as PðxÞ ¼Pq2

j¼1V
j
sðxsÞ=q2. One should be noticed that the grid

refinement of q2 inside a boundary cell determines the accuracy of
PðxÞ. A larger q results in more accurate PðxÞ value but higher com-
putational cost. It is noted that this grid refinement is only used for
calculating the solid volume ratio in boundary cells, PðxÞ.

Once PðxÞ is calculated from the segmentation, CFD can be
kicked in seamlessly. Fig. 6 shows the flow chart of seamless con-
nection between image segmentation and CFD.
2.2. GPU parallel computing

It has been well demonstrated that LBM is ideally suited for
GPU parallel computing. Recently, our efforts have been on GPU-
accelerated LBM for turbulent and biomedical flows [32,33]. Since
the GPU parallelism for image segmentation and fluid dynamics is
similar, here we express the algorithm using VLBM as an example.
Fig. 6. Computational flow chart demonstrate a seamless
In this work, we only implement parallelism on single NVIDIA GPU
card. Specifically, C++ is used for the CPU part and CUDA for the
GPU part.

As shown in Eqs. (3), (6) and (7), in VLBM, the time evolution of
particle population is divided into two operations — collision and
streaming, which are self-regularized through PðxÞ. The bounce-
back boundary condition at porous structure is taken into account
in the streaming process, i.e. Eq. (7). Thus, the challenging part to
deal with complicated geometry and its corresponding boundary
condition on structure are avoided. Only boundary conditions at
inlet and outlet need to be treated. Furthermore, we can perform
the same parallelization for both boundary and fluid cells,
PðxÞ < 1, to minimize program branches thus to improve the par-
allel efficiency.

The tasks for collision and streaming are independent thus exe-
cuted successively. For convenience, we introduce n0

iðx; tÞ as inter-
mediate variable after collision, called ‘‘post-collision”, as shown in
Eq. (6). In collision, computing n0

iðx; tÞ only requires local informa-
tion within the cell thus the execution is carried out in one scalar
processor. In streaming, Eq. (6) involves two parts, one is streamed
from upwind neighboring cells and another bounce-back from the
downwind neighboring cells, as indicated in Eq. (7). We use ‘‘pull
back” scheme in which write is aligned and read is misaligned
for high efficiency [34]. Fig. 7 shows a schematic of pull back
scheme on the blue plane in D3Q19 model (Fig. 4) with upwind
streaming in black and bounce-back in red.

The flow chart of GPU parallelism for VLBM is shown in Fig. 8(a).
The shaded lines are implemented in the GPU device. The iteration
loop, schematized in Fig. 8(b), is executed in one kernel. To mini-
mize the data transfer between CPU host and GPU device and max-
imize the computational efficiency, we implement the major
computation on GPU device including declaration and initiation
of flatten forms and iteration of VLBM and merely left input and
output on CPU host. The GPU algorithm is based on our previous
work [32]. We make efforts to improve the computation efficiency
through optimization dynamic allocation, coalesced global mem-
ory, register arrangement, and pragma unroll.

2.2.1. Dynamic allocation
Memory arrangement in both GPU device and CPU host is of

importance to overcome the limits of CPU static zone memory
connection between images segmentation and CFD.



Fig. 7. Illustration of ‘‘pull back” scheme on the blue plane in D3Q19 model (Fig. 4)
with upwind streaming in black and bounce-back in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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and GPU device memory. In GPU device, we employ the ordering
method called Structure of Array format [32]. Nowadays, GPU
cards are capable of storing anywhere from 3 to 6 GB of data in
memory. In order to fully utilize this space, the CPU part of this
algorithm relies on dynamic (heap) memory as opposed to stati-
cally allocated (stack) memory. There are typically file and static
memory limits imposed by either an operating system or system
administrator that cap at about 2 GB. If an uncompiled code were
Start

Define physical parameters and 
read in P(x,t)in host (CPU)

Copy information from 
CPU host to GPU device

Declare variables and  
initialization

Finally results output

End

NO

YES

Iteration 
Ends?

(a)

Collision operation 

Streaming operation

Hydrodynamics update

Boundary update kernel

One
kernel

Fig. 8. Flow chart of GPU parallelism of VLBM. (a) VLBM
to attempt to use static allocation to utilize the full capacity of a
GPU, it would run into the 2 GB size limit as the executable created
by the compiler would either need to be larger than the file size
limit or exceed the static memory limit. Dynamic allocation allows
the operating system to provide as much memory as what is avail-
able to provide by the CPU RAM. The memory available in CPU
RAM is typically many times the maximum memory capacity of
GPU RAM, so algorithm can fully utilize the memory capacity of
a GPU card if a dynamic memory is declared. For the purposes of
data copy between CPU host and GPU device, these arrays should
contain memory that is logically contiguous. C++ provides a means
to allocate logically contiguous dynamic memory using the ‘new’
keyword. The ‘new’ keyword is limited, however, to dynamically
allocating one dimensional arrays. We create a class in C++, which
would dynamically allocate a contiguous block of memory for reg-
ular, multidimensional arrays using the ‘new’ keyword. The class
would then internally translate the user’s request for an element
in 2–4 dimensions to the equivalent request in 1 dimension. This
class is supposed to easily pass its underlying data to the GPU
and then easily retrieve the information from the GPU and to man-
age allocation and deallocation of memory in a safe way that
required little to no effort from the user in order to ease the burden
on the user.

2.2.2. Coalesced global memory
Global memory is an area in the off-chip device memory avail-

able for all the thread blocks, through which the GPU can commu-
nicate with the host CPU as well as for the data input to and output
from kernels. The niðx; tÞ, n0

iðx; tÞ, geometry information PðxÞ and
hydrodynamic parameters are stored in the global memory, which
Streaming

Collision

ni (x,t )

(b)

Hydrodynamics 
update

i ( x,t )

Boundary 
update

work flow. (b) The iteration loop in GPU device.
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should be used in every evolution step. The bandwidth of global
memory, however, is a significant limit to accelerate calculation
speed. To apply bandwidth effectively, we use 19 arrays to store
the different data in the 19 directions of Fig. 4, just like the ‘‘1”
direction, all n1s in the domain storing in an array, as shown in
Fig. 9. In the GPU, warp (32 threads) is unit to run together and
half-warp is a unit to call for global memory. If the memory
address is continued and the visiting memory of a warp is lower
than the specific facility limit, the fast access can be achieved at
one time.

2.2.3. Register arrangement
Even though the coalesced global memory access is designed in

the code, it is still obviously lower than the on-chip memory. In
most cases, accessing a register consumes zero clock cycles per
instruction [35]. Therefore, we try to decrease the visiting time
to global memory by combining streaming operation, hydrody-
namic update and collision operation into a kernel. In this kernel,
the needed parameters are defined in the limited register memory
Address 128 Address 136 Address

n1(i, j, k) n1(i, j, k+1) n1(i, j, k+

Thread 0 Thread 1 Thread

Fig. 9. Examples of coalesced glo

P=0.4
P=0.2

P=0

P=0

(a) Fine-resolution grid size 
segmented from imaging

Upscaling of pore 

(c) Before upscaling

Fig. 10. Upscaling of pore structure from (a) high-resolution imaging data to (b) low-reso
and (d) after upscaling.
(usually 32-bit per register) and read in from global memory for
the following calculations.

2.2.4. Pragma unroll
In the GPU, branch conflict is also a factor about calculation

speed, resulting from special structure of streaming multiprocessor
and strict parallelism in a half-warp. Unrolled loop can effectively
decrease the branch conflict. As previous introduction, 19 arrays
are defined to separate 19 directions, which is also used to unroll
the loop. In addition, the calculation of equilibrium function in
the collision part and boundary update is also unrolled to fit 19
directions.

2.3. Pore-structure upscaling

Upscaling is a typical technique used in reservoir simulators to
reduce computation size for uncertainty analysis and risk assess-
ment [36,37]. It assigns ‘‘effective” properties such as permeability
on coarse grid from the properties on fine grid through arithmetic
144 Address 152 ···

2) n1(i, j, k+3) ···

 2 Thread 3

bal memory access pattern.

P=0.45

structure

(b) Coarse-resolution grid size 
for numerical simulation 

(d) After upscaling
lution mesh. The porosity of the pore structure remains exact the same in (c) before



Fig. 12. Gray image of a cylindrical core imaged by micro-CT.
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average, harmonic average, geometric average and their combina-
tions. As a result, one can perform analysis and assessment through
the coarse grid to reduce the computation. We design this tech-
nique to substitute the fine resolution pore-structure segmented
from imaging data with a coarse resolution pore structure through
an average of PðxÞ. The pore-structure upscaling is featured with
(1) volume preservation, (2) similarity between geological and
simulation grid, and (3) preservation of geological and physical
properties. The current radiological imaging resolution through
micro-CT is around 4 lm. If we want to make comparable numer-
ical study of PSPMF to laboratory experiment with typical sample
size of 10 mm3, the computation grid size will be above 20003,
which exceeds the research capability in terms of the computation
cost and memory requirement. The objective of pore-structure
upscaling is to reduce the computation grid size while maintain
equivalent pore structure and identical porosity.

Fig. 10 illustrates the pore-structure upscaling technique from
fine–resolution (a) to coarse-resolution (b) for a target porous
media. An example to upscale 8 cells to one cell through the aver-
age of P values is shown in (c) and (d). From the image segmenta-
tion, the fine pore structure (a) is represented by the solid ratio
function PðxÞ. Each mesh cell is labeled by a P value distinguishing
solid cell (P ¼ 1, black, filled), fluid cell (P ¼ 0, blue, empty),
boundary cell (0 < P < 1, red, partial filled), seen in Fig. 10(c). To
upscale 8 times, we group the fine resolution mesh into blocks,
each of which contains 8 cells and each block is substituted by
one single cell with the same volume and average P value of 8 cells.
If the block contains all fluid or solid cells, the substitute cell will
remain the fluid or solid cell. If the block includes boundary cell
(s), the upscaling results in a big boundary cell. In Fig. 11, we show
an example for two successive 8-times upscaling to (b) and (c)
from fine-resolution pore-structure (a). The pore-structure upscal-
ing guarantees identical porosity. After the primary upscaling from
(a) to (b), although the grid becomes coarse, the feature of pore
structure is well retained thus other macroscale parameters can
be well reserved. However, further upscaling may cause a merge
of pores resulting in a distortion of the pore structure; see the
red area in Fig. 11(c) where two separate pores are connected. It
should be noted that the degree of pore-structure upscaling is lim-
ited by resolution of imaging as well as the shortest distance of
separate pores.

The significance of the pore-structure upscaling is that one can
do low computation cost simulation while retain the features of
pore structure from high-resolution imaging data. Plus, the GPU
acceleration, becomes one of the most powerful computational
tools for PSPMFs. We use the following example to demonstrate
the power of this simulation method. A cylindrical core plug drilled
from a quartz-made stone has a dimension of 4 mm length and
1 mm diameter. Fig. 12 shows its image scanned from a micro-CT
with gray values from 0 to 255. If the typical computation capacity
(a) (b)

Fig. 11. An example of pore-structure upscaling. (a) Fine-resolution
is 2563 on a local workstation, one can easily upgrade to 5123

through GPU parallelism. With the pore-structure upscaling, one
becomes capable to deal with 10243 assuming no significant pore
mergence occurs. That is to say, with the combination of GPU
and pore-structure upscaling, with the same computation cost,
one can solve PSPMF in 64 times finer pores. From another point
view, if the scanning resolution remains the same, one can study
PSPMF in a cylindrical core with 64 times larger dimension. Each
of them results in significant advancement to unveil the micro to
macro behavior of rock-fluid systems.

3. Application studies

In order to demonstrate the reliability and applicability, we now
conduct two application studies. One is a 3-D pipe flow driven by a
constant pressure gradient. Another is a PSPMF in a digital core.
The computation tasks are carried out on a NVIDIA Tesla K20
GPU card, which has 2496 CUDA cores with 706 MHZ clock fre-
quency and 5 GB of global memory. To evaluate the GPU parallel
performance, the serial computation is performed with Intel
x86_64 CPU, which has 16 computing cores with 1.87 GHZ and
64 GB DDR3 Random Access Memory (RAM).

3.1. Three-dimensional pipe flow

We consider an oil flow in a pipe with length L = 0.2 mm and
diameter D = 0.1 mm. The density and viscosity are q = 900 kg/
(c)

pore-structure. (b) 8-times upscaling. (c) 64-times upscaling.
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m3 and l = 0.0135 Pa s, respectively. The flow is along z direction.
Since oil flow in porous media is usually under low Reynolds num-
ber, we use a constant pressure gradient dp/dz = 2160 Pa/m to
drive the flow, of which the Reynolds number (Re) is 6.67e-4. Such
a flow has an analytical solution as

uz ¼ � 1
4l

dp
dz

ðR2 � r2Þ ð0 6 r 6 RÞ ð8Þ

We apply for periodic boundary condition at inlet and outlet
and no-slip boundary condition at wall.

Since boundary of a pipe can be mathematically formulated, the
distance field /ðx; tÞ can be directly calculated. The solid volume
ratio function PðxÞ for all the cells can be determined relatively
easy (no need to solve the level set equation). Following are steps
to calculate PðxÞ. For the sake of simplicity, we use one layer of the
mesh (2-D) to illustrate, as seen in Fig. 13.

(1) Calculate distance of each node (x, y, z) to the center O (0, 0,

0), i.e./ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Select negative sign for / < R and

positive sign for / > R. If / ¼ R, assign / ¼ 0.
(2) Distinguish cell type through the signs of / at all four

nodes If all / values are negative, the cell is fluid with
P ¼ 0. If all four / values are positive, the cell is solid and
P ¼ 0. Otherwise, the cell is a boundary cell occupied by par-
tial solid and partial fluid.

(3) Calculate P values for boundary cells (shaded) using the
method expressed in Section 2.1.3 The algorithm for deter-
mination of PðxÞ can be validated by the volume of the pipe.
Since P value is defined as the solid ratio in a grid cell (a cube
in 3-D), the total volume of the fluid channel can be obtained
by Vp ¼

P
x½1� PðxÞ� whereas the analytical volume of the

pipe can be calculated by Va ¼ pðD=2Þ2L. Table 1 shows the
relative error of pipe volume at four resolutions. It is seen
that the distance field method is highly accurate even with
a relatively low resolution. In VLBM, PðxÞ is directly fed in
Fig. 13. Determination of P-value for each cell based on the signed distance
function / at the nodes of the cell: P ¼ 1 if all /s are positive, solid cell (outside the
circle); P ¼ 0 if all /s are negative, fluid cells (inside the circle); and 0 < P < 1 if
patial positive and patial negative of /s, boundary cell (shaded).

Table 1
Relative error P value calculation using level set method. Vp and Va are volumes of
the pipe calculated by P values and analytical formula.

Grid Size 202 � 40 402 � 80 502 � 100 1002 � 200

(Vp-Va)/Va (%) 0.26 0.084 0.045 0.015
as an input together with other initial computation set-up
followed by iteration of collision and streaming till the flow
reaches a steady state. Fig. 14 shows the comparison of
velocity profile along diameter with resolution
50 � 50 � 100. It can be seen that the VLBM simulation
(symbols) captures nearly identical velocity profile to the
analytical solution (solid line).

3.2. Pore scale flow in a digital core

In this part, we indicate the efficiency of GPU parallelism and
the applicability of pore-structure upscaling in the course of solv-
ing pore-scale flow in a sample digital core. A cylindrical core
(Fig. 11) is first scanned through micro-CT (MicroXCT-400) with
a resolution 0.37 lm/pixel. Since different phases have different
X-ray absorption, the output of the scanning is a gray image. A
2563 (pixel3) cube is cut from the original image for the cylindrical
core, as shown in Fig. 15. Gauss smoothing is first applied for
reducing the effect of salt-and-pepper noise in the raw image. Then
the image is segmented using LBM described in Section 2.1.1. After
the segmentation, the PðxÞ field is calculated using the algorithm
illustrated in Section 2.1.3 with an example in 3.1. As shown in
Fig. 6, the PðxÞ field together with initial/boundary conditions
and physical properties are fed in VLBM to solve fluid dynamics.

We select a representative plane from the digital core (Fig. 15)
to show the outcome of image segmentation. In Fig. 16, we com-
pare the segmented pore structure (b) to the scanned image (a).
VLBM Simulation
Analytical Solution

-1 -0.5 0 0.5 1

0 .4

0.2

0

r/R

u z
/u

m

Fig. 14. Comparison of velocity profile between VLBM simulation and analytical
solution.

Fig. 15. A 2563 (pixel3) cube cut from micro-CT scanning data.



Fig. 16. Scanned (a) vs. segmented (b) pore structure.

Table 2
Permeability at original and 3 upscaless.

Grid Size 2563 1283 853 643 323

Permeability (mD) 1.53 1.53 1.65 1.95 5.01

Table 3
GPU performance on three grid resolutions.

Grid Size GPU-parallelism CPU-serial Speed up of
GPU-parallelism
vs. CPU-serial

Steps/min MLUPS Steps/min MLUPS

643 96519 421.7 304.4 1.33 317.1
1283 12689 443.5 31.8 1.11 399.5
2563 1612 450.7 1.67 0.467 965.1
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It is clearly seen that the result has well captured the pores (in
black).

To validate the pore-structure upscaling, we upscale the resolu-
tion from 2563 to 1283, 853, 643, and 323 and examine the pressure
distribution and permeability on each upscale. Fig. 17 shows the
normalized plane-averaged pressure along the flow stream.
The downstream pressure distributions calculated from the
original grid size and four upscaled grid sizes collapse, indicating
that the pore-structure upscaling can quite well retain the driving
mechanism for the PSPMF. Permeability is calculated by using
Darcy’s equation. In Table 2, it is seen that the primary pore struc-
ture upscaling to 1283 (8 times) remains the permeability identical.
The secondary upscaling to 643 (64 times) deviates the permeabil-
ity about 28% from the original 2563, which is acceptable
considering inaccurate boundary conditions [38]. The 128 times
upscaling to 323 results in 227% larger permeability, implying that
pore-structure upscaling is not unlimited.

The GPU acceleration is examined in Table 3 for three resolu-
tions though MLUPS (Million Lattice node Updates Per Second) to
represent the performance of GPU parallelism. For the model with
lattice size 2563, our GPU code achieves MLUPS as high as 450.7,
accelerating 965.1 times compared with the CPU serial
computation.

The MLUPS is lower than classic lid-driven cavity flow model
[39] (no complicated geometry involved) but faster than porous
media models with same hardware condition [40]. Considering
0    0.2   0.4 0.6   0.8   1
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Fig. 17. Normalized plane-averaged pressure along downstream at original and 4
upscales.
that a single 5 GB GPU card, of which many computation labs
can possess, such a speed-up means a significant advance in the
capability of computational pore-scale fluid dynamics.

4. Summary and discussion

We have presented a novel and powerful computational
method for studying image-based PSPMFs. A unique integration
of mesoscopic modeling with GPU parallelism and pore structure
upscaling is developed. The unified LBM modeling of image seg-
mentation and fluid dynamics enables seamless connection
between image processing and CFD through the solid volumetric
function, PðxÞ, which can be calculated from the signed distance
field after the image segmentation. This feature not only eliminates
the ad-hoc coalition of software packages for geometry reconstruc-
tion and mesh generation to connect the image segmentation and
CFD tasks, but also enables unified GPU implementation to achieve
significant speed-up of computation. This method represents an
important advance in studying PSPMFs by avoiding laborious, com-
plex, and error-prone processes in modeling and computation and
will benefit the entire community of porous media flow. Two appli-
cation studies are conducted. The first, 3-D pipe flow, demonstrates
the reliability of this system for image representation. The pipe
volume calculated from the signed distance field is in good agree-
ment with its analytical volume, 5 lm/pixel and 1 lm/pixel result-
ing in relative errors of 0.26% and 0.015% respectively as seen in
Table 1. The velocity profile simulated by VLBM is nearly identical
to the analytical solution. The second, pore scale flow in a digital
core, demonstrates the applicability to PSPMF in subsurface
hydrology engineering and its computational efficiency. Based on
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the accuracy segmentation result for the complicated sample, the
pore-structure upscaling reduces 8–16 times of computation cost,
i.e. from 2563 to 1283–643, but the simulation results of pressure
distribution and permeability remain the same. Third, GPU paral-
lelism achieves nearly 450MLUPS on a single 5 GB GPU card, which
significantly expand the computation capability for real applica-
tion in the field of porous media flow.

It is noted that the systematic method introduced above is sus-
tainable to introduce more physical models such as interfacial
dynamics for multiphase flows, fluid–structure interaction for
deformable pore structure, non-Newtonian effects, etc. to meet
the need of real-world application. However, more sophisticated
modeling means higher computational expense. We are currently
working on the multi-GPU-card implementation. We will focus
on the critical steps for implementing asynchronous data commu-
nication between GPUs, which includes transfer between the com-
pute nodes. Based on this operation, 10243 size model can be
calculated by using 64 nodes, and the calculation speed can be
improved to more than 2000 MLUPS.
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