
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.68.80.144

This content was downloaded on 22/12/2014 at 14:56

Please note that terms and conditions apply.

Scaling of -asymmetries in viscous flow with -symmetric inflow and outflow

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys. A: Math. Theor. 48 035501

(http://iopscience.iop.org/1751-8121/48/3/035501)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/48/3
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Scaling of  -asymmetries in viscous flow
with  -symmetric inflow and outflow

Huidan (Whitney) Yu1,2, Xi Chen1,3, Yousheng Xu4 and
Yogesh N Joglekar5

1Department of Mechanical Engineering, Indiana University Purdue-University
Indianapolis, IN 46202, USA
2Richard G Lugar Center for Renewable Energy, Indiana University Purdue-University
Indianapolis, IN 46202, USA
3Department of Physics, Zhejiang Normal University, Jinhua, Peopleʼs Republic of
China
4 School of Light Industry, Zhejiang University of Science and Technology, Hangzhou
310023, Peopleʼs Republic of China
5Department of Physics, Indiana University Purdue-University Indianapolis, IN 46202,
USA

E-mail: whyu@iupui.edu and yojoglek@iupui.edu

Received 10 June 2014
Accepted for publication 13 October 2014
Published 19 December 2014

Abstract
In recent years, open systems with balanced loss and gain that are invariant
under the combined parity and time-reversal ( ) operations have been stu-
died via asymmetries of their solutions. They represent systems as diverse as
coupled optical waveguides and electrical or mechanical oscillators. We
numerically investigate the asymmetries of incompressible viscous flow in two
and three dimensions with ‘balanced’ inflow-outflow ( -symmetric) con-
figurations. By introducing configuration-dependent classes of asymmetry
functions in velocity, kinetic energy density, and vorticity fields, we find that
the flow asymmetries exhibit power-law scaling with a single exponent in the
laminar regime with the Reynolds number ranging over four decades. We
show that such single-exponent scaling is expected for small Reynolds num-
bers, although its robustness at large values of Reynolds numbers is unex-
pected. Our results imply that  -symmetric inflow-outflow configurations
provide a hitherto unexplored avenue to tune flow properties.
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1. Introduction

Open systems, where a system continuously exchanges information such as energy and mass
with its environment, have been extensively studied due to their practical relevance and the
theoretical interest they engender. Friction, Joule heating, and viscous drag [1] are ubiquitous
examples of open systems with losses that exhibit one-way (energy) transfer to the envir-
onment. In contrast, open systems with gains are rare, and are mostly realized in optical
settings [2]. Over the past decade, theoretical research has predicted that open systems with
‘balanced loss and gain’ exhibit novel properties that are absent in traditional open systems
[3, 4]. Such systems are described by equations of motion that are invariant under combined
parity and time-reversal ( ) operations; the resulting solutions, however, may or may not
share that symmetry [4]. Although the field of  -symmetric quantum theories started out
with spectral properties of non-Hermitian,  -symmetric continuum Hamiltonians, it has
become evident that  -symmetric systems, classical or quantum, represent a special class of
open systems that have both sources and sinks. Over the past three years, experiments on a
wide variety of systems with balanced loss and gain—coupled optical systems [5–8], coupled
electrical oscillators [9], and coupled mechanical oscillators [10]—have demonstrated
the surprising properties of such systems, such as unidirectional invisibility at optical fre-
quencies [11]. This novel behavior arises from the asymmetries in the solutions of equations
of motion.

Mathematically, symmetries of equations of motion, along with those of the boundary
conditions, determine the symmetry properties of their solutions. For systems described by
linear equations of motion, it is straightforward to obtain solutions with specific symmetries
by linear superposition of linearly independent solutions. For example, the Schrödinger
equation for a quantum particle in an even potential = −V x V x( ) ( ) is invariant under the
parity transformation → −x x, and the corresponding eigenfunctions are either odd or even; if
the initial state ψ x( )0 of the particle has a definite parity symmetry, that symmetry is pre-
served during the time evolution [12]. On the other hand, with an even initial wavefunction
ψ ψ= −x x( ) ( )0 0 , if the potential V(x) is not even, the time-evolved wave function ψ x t( , ) will

develops an asymmetry ∫ρ ψ ψ= − −t x x t x t( ) d | ( , ) ( , ) | that is determined by the asym-

metry in the potential ∫ρ = − −x V x V xd | ( ) ( )|V . Thus, generically, if a system with initial
conditions that have a specific symmetry is evolved according to equations of motion that do
not share the symmetry, the resulting solution will develop time-dependent asymmetries. The
purpose of this paper is to investigate the dependence of such asymmetries in incompressible
viscous flows subject to  -symmetric boundary conditions.

We emphasize here that experimentally investigated  -symmetric systems [5–8, 11]
had both dissipation and amplification of energy. Due to this balanced situation, they dis-
played a positive threshold for the loss/gain strength above which the solutions of equation of
motion develop asymmetry. In contrast, the system considered in this paper is viscous and
dissipative, with no attendant energy amplification, and therefore we expect that the asym-
metries of flow solutions are always nonzero. The notions of inflow (mass gain, energy gain)
and outflow (mass loss, nondissipative energy loss) occur most naturally in fluid systems.
Traditional viscous flows are driven by upwind flow, pressure difference, or boundary
movement, and therefore the steady-state velocity profiles at the inlet and the outlet are, in
general, unrelated. In particular, flow symmetry properties in a system with specified inflow
and outflow velocity profiles remain largely unexplored6. Viscous fluid flow with porous

6 An example of a non-viscous flow with a balanced source and sink is a Rankine oval; it has zero asymmetry (see,
for example, [13]).
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walls that act as inlets or outlets has been extensively studied [14–16], although not with
symmetric boundary conditions that are investigated in this paper.

The incompressible fluid dynamics is governed by the nonlinear Navier–Stokes (NS)
equation,

∂ + = − +  pu u u uRe Re ( · ) , (1)t
2

and the continuity equation = u· 0. Here the Reynolds number ν= u wRe p is defined by
the characteristic inlet velocity up, the width of the inlet w, and the kinematic viscosity ν of
the fluid. For steady-state solutions, ∂ =u 0t , the effects of nonlinear, convective derivatives
are suppressed at a small Reynolds number. At moderate to large values of Reynolds number,

≳Re 1, the nonlinear effects cannot be ignored and thus the symmetry properties of steady-
state solutions of equation (1) are not straightforward and are usually analytically intractable
except in special cases [17, 18].

We use the lattice Boltzmann method (LBM) [19–21] to numerically solve
equation (1) through an existing C program for a two-dimensional (2D) channel that had
been previously validated. Originating from the lattice gas automata, the LBM has
emerged as a popular alternative to model and simulate complex viscous flows [22, 23].
The fundamental idea of this method is to construct simple kinetic models for spatially
and temporally discretized particle-distribution functions that incorporate the essential
physics of mesoscopic processes. The desired hydrodynamic variables in macroscopic
equations are obtained from the moments of the particle-distribution functions [24].
Although in the nearly incompressible limit, the lattice Boltzmann equations recover the
incompressible NS equations through the Chapmann–Enskog technique [25], the com-
putational philosophy of LBM is vastly different from traditional continuum NS solvers.
The main features that distinguish the LBM from continuum approaches are fourfold: (i)
The viscous diffusion in continuum solvers is replaced by a local relaxation process
(collision operator) towards a local equilibrium state in LBM. (ii) A linear convection
operator in LBM generates the nonlinear macroscopic advection—the u u( · ) term—

through multiscale expansions. (iii) For incompressible and isothermal single flows, such
as the flow studied here, the particle-distribution function is the only unknown to be
determined, and the pressure distribution p r( ) is obtained from the equation of state. (iv)
Computations required to obtain the particle-distribution function are purely local. The
distribution function at a point tr( , ) depends only on its values at neighboring points,
both spatially and temporally. Hence, the potential of LBM for parallelization is excellent.
Another major advantage of the LBM is that its implementation is fairly simple and can
be easily validated. Both two-dimensional (2D) and three-dimensional (3D) LBM codes
used in this work were validated by testing their nearly identical agreement with the
analytical solutions of Poiseuille flows.

In this paper, we introduce ‘balanced inflow and outflow’ configurations of viscous flow
in both 2D and 3D domains. The inlet and outlet velocity profiles, together with the geometry
of the flow domain, are characterized by invariance under combined parity (reflection) and
time-reversal operations. We investigate the asymmetries of the resultant steady-state flow. A
class of  -asymmetries in velocity, kinetic energy density, and vorticity is defined, and its
dependences on the Reynolds number and distinct configurations of ‘balanced’ inflow and
outflow are studied.

Our salient results are as follows: (i) The asymmetries for three variables, the velocity
u r( ), the kinetic energy density  r( ), and vorticity ω r( )z , exhibit specific power-law scaling
with the Reynolds number; the power-law exponent is determined by the asymmetry
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definition, but not the variable. (ii) The asymmetries in the balanced inflow-outflow config-
uration are suppressed by orders of magnitude when compared with those in traditional, fully
developed flow configuration. (iii) The power-law scaling is valid in both two and three
dimensions. We emphasize that the total mass flux at the inlet is always equal to that at the
outlet. Thus, the phrase ‘balanced inflow and outflow’ implies symmetry constraints on the
velocity profile at the inlet and the outlet.

The remainder of this paper is organized as follows. In section 2 we present the form-
alism and the numerical method. We first define ‘balanced inflow-outflow configurations’ and
flow asymmetries, and then briefly describe how the LBM is used to solve NS equations on
mesoscopic level. Section 3 presents results for 2D  -symmetric systems, including power-
law scaling of asymmetries and steady-state velocity, vorticity, and kinetic energy density
contours. Analytical considerations, discussed in section 3, imply that identical power-law
scaling of asymmetries in all three variables is expected at small ≲Re 1, but the scaling
appears to hold at higher values of Reynolds numbers as well, ∼Re 102. Section 4 shows that
the power-law scaling holds for 3D viscous flow in the laminar regime. We conclude the
paper with a brief discussion in section 5.

2. Formalism and numerical method

2.1. Balanced inflow-outflow configuration and  symmetry

We start with the definition of balanced inflow and outflow conditions and show how they
relate to  symmetries satisfied by the velocity profile at the boundaries. It is noted that for
an incompressible flow in a rigid container, the mass inflow flux is equal to the outflow flux.
Thus, we use the term balanced inflow-outflow to denote a much stronger constraint on the

Figure 1. Balanced inflow-outflow configurations possible in a square geometry. Panel
(a) shows an odd parity and time-reversal symmetric configuration where parity O

corresponds to reflection across the square diagonal line. Panel (b) shows an even
parity and time-reversal symmetric configuration where parity E corresponds to
reflection through the origin. We impose identical velocity profile, i.e., uniform with
speed or triangle/parabolic with maximum speed up or αup, at each inlet and outlet,

although the results are independent of the profile [34].
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fluid velocity at the inlet and outlet boundaries. As the first step, this subsection is confined to
2D geometries; corresponding formalism for the 3D case will be presented in section 4.

We consider two square domains of width W and inlet/outlet of width w. The origin of
the coordinate system is located at the center of the flow domain, as shown in figure 1. Both
panels in figure 1 show balanced inflow-outflow configurations, but with different arrange-
ments; here α⩽ ⩽0 1 is an adjustable parameter. In panel (a), the two inflows, from the west
and the south, are balanced by two outflows to the north and the east, respectively. Therefore,
the configuration in panel (a) is symmetric about the northwest-southeast diagonal, shown by
the diagonal line. Panel (b) shows another arrangement of balanced inflows and outflows from
west to east and south to north, respectively. This configuration is symmetric about the
reflection through the origin, shown by the circle.

To quantify these symmetries, we define parity operators for both configurations. In
panel (a), the inflow and outflow velocities u r( )b are invariant under the combined operation
of reflection across the diagonal line and time reversal. Therefore, an odd parity operator is
introduced for the corresponding flow field

= → = − −

= → − −
 ⎪

⎪

⎧
⎨
⎩ ( ) ( )

x y y x

u u u u

r r

v r r r r r
:

( , ) ( , ) ,

( ) ( ), ( ) ( ), ( ) .
(2)O

O

x y y O x O

The odd parity operator satisfies = 1O
2 and = −det 1O . In contrast, the inflow and outflow

velocities u r( )b in panel (b) are invariant under reflection through the origin (circle) and time
reversal. Thus, an even parity operator is expressed for the corresponding flow field

= → = − − = −

= → − −
 ⎪

⎪

⎧
⎨
⎩ ( )

x y x y

u u

r r r

u r r r u r
:

( , ) ( , ) ,

( ) ( ), ( ) ( ) .
(3)E

E

x y

The even parity operator satisfies = 1E
2 and = +det 1E . In both cases, the velocity field is

odd under time-reversal (or, more accurately, ‘motion-reversal’) operation
= − t tu r u r( , ) ( , ). Under combined parity and time-reversal operations, the boundary

velocity profiles satisfy =  u r u r( ) ( )O b b O in panel (a) and =  u r u r( ) ( )E b b E in panel (b).
This constraint, where the domain geometry is parity symmetric, and the boundary velocity
profile is  -symmetric, defines a ‘balanced inflow-outflow configuration’.

Note that α = 0 and α =1 0 are two special cases where the number of inflow streams
(and, equivalently, outflow streams) reduces to one. In panel (a), the flow is driven from the
south to the east if α = 0 or from the west to the north if α =1 0. In panel (b), the flow is
driven vertically from south to north, or horizontally from west to east. Apart from the inlets
and outlets, fluid velocity at all other points on the boundary of the flow domain vanishes

=u 0b due to the no-slip condition required by a viscous flow. When α = 1, the boundary
velocity field is  symmetric with respect to both parity operators.

To become more familiar with balanced inflow-outflow configurations, let us consider
the resultant steady-state velocity field in the presence of  -symmetric boundary velocity
profiles. (The details of numerical simulations are given in section 2.3.) Figure 2 shows four
typical steady-state velocity fields u r( ) in a square domain with =w W 0.1 at a low Reynolds
number (10−2). Panel (a) shows u r( ) for a  O -symmetric boundary velocity profile, whereas
panel (b) shows corresponding results for the  E -symmetric configuration. These results are
for α = 0.58. Panel (c) shows the results for the  E -symmetric configuration with α = 0,
and panel (d) has the velocity profile for α = 1. It is clear from figure 2 that starting from 
-symmetric boundary conditions u r( )b , the resultant steady-state velocity profile is close to, if
not exactly,  symmetric; recall that a velocity field tu r( , ) is  symmetric if and only if it
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satisfies = t tu r u r( , ) ( , ) (see footnote6). In the following subsection, the deviations
from the  -symmetric profile for the velocity field, as well as for kinetic energy density and
the vorticity fields, are quantified.

2.2.  asymmetries of the viscous flow

To quantify the deviation from the  -symmetric field, we introduce a class of dimensionless
 -asymmetry functions. The asymmetry of velocity field is characterized by
Δ = − u r u r u r( ) ( ) ( ). We define dimensionless  asymmetries ρO

u and ρE
u in the

steady-state velocity field u r( ) as

Figure 2. Typical steady-state velocity fields u r( ) for different ‘balanced inflow-
outflow’ configurations with =w W 0.1 and a low Reynolds number (10−2). Panel (a)
shows the velocity profile for the odd-parity  -symmetric boundary condition,
whereas panel (b) shows the velocity profile for an even-parity  -symmetric
boundary condition, both with α = 0.58; see figure 1. Panel (c) shows the flow lines for
the even-parity, α = 0 case, whereas panel (d) corresponds to the case α = 1. We note
that in all cases, the steady-state velocity fields appear almost, but not exactly, 
symmetric.
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∫

∫

ρ Δ=

= − 
W u

W u

r u r

r u r u r

1

2
d ( )

1

2
d ( ) ( ) , (4)

n
u

p
n

n

p
n

n

2

2

where ⋯| | denotes the magnitude of a vector,  represents the appropriate odd or even parity
operator, and >n 0. Two other relevant variables that characterize the flow are the kinetic
energy density field ϱ= r u r( ) ( ) 22 , and the pseudoscalar vorticity field ω = ×r u r( ) ( )z .
The asymmetries in the kinetic energy density ρO

KE and ρE
KE are defined in a similar manner,

∫

∫

ρ
ϱ

Δ

ϱ

=

= −



  
( )

( )

W u

W u

r r

r r r

1

2 2
d ( )

1

2 2
d ( ) ( ) . (5)

n
p

n
n

p
n

n

KE

2 2

2 2

Due to the pseduoscalar nature of the vorticity field, its asymmetries ρ ω
O and ρ ω

E are defined
with a positive sign,

∫

∫

ρ Δω

ω ω

=

= +

ω

 
W u w

W u w

r r

r r r

1

2 ( )
d ( )

1

2 ( )
d ( ) ( ) . (6)

n
p

n z
n

p
n z z

n

2

2

Notice that we have introduced up, ϱu 2p
2 , and u wp as the units of velocity, kinetic energy

density, and vorticity, respectively, and W2 is the area of the flow domain. Equations (4)–(6)
are applicable for α ⩽ 1. When α ⩾ 1, the velocity unit changes to αup so that the equivalence
between α α↔ 1 and the exchange of axes, ↔x y, is preserved. Note that, by construction,
the boundary contribution to the asymmetry in all  -symmetric configurations (figure 2) is
zero. In the next subsection, we describe the numerical method used to obtain the steady-state
solution for the velocity field u r( ) in the presence of  -symmetric boundary conditions
u r( )b .

2.3. Lattice Boltzmann method for viscous flow

In this work, we use two prevailing LBMs: the single-relaxation-time (SRT) model for 2D
flow and the multiple-relaxation-time (MRT) model for 3D flow by using existing validated
codes [26, 27]. The corresponding lattice models are D2Q9 [21] and D3Q19 [28],
respectively.

The SRT lattice Boltzmann equation for the D2Q9 lattice model [20, 21] reads

δ δ
τ

+ + = − −β β β β β
⎡⎣ ⎤⎦( )f t f t f t fr e r r r, ( , )

1
( , ) ( ) (7)t t

eq

where βf (β = …0, , 8) are the single-particle distribution functions, βf r( )eq are the
corresponding equilibrium-distribution functions, δt is the time increment, δ δ= βe tr is
the incremental displacement of the lattice mesh, and τ is the dimensionless relaxation
time, measured in units of δt and determined by molecular collisions. This relaxation time is
related to the viscosity of the fluid. We use dimensions such that the ratio of spatial and
temporal increments is unity, δ δ= =c 1x t . The discrete particle velocities βe and the
weighting factors ωβ are given by = ce (0, 0)0 and ω = 4 90 for β = 0,
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β π β π= − −β ce (cos [( 1) 2], sin [( 1) 2]) and ω =β 1 9 for β = 1–4, and
β π β π= − −β ce (cos [( 4.5) 2], sin [( 4.5) 2]) and ω =β 1 36 for β = 5–8. The corre-

sponding equilibrium distribution functions are given by [29]

ω δϱ ϱ= + + −β β
β β

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥f

c c c
r

e u e u u
( )

3 · 9( · )

2

3

2
. (8)eq

0 2

2

4

2

2

where δϱ is the density fluctuation and ϱ0 is the constant mean density of the system, usually
set to 1. The total density of the fluid is given by ϱ δϱ ϱ= + 0.

The MRT lattice Boltzmann equation [30] for the D3Q19 lattice model is given by

δ δ+ + = − −β
−( ( )f t f t M S m t mr e r r r, ( , ) ˆ ( , ) ( ) , (9)t t

1 eq

where the Dirac ket ⋯〉| represents a column vector, thus 〉 = …f t f t f tr r r| ( , ) [ ( , ), , ( , )] .T
0 18

The discrete particle velocities βe and the weighting factors ωβ (β = ⋯0, , 18) are given by
= ce (0, 0, 0)0 and ω = 1 30 for β = 0, = ± ± ±β c c ce {( 1, 0, 0) , (0, 1, 0) , (0, 0, 1) } and

ω =β 1 18 for β = 1–6, and = ± ± ± ± ± ±β c c ce {( 1, 1, 0) , ( 1, 0, 1) , (0, 1, 1) } and
ω =β 1 36 for β = 7–18. The column vectors 〉m tr| ( , ) and 〉m r| ( )eq represent the moments
of distribution function 〉f tr| ( , ) and the corresponding equilibrium-distribution function

〉f r| ( )eq , respectively. The diagonal dimensionless collision matrix Ŝ is given by
=S s s s s s s s s s s s s s s sˆ (0, , , 0, , 0, , 0, , , , , , , , , , , )1 2 4 4 4 9 2 9 2 9 9 9 16 16 16 where s s s, ,2 4 9, and s16

are parameters corresponding to multiple relaxation time-scales. The details of the
equilibrium moment vector 〉m| eq , the transformation matrix M, and the diagonal matrix Ŝ
for the D3Q19 lattice model can be found in [31].

The hydrodynamic variables are obtained via the moments of particle-distribution
functions [27, 31]

∑ ∑δϱ ϱ= =
β

β
β

β βt f t t f tr r u r e r( , ) ( , ), ( , ) ( , ). (10)0

The hydrodynamic pressure is given by ϱ=p cs
2 where the speed of sound is =c c 3s for

both D2Q9 and D3Q19 lattice models. The kinematic viscosity is given by
ν τ δ= − c( 0.5) 3t

2 for the D2Q9 SRT model and ν δ= −−s c( 0.5) 3t9
1 2 for the D3Q19

MRT model. It should be pointed out that the practice of using only δϱ instead of ϱ in
equation (10) reduces the effects of round-off errors in the simulations [30, 32]. We specify
identical parabolic (2D) and paraboloid (3D) velocity profiles with maximum velocity up
perpendicular to the cross-section and a constant pressure p0 at the inlet and the outlet. The
inlet velocity profile is introduced one grid before the inlet grid using the generalized bounce-
back boundary condition, which relates single-particle distribution functions βf for different
discrete particle velocities [33],

ω ϱ= −β β β βf f cu e6 · . (11)* b0
2

Here β* and β are related by = −β βe e* , and u r( )b denotes different velocity profiles
characterized by up or αup (figure 1). The walls of the flow domain are considered rigid, and
bounce-back boundary condition is imposed.

In the following two sections, we present the numerical results for the  asymmetries
and fluid-flow fields obtained via the LBM. The inlet/outlet width is ω =W 0.1 unless
otherwise indicated.
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3. Flow asymmetries in 2D  -symmetric configurations

3.1. Power-law scaling

We first show the results for even-parity, n = 2 asymmetries as a function of α(Re, ) in
figure 3 for the  -symmetric configuration in panel (B) of figures 1 and 2. It shows the
dimensionless asymmetry in velocity (A), kinetic energy density (B), and vorticity (C) as a
function of Re over three decades for four different values of α⩽ ⩽0 1; note the logarithmic
scale on both axes. Panels (A), (B), and (C) show that the n = 2 asymmetries scale quad-
ratically with Re, ρ α α= A(Re, ) ( ) Rei i

2
2 where ω=i u, KE, . Panel (D) shows that the

prefactor αA ( )i increases with α for α⩽ ⩽0 1. It should be noted that results for α ⩾ 1 are
obtained by exchanging the vertical and horizontal axes.

We emphasize here that these asymmetries, although small, are not numerical artifacts.
The steady-state velocity field u r( ), numerically obtained via the LBM by using double-
precision calculation, satisfies other symmetry constraints exceptionally well. For example,
when α = 0 (vertical flow), reflection symmetry implies that the resultant velocity field must
satisfy = − −u x y u x y( , ) ( , )x x and = −u x y u x y( , ) ( , )y y . The dimensionless error in this
constraint,

Figure 3. Dependence of even-parity, n = 2 asymmetries ρ2 in velocity (A), kinetic
energy density (B), and the vorticity (C) as a function of α shows that they scale
quadratically with the Reynolds number, ρ α α= A(Re, ) ( ) Rei i

2
2 for ω=i u, KE, .

Panel (D) shows the behavior of αA ( )i for α⩽ ⩽0 1.
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∫δ = ∣ + − ∣ + ∣ − − ∣{ }
W u

u x y u x y u x y u x yr
1

2
d ( , ) ( , ) ( , ) ( , ) , (12)

p
x x y y

2

satisfies δ ≈ −10 30 for all Reynolds numbers considered in this paper. It is also noted that the
integrands for the asymmetries ρ u

2 and ρ2
KE contain two distinct powers—second and fourth,

respectively—of the steady-state velocity field. This quadratic scaling of the even-parity, n =
2 asymmetries is the first significant result of this paper.

To investigate the origin of the quadratic power-law scaling, we compare the linear
(n = 1), quadratic (n = 2), and quartic (n = 4) asymmetries ρ (Re)n

i ( ω=i u, KE, ) for α = 1 in
the range of = −Re 0.01 700. The reader is reminded that when α = 1, due to the exact
reflection symmetry across the northeast-to-southwest diagonal of the square, the velocity
profile satisfies =u x y u y x( , ) ( , )x y and =u x y u y x( , ) ( , )y x , and therefore, the odd- and even-
parity asymmetries are identical in this configuration. The top row in figure 4 shows the three
asymmetries for vorticity (panel A), velocity (panel B), and kinetic energy density (panel C).
The vertical scale in each panel in the top row is the same, and the horizontal scale is identical
to that in the bottom row. It is clear that all asymmetries scale algebraically with the Reynolds
number with an exponent equal to n, ρ α = = B(Re, 1) Ren

i
n
i n for ω=i u, KE, . The bottom

row in figure 4 displays the velocity, kinetic energy density, and vorticity asymmetries for
n = 1 (panel D), n = 2 (panel E), and n = 4 (panel F). It shows clearly that the  asymmetries
ρi ( ω=i u, KE, ) exhibit identical power-law scaling with the Reynolds number over four
decades,

ρ α α= A(Re, ) ( ) Re . (13)n
i

n
i n

This n-dependent power-law scaling is our second significant result.
To verify that these results are independent of the grid discretization used in the LBM, we

perform a space resolution convergence check for the 2D square case, figure 2(a) with α = 1,
to determine the optimal discretization. We use three grid resolutions, 3002 (Δ), 5002 □( ), and
7002 ◯( ), to generate the steady-state velocity fields for Reynolds numbers ranging over
three orders of magnitude, =Re {0.01, 0.1, 1, 10}. Figure 5 shows the second-order
asymmetries in velocity ρ u

2 (blue), vorticity ρ ω
2 (red), and kinetic energy ρ2

KE (green) as a
function of Reynolds number on a logarithmic scale. It is clear from the complete overlap of
the results obtained via different resolutions that a resolution of 3002 is sufficient for the 2D
results presented here.

The scaling behavior, encapsulated in figures 3 and 4, raises two questions. Why are the
asymmetries ρi characterized by a single exponent over four decades in Reynolds numbers
that span from ≪Re 1 to ≫Re 1? Why do the asymmetries in velocity field and kinetic
energy density—which depends quadratically on the velocity field—have the same power-
law exponent? To answer these questions, note that in the limit =Re 0, corresponding to a
Stokes flow, a balanced inflow-outflow configuration results in a  -symmetric flow velocity
field u r( )S . When ≠Re 0, the solution of the NS equation u r( ) can be expressed as a sum of
the Stokes flow u r( )S and a correction term u r( )A . The Taylor-series expansion of the
correction term starts at the first order in Reynolds number,

= + + + ⋯u r u r u r u r( ) Re ( ) Re ( ) Re ( ) , (14)A 1
2

2
3

3

where the vector fields u r( )k are not necessarily  symmetric. It follows that the
asymmetries in the velocity Δ = − u r u r u r( ) ( ) ( )A A A and kinetic energy density Δ r( )
can be written as
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Figure 4. For panel (B) of figure 2, which satisfies both even- and odd-parity
asymmetries, the dependence of  asymmetry in vorticity (A), velocity (B), and
kinetic energy density (C) as a function of Re for =n {1, 2, 4}, respectively shows that
they scale as the nth power law with the Reynolds number, ρ =n A n(Re, ) ( ) Rei i n for

ω=i u k, , . Each index of n = 1 in (D), n = 2 in (E), and n = 4 in (F) for velocity (u),
kinetic energy density (KE), and vorticity (ω) shows the power-law scaling is
independent of the variable.

Figure 5. Comparison of scaling behavior of asymmetries ρ α= =A ( 1) Rei i
2 2

2 in
velocity (blue), vorticity (red), and kinetic energy density (green) for three grid
resolutions. The virtually identical results for grid size 3002 (Δ), 5002 □( ), and 7002

◯( ) shows that the resolution of 3002, used for 2D square geometries in this paper, are
independent of discretization.
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Δ
Δ

ϱ
Δ

= − + − + ⋯

= + −

   
  ⎡⎣ ⎤⎦

[ ] [ ]u r u r u r u r u r

r
u r u r u r u r

( ) Re ( ) ( ) Re ( ) ( ) ,

2
( )

2 ( ) · ( ) ( ) ( ) , (15)

A

S A A A

1 1
2

2 2

2 2

with a corresponding expression for vorticity as well. It follows from equations (15) and (4)
that at small values of ≪Re 1, the asymmetries in velocity and vorticity must scale with a
single power-law exponent, ρ ∝ Ren

u n. It also follows from equation (15) that in the same
regime Δ r( ) is also linear in the Reynolds number and therefore, the kinetic energy
asymmetry scales with the same exponent, ρ ∝ Ren

nKE .
We emphasize that these considerations are valid only for small Reynolds numbers and at
≳Re 1, higher-order terms in the Taylor-series expansion, equation (14), are expected to

become relevant. The contribution from these terms is expected to change the asymmetry
scaling from a single-exponent scaling to a polynomial scaling in the Reynolds number.
However, figure 4 shows that the single-exponent scaling remains valid at significantly higher
values of Reynolds numbers, ∼Re 100. The origin of this robustness remains the subject of
ongoing investigation.

3.2. Balanced versus fully developed outflow

In this subsection, we explore the universality of the power-law scaling expressed in
equation (13) to see if it depends upon the boundary velocity profile u r( )b , or the square
geometry, or if the  -symmetric inflow-outflow is instrumental for it. Calculations carried
out with three different inflow/outflow velocity profiles, uniform, parabolic, and triangular,
for a horizontal flow in a square domain, i.e., panel (B) ( α =1 0) in figure 2, show that the
n = 2 asymmetries in all variables scale quadratically with the Reynolds number, although the
prefactor Ai

2 in equation (13) varies slightly [34].
To investigate the dependence of power-law scaling on the flow-domain geometry and

 -symmetric boundary conditions, we consider a long horizontal channel with length
=L W10 , open inlet/outlet with =w W 1, and uniform stream with velocity up from left to

right at inlet. The Reynolds number is =Re 1. At the outlet, we impose two different
boundary conditions: the first one is identical to the inflow, satisfying the  symmetry, and
the second one is a fully developed boundary condition, meaning there is no velocity gradient
at the outlet, ∂ = =x L yu( 2, ) 0x . It is pointed out that in laminar flow regime when the flow
is fully developed, it has a parabolic velocity profile downstream [35].

We show results on the steady-state velocity field in figure 6 from three aspects, to
compare the two outlet boundary conditions. Panel (A) shows the downstream velocity
contours of  -symmetric outflow constraint (top color map) and the fully developed outflow
constraint (bottom color map). It is clear that the  asymmetries will be larger for the fully
developed outflow constraint because of the uncorrelated inflow and outflow. Panel (B) shows
a downstream velocity profile, u L y u(496 500, )x p, as a function of the y-coordinate in units
of L. Note that we display results near the boundary instead of at the boundary since the
velocity profiles at the boundary are fixed by the constraint. As is expected, the velocity
profile is nearly uniform for the  -symmetric configuration (dashed line), whereas it is
parabolic with a centerline velocity u3 2p for the fully developed outflow configuration (solid

line). The dependence of n = 2  asymmetries ρ i
2 ( ω=i u, KE, ), equations (4)–(6), on the

Reynolds number over three and a half decades is shown in panel (C). The dotted, dashed,
and solid lines denote asymmetries in vorticity, kinetic energy density, and velocity,
respectively. The lines with open symbols show that, even for a rectangular geometry and a
uniform inflow velocity profile, the n = 2 asymmetries scale quadratically for a balanced

J. Phys. A: Math. Theor. 48 (2015) 035501 H Yu et al

12



inflow-outflow configuration. The asymmetries for the fully developed outflow, on the other
hand, are shown by the virtually flat lines with solid symbols. Thus, the asymmetries in the
fully developed outflow configuration are essentially independent of the Reynolds number,
and their approximately constant value scales inversely with the aspect ratio L W . Thus, our
results show that  - symmetric configuration is instrumental to the power-law scaling of
asymmetries ρn

i ( ω=i u, KE, ). In particular, the asymmetries in the balanced configuration at
low Reynolds numbers are orders of magnitude smaller than those in the traditional, fully
developed outflow configuration.

These results show that  -symmetric inflow-outflow configurations strongly suppress
flow fields’ asymmetries compared to their traditional counterparts. Since the dimensionless
asymmetries ρn

i represent integrated contributions, they do not possess information about the
local structure. In the next subsection, we present the steady-state velocity field u r( ), kinetic
energy density  r( ), and vorticity ω r( )z as a function of the Reynolds number. As we will
show next, this detailed view provides further insights into the dramatic difference between
 asymmetries in the balanced inflow-outflow configuration and the more traditional, fully
developed outflow configuration.

Figure 6. Comparison of fluid flows with  -symmetric (top color map) or fully
developed outflow (bottom color map) constraints. The geometry and velocity profile at
the inflow is identical in both cases. Panel (A) shows the steady-state fluid speed u r| ( ) |
in a long channel with =L W 10, a wide inlet =w W 1, and Reynolds number =Re 1.
We see that the flow structure near the outlet is dramatically different for the two
configurations. Panel (B) shows that the horizontal fluid-velocity component
u L y(496 500, )x for the fully developed outflow (dashed line) is almost constant with
a local minimum at the center, y = 0. Panel (C) shows that the n = 2 asymmetries scale
as Re2 for the  -symmetric configuration (lines with open symbols), whereas
asymmetries for the fully developed outflow configuration (lines with solid symbols)
are virtually constant as the Reynolds number changes over three and a half decades.
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3.3. Emergence of asymmetry in 2D flow patterns

We start with the Re dependence of velocity and vorticity fields in a square geometry with
α = 0 corresponding to panel (C) in figure 2. The left-hand side of figure 7 shows the
dependence of the steady-state velocity field u r( ) in the presence of  -symmetric inflow-
outflow conditions as a function of Reynolds number. This configuration is  symmetric
where parity corresponds to reflection in the horizontal axis. When the Reynolds number is
quite small, =Re 0.01 (panel A), the velocity field is approximately  symmetric. As the
Reynolds number increases to =Re 10 (panel B) and Re = 30 (panel C), however, the
asymmetry in the velocity field at point r and its parity counterpart = −r rE are clearly
present. (Recall that the origin of the coordinate system is at the center of the square.) In
particular, when =Re 100, panel (D), vortices form near the inlet, but are absent near the
outlet. Thus, panels (A)–(D) on the left-hand side of figure 7 elucidate the origin of velocity
asymmetries ρ (Re )n

u in a balanced inflow-outflow configuration. The right-hand side of
figure 7 shows the corresponding evolution of the pseudoscalar vorticity field ω r( )z . It is seen
that starting from an approximately  -symmetric result at a small Reynolds number

=Re 0.01, panel (A), the vorticity field, too, develops a strong asymmetry at a relatively large
Reynolds number =Re 100, panel (D). This asymmetry is primarily due to the presence of
vortices near the inlet and their concomitant absence near the outlet.

We note that the α = 0 velocity field is symmetric about the vertical axis,
= − −u x y u x y( , ) ( , )x x and = −u x y u x y( , ) ( , )y y , equation (12). Therefore, the vorticity field

satisfies ω ω= − −x y x y( , ) ( , )z z and the net vorticity is zero, ∫Ω ω= =−W r rd ( ) 0z z
2 . Our

numerical results satisfy this constraint exceptionally well. We find that Ω < −w u| | 10z p
17 for

all Reynolds numbers that are considered.
Figure 8 shows similar results for the velocity and vorticity fields for a balanced inflow-

outflow configuration with α = 1, panel (D) in figure 2. The left-hand side shows that the

Figure 7. Reynolds-number dependence of the velocity field u r( ) (left-hand side) and
the vorticity field ω r( )z (right-hand side) for an α = 0, balanced inflow-outflow
configuration. When =Re 0.01, panel (A), the velocity and vorticity profiles are
essentially symmetrical about the diagonal; for =Re 10, panel (B), and =Re 30, panel
(C), the asymmetry is visible but not prominent. When =Re 100, panel (D), the
asymmetry is accentuated by the emergence of vortices near the inflow region that are
absent near the outflow region. Note that the net vorticity in panels (A)–(D) on the
right-hand side vanishes, Ω = 0z .
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velocity field u r( ) develops asymmetries, accompanied by the emergence of vortices near the
inflow region as the Reynold number increases. Similarly, the right-hand side shows that the
vorticity field asymmetries, too, grow with the Reynolds number. When α = 1, the velocity
field is symmetrical about the southwest-to-northeast diagonal and satisfies

=u x y u y x( , ) ( , )x y . Therefore, the vorticity field is antisymmerical about the same diagonal

Figure 8. Reynolds-number dependence of the velocity field u r( ) (left-hand side) and
the vorticity field ω r( )z (right-hand side) for an α = 1, balanced inflow-outflow
configuration. When =Re 10, panel (A), the velocity and vorticity profiles are
essentially symmetrical about the horizontal axis; for =Re 100, panel (B) the
asymmetry is visible but not prominent. When =Re 300, panel (C), and =Re 700,
panel (D), the asymmetry is accentuated by the emergence of vortices near the inflow
region that are absent near the outflow region. We point out that the color scale in the
velocity map is chosen to emphasize the low-velocity features; the maximum value of

uu| | p is 1.

Figure 9.Dependence of kinetic energy density on Reynolds number vertical flow (left-
hand side) and α = 1 flow (right-hand side). The energy density is scaled by ϱu 2p

2 and

the color-map scale is chosen to emphasize the low-energy features; the maximum
value of scaled energy density is 1. Both cases show that the small  asymmetry at
low Re, panel (A), is enhanced at large Re, panel (D), due to the presence of vortices
near the inlet and their absence near the outlet.
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and satisfies ω ω= −x y y x( , ) ( , )z z . Our numerical results satisfy the former to an accuracy of

δ < −10 30 and the latter to an accuracy of Ω < −w u| | 10z p
17.

Figure 9 shows the kinetic energy density distributions as a function of Reynolds
number. The left-hand side shows that, for a vertical flow, as the Reynolds number increases
from =Re 0.01, panel (A), to =Re 100, panel (D), the asymmetry ρn

KE about the horizontal
axis increases. The right-hand side shows that for the α = 1 case, the asymmetry about the
northwest-to-southeast diagonal increases. When =Re 10, panel (A), the kinetic energy
distribution is almost  symmetric; as the Reynolds number increases to =Re 700, panel
(D), the asymmetry is clearly visible. These results show that the kinetic energy asymmetries
in  -symmetric configurations are driven by vortex formation near the inlet and its absence
near the outlet.

4. Power-law scaling of  asymmetries in 3D: preliminary results

The power-law scaling of asymmetries in 2D  -symmetric configurations, expressed in
equation (13), is observed in the laminar regime crossing four decades of the Reynolds
number. Numerical results presented in section 3 strongly suggest that power-law scalings are
universal in two-dimensional laminar flows of balanced inflow-outflow configurations. In this
section, we present preliminary results for the same in three dimensions.

Figure 10 shows the schematics of a 3D channel with a square cross-section of area W2

and length L. The origin of the coordinate system is at the center of the channel. The flow inlet
is a square of side w located at = −z L 2 and the outlet is of the same size located at

= +z L 2. For the 3D case, the parity operator is given by → − r r: , and the velocity field
is  symmetric if = = − u r u r u r( ) ( ) ( ). We impose balanced  -symmetric inflow
and outflow as follows,

= = − −

= − − = −

⎡⎣ ⎤⎦⎡⎣ ⎤⎦u x y z L u x w y w

u x y z L

( , , 2) 1 (2 ) 1 (2 )

( , , 2). (16)

z p

z

2 2

The 3D MRT-LBM is used to obtain the steady-state velocity field u r( ). The  -asymmetry
function in the velocity field is defined as

Figure 10. Schematic of a balanced inflow-outflow configuration in a 3D channel with
a square cross-section. The origin of the coordinate system is at the center of the
channel. The inflow (and outflow) velocity profiles are given by

= ± = − −u x y z L u x w y w( , , 2) [1 (2 ) ][1 (2 ) ]z p
2 2 for ⩽x y w| |, | | 2 and zero

otherwise.
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∫ ∫ρ = − −
− −


W Lu

z x y u r u r
1

2
d d d ( ) ( ) , (17)n

u

p
n L

L

W

W
n

2 2

2

2

2

and an analogous expression defines kinetic energy density asymmetries ρn
KE. In contrast to

the 2D systems, the vorticity in three dimensions is a pseudovector. Therefore, here, we
restrict ourselves only to  asymmetries in velocity and kinetic energy density. Figure 11
shows the dependence of  -asymmetries on the Reynolds number over four decades,

⩽ ⩽−10 Re 103 . We emphasize that these low values of Reynolds number are used to ensure
a laminar flow in three dimensions. Panel (A) in figure 11 shows that the velocity
asymmetries have a power-law scaling with Reynolds number, ρ ∝ Ren

u n, for =n 1, 2, 4.
Panel (B) shows an identical behavior for the kinetic energy density asymmetry, ρ ∝ Ren

nKE .
These preliminary results suggest that the power-law scaling in ‘balanced inflow-outflow
configurations’ is robust and remains valid in 3D systems with laminar flow.

5. Discussion

In this paper, we have developed the formalism for ‘balanced inflow-outflow configurations’
of incompressible viscous flow. We have defined configuration-dependent asymmetries for
the steady-state fluid velocity u r( ), kinetic energy density ϱu r( ) 22 , and vorticity ω r( )z , and
obtained their dependence on the Reynolds number. The nonlinearities due to convective
acceleration, the u u( · ) term in the NS equation, make it difficult to analytically predict the
symmetry properties of these observables.

Through numerical simulation via LBM, we have found that for  -symmetric con-
figurations, all asymmetries ρn scale with the Reynolds number with exponent n over a wide
range of geometries and boundary velocity profiles in two and three dimensions. We have
also shown that asymmetries in  -symmetric systems, particularly at low Reynolds

Figure 11. Dependence of  asymmetries on Reynolds number for laminar, viscous
fluid flow in a 3D channel with balanced inflow and outflow. Panel (A) shows that the
asymmetries in velocity scale as a power law and panel (B) shows that the same holds
for kinetic energy density asymmetries, ρ = A Ren

i i n
3D ( =i u, KE), over four decades in

Reynolds number. The range of Re is chosen to ensure that the three dimensional flow
is laminar.
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numbers ≲Re 1, are orders of magnitude smaller than those in systems with traditional, fully
developed outflow boundary conditions.

Our results raise a number of interesting questions, particularly for 3D systems. Does the
power-law scaling of asymmetry persist when the flow becomes transitional or turbulent at
higher Reynolds numbers? Does the onset of turbulence occur at the same Reynolds number
for a balanced geometry as it does for the traditional, fully developed outflow geometry? Why
does the single-power-law scaling remain valid for ≫Re 1, when it is expected to be valid
only for small Reynolds numbers? Is such robustness a consequence of the  -symmetric
inflow-outflow conditions? Answers to these questions will not only improve the under-
standing of the pertinent physics of viscous flow, but will also inspire innovative flow control
techniques with implications for a wide variety of fields.
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