
Computers & Fluids 115 (2015) 192–200
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
GPU acceleration of Volumetric Lattice Boltzmann Method
for patient-specific computational hemodynamics
http://dx.doi.org/10.1016/j.compfluid.2015.04.004
0045-7930/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors at: Mechanical Engineering Department, Indiana
University-Purdue University Indianapolis, IN 46202, USA (H. (Whitney) Yu).

E-mail addresses: zwang22@kent.edu (Z. Wang), zhao@kent.edu (Y. Zhao),
whyu@iupui.edu (H. (Whitney) Yu).
Zhiqiang Wang a, Ye Zhao a,⇑, Alan P. Sawchuck b, Michael C. Dalsing b, Huidan (Whitney) Yu c,b,⇑
a Department of Computer Science, Kent State University, OH 44240, USA
b Surgery Division of Vascular Surgery, School of Medicine, Indiana University, IN 46202, USA
c Mechanical Engineering Department, Indiana University-Purdue University Indianapolis, IN 46202, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 October 2014
Received in revised form 23 March 2015
Accepted 2 April 2015
Available online 7 April 2015

Keywords:
Volumetric Lattice Boltzmann Method
Parallel computing
Graphics processor unit
Patient-specific computational
hemodynamics
Volumetric Lattice Boltzmann Method (VLBM) has been recently developed for solving complex flow with
arbitrary curved boundaries. The VLBM regards fluid particles are uniformly distributed in cells and dis-
tinguishes fluid, solid, and boundary cells by introducing a volumetric parameter Pðx; tÞ defining the per-
centage of solid volume in each cell. The advantages of VLBM stem from the self-regulation of Pðx; tÞ in
the volumetric lattice Boltzmann equation (VLBE) for particle collision and streaming with no spatial
interpolation when dealing with an arbitrarily curved boundary with or without motion. First, the
VLBE satisfies mass conservation strictly. Second, the implementation of VLBM is rather simple after
the solid volume percentages are determined in boundary cells. And third, no-slip boundary condition
is integrated in the streaming formulation thus significantly enhances the capability of parallelization.
In this paper, we perform GPU (Graphics Processing Unit) parallelization for VLBM using a uniform com-
puting scheme for both fluid and boundary cells. In contrast to the traditional LBM acceleration, the
boundary conditions have to be imposed over boundary nodes, where branching operations are required
to identify boundary nodes from others, the VLBM implementation does not need to distinguish fluid and
boundary cells in the computation so that branching is minimized and the GPU kernel execution is accel-
erated. Furthermore, the algorithmic steps are optimized to improve coalesced access of GPU memory
and avoid race condition. An application study is on a pulsatile blood flow in a patient-specific carotid
artery segmented from an anonymous clinical CT image and more than 30 times speedup over the serial
counterpart. Simulations of fluid dynamics and wall shear stress (WSS) are presented and known velocity
skewness and WSS distributions are captured. The GPU accelerated VLBM is promising to perform
patient-specific computational hemodynamics within clinical accepted time frame and is expected to
reveal quantitative real-time blood flow in living human arteries to aid clinical assessment of cardio-
vascular diseases.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice Boltzmann method (LBM) [1–3] has emerged as a popu-
lar alternative computational methodology to traditional Navier–
Stokes solvers for a large variety of incompressible and time-de-
pendent complex flows [4,5]. Its strength lies in the ability to easily
represent complex physical phenomena, ranging from multiphase
flows, porous media, to chemical interactions between the fluid
and the surroundings. The LBM deals with a discrete mesoscopic
equation governing the time evolution of discrete particle density
distribution functions, which is coherently discretized from
Boltzmann equation [6] in phase space with certain approx-
imations of the collision term. One of the most popular model is
so called BGK (Bhatnagar–Gross–Krook) approximation [7] that
models molecular collision as a local relaxation process from
a non-equilibrium state to an equilibrium state. Through
Chapman–Enskog technique [8], it can be rigorously proved [9]
that the lattice Boltzmann equations recover NS equations in the
incompressible limit. The most attractive features of LBM are the
ease to deal with complicated porous media structure, the capabil-
ity to integrate additional physical process, complex flow [10,11],
computer graphic [12,13], and biomedical simulation [14,15], into
a unified computational platform, and the suitability to perform
the cutting-edge GPU parallelization [16–21] to achieve rev-
olutionarily speed-up.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.04.004&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2015.04.004
mailto:zwang22@kent.edu
mailto:zhao@kent.edu
mailto:whyu@iupui.edu
http://dx.doi.org/10.1016/j.compfluid.2015.04.004
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


Fluid cell
(P =0)

Boundary cell
(0<P<1)

Solid cell
(P =1)

Fig. 1. Volumetric representation of LBM. An arbitrary curve (black line) separates
the field into fluid and solid at top (without dots) and bottom (with dots)
respectively. Three types of cells are fluid cell (P ¼ 0, empty square with blue
dashed lines), solid cell (P ¼ 1, dotted square with Brown solid line), and boundary
cell (0 < P < 1, red-filled square with Green dashed lines). Fluid particles are
uniformly distributed in fluid and boundary cells. ni ((i = 0,1, . . .,8) are particle
distribution functions in D2Q9 lattice model as an example. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Z. Wang et al. / Computers & Fluids 115 (2015) 192–200 193
The conventional LBM is node based. Fluid particles are sitting
at lattice nodes. The particle distribution functions represent the
particle density distributions associated with discrete molecular
velocities. In the time evolution, particles collide at the nodes
and then stream to their prescribed finite neighboring nodes.
During the streaming step, a bounce-back scheme and its exten-
sions are applied to deal with boundary condition [10,15,16]. To
deal with a curved boundary that cuts the lattice off nodes,
node-based LBM uses either point-wise particle density dis-
tribution interpolation or particle density distribution trans-
formation into local curve-linear coordinate systems. As a result,
most of these computational schemes do not guarantee the con-
servations of mass and momentum and might fail to maintain
the detailed balance among particle density distributions, may
resulting in numerical artifacts may contaminate the physics of
fluid dynamics [4]. Moreover, the realization of high-order inter-
polations involving nonlocal information is inefficient in parallel
computing. Algorithmically, since the collision step only based on
local data, in LBM, the streaming step which involves shifting data
to adjacent locations is core to parallel performance [22]. However,
to deal with different type of nodes (fluid node or boundary node)
in streaming step, it need to check each streaming cell if it is avail-
able and perform different treatments to fluid nodes and boundary
nodes. Then, massive if branches are generated and also cause
uncoalesced memory access, it would drop the performance of
GPU significantly. This is because modern GPUs are based on
Single Instruction, Multiple Data (SIMD) architecture and has lim-
ited control units. This feature renders the GPU suitable for per-
forming same task across the entire dataset where little control
is needed [23]. The performance would be worse especially for
simulating fluid dynamic under complicated biomechanical struc-
ture. For example, the simulation of hemodynamics in arteries usu-
ally has the number of boundary cells more than 1/5 of total
computing domain.

In order to deal with arbitrary curved boundaries, which may
move willfully, with physical accuracy and implemental conveni-
ence, we have recently developed a volumetric representation of
LBM [24] which has served as the major component of a unified
mesoscale modeling [25] for patient-specific computational
hemodynamics from radiological images to in vivo fluid dynamics
in blood arteries. The Volumetric Lattice Boltzmann Method
(VLBM) regards fluid particles are uniformly distributed in cells
and distinguishes fluid, solid, and boundary cells by introducing a
parameter P defining the percentage of solid volume in each cell.
The major advantage of VLBM is the self-regulation of the
parameter P in the volumetric lattice Boltzmann equation (VLBE)
for particle collision and streaming. There is no spatial inter-
polation when dealing with an arbitrarily curved boundary with
or without motion. First, the VLBE satisfies mass conservation
strictly. Second, the implementation of VLBM is rather simply after
the solid volume percentages are determined in boundary cells.
And third, no-slip boundary condition is integrated in the streaming
formulation thus significantly enhances the capability of parallelization.

In this paper, we perform GPU parallelization for VLBM using a
uniform computing scheme for both fluid and boundary cells. The
number of program branches inside GPU kernel is minimal leading
to fast GPU kernel execution. Optimization of coalesced access of
GPU memory is pursued by applying Structure of Arrays (SoA) for-
mat to store distribution functions, instead of Arrays of Structure
(AoS) which is preferable for serial CPU implementation. In VLBM,
time advancing information are purely from the nearest neighbor-
ing cells as no spatial interpretation is involved to deal boundary
condition. We further avoid replication computation and race con-
dition by using an intermediate variable thus two GPU kernels
separately deal with collision and streaming operations. We apply
the GPU accelerated VLBM for a pulsatile blood flow in a patient-
specific carotid artery segmented from an anonymous clinical CT
angiograph image and more than 30 times speedup over the serial
counterpart. Simulations of fluid dynamics in three refined meshes
beyond the image resolution are performed.

The reminder of the paper is organized as follow. The for-
mulation of VLBM and its GPU parallelization including imple-
mentation and optimization strategies are presented in Section 2.
In Section 3, an application study of pulsatile blood flow in
patient-specific carotid artery is performed. Finally, Section 4 pro-
vides a summary discussion and concludes the paper.

2. Volumetric LBM and GPU parallelization

The details of the VLBM are referred to reference [24]. Here we
include the main concept and involving equations for comprehen-
sion and consistency. In VLBM, the fluid particles are uniformly dis-
tributed in lattice cells, as opposed to sitting at lattice nodes in
node-based LBM. As shown in Fig. 1, the solid black curve depicts
a boundary separating fluid (without dots) and solid (with dots)
domains. Cells adjacent to the boundary may be occupied entirely
by either solid or fluid, while others may have partial fluid and par-
tial solid volumes. In the whole domain, cells can be categorized
through the occupation of solid volume in the cell, defined by
Pðx; tÞ ¼ VSðx; tÞ=Vðx; tÞ in the lattice cell x at time t, where Vðx; tÞ
is one cell’s volume and VSðx; tÞ is the volume of solid in the cell.
Three distinct cell types are illustrated in Fig. 1: fluid cell (P ¼ 0),
solid cell (P ¼ 1), and boundary cell (0 < P < 1).

We introduce function niðx; tÞ representing particle distribution
function with velocity ei occupying a lattice cell x at time t and deal
with the time evolution of particle distribution function (PDF),
referred to VLBE,

niðxþ eiDt; t þ DtÞ ¼ niðx; tÞ �
1
s
ðniðx; tÞ � neq

i ðx; tÞÞ ð1Þ

where i = 0,1, . . .,b is the predefined directions of molecular motion
and s is relaxation time. The equilibrium PDF neq

i ðx; tÞ is formulated
as:

neq
i ðx; tÞ ¼ Nxi 1þ 3ei � u

c2 þ 9ðei � uÞ2

2c4 � 3u � u
2c2

 !
ð2Þ

with Nðx; tÞ ¼
Pb

i¼0niðx; tÞ, xi the weighting factor of the ith direc-
tion, and c lattice speed (in practice it usually set to 1). In the
VLBE, the number of discrete direction of molecular motion b, the
discrete molecular velocity ei, and the weighing factor xi are deter-
mined by selected lattice models. Fig. 1 provides an example for the



194 Z. Wang et al. / Computers & Fluids 115 (2015) 192–200
discrete PDFs ni ði ¼ 0;1; . . . ;8Þ on a 2-D lattice with 9 directions
called D2Q9 lattice model.

It is noted that the relation between a particle density dis-
tribution function f i in conventional node based LBM and a PDF
ni in the VLBM is as follows:

f iðx; tÞ ¼ niðx; tÞ=ð1� Pðx; tÞÞ ð3Þ

where 0 6 P < 1. For fluid cells (P ¼ 0), the values of ni and f i are
identical for taking the total volume of a cell unity.

The particle number and velocity are obtained as follows

Nðx; tÞ ¼
Xb

i¼0

niðx; tÞ ð4Þ

uðx; tÞ ¼
Xb

i¼0

einiðx; tÞ=Nðx; tÞ ð5Þ

The density and the pressure can be obtained from qðx; tÞ ¼
Nðx; tÞ=ð1� Pðx; tÞÞ, ð0 6 P < 1Þ and pðx; tÞ � p0 ¼ c2

s ½qðx; tÞ � q0�
respectively where p0 and q0 are reference pressure and density
respectively. The VLBM can handle arbitrary boundary orientation
with respect to the mesh and it satisfies mass conservation strictly
[24].

The VLBEs [24] are characterized and self-regularized by the
volumetric function Pðx; tÞ. Thus computing Pðx; tÞ is the key to
employ VLBM. For patient-specific computational hemodynamics,
image segmentation from medical CT/MRI images is the necessary
by soling a level set equation that tracks an evolving surface C
through a signed distance field /ðx; tÞ to the surface: /ðx; tÞ > 0 if
/ðx; tÞ is outside of C, /ðx; tÞ < 0 if /ðx; tÞ is inside of C, and
/ðx; tÞ ¼ 0 if /ðx; tÞ is on C. After the flow boundary C is segmented
together with the solved distance field, Pðx; tÞ can be easily
computed based on the sign of the distance function /ðx; tÞ. For a
3-D cell with 8 mesh nodes, if all the /s are negative, the cell is
inside the flow domain thus P = 0 while all the /s are negative,
the cell is outside the flow domain thus P = 1. Otherwise, the cell
Fig. 2. Flow chart of GPU implementation for VLBM. (a) The whole VLBM workflow. (b)
is a boundary cell occupied by partial solid and partial fluid. To
compute the solid occupation in a boundary cell, we uniformly
divide the cell into a refined mesh with q3 small cubes. The / val-
ues at the 8 nodes of each cube are interpolated from the / values
of the boundary cell. For cube i located at xc , if the value /(xc) is
positive, implying the cube is outside of the flow domain, we set
ViðxcÞ ¼ 1. Otherwise, ViðxcÞ ¼ 0. The total solid volume of the

boundary cell P ¼
Pq3

i¼1Vi=q3. The details about the anatomical seg-
mentation and boundary information extraction will be presented
in [25].

2.1. VLBM parallel algorithm

The time evolution of VLBE, Eq. (1), can be divided into two
operations, collision and streaming, which are self-regularized
through the volumetric parameter Pðx; tÞ specifically taking into
account the arbitrary boundary. Since the presentation of PDF
niðx; tÞ integrate fluid cell and boundary cell, we can perform same
computation to these cells to minimize program branches and
therefore to improve parallelism. To avoid replication computation
and race condition, we introduce two GPU kernels to compute each
step. And each kernel is parallelized such that one GPU thread is
mapped to one cell in the computing domain.

2.1.1. Collision kernel
In order to compute equilibrium PDF neq

i ðx; tÞ, first we update
the particle number Nðx; tÞ and velocity uðx; tÞ as Eqs. (4) and (5).
Then, compute neq

i ðx; tÞ according to Eq. (2).
Next, we utilize an intermediate variable n0iðx; tÞ to save as a

‘post-collision’ PDF:

n0iðx; tÞ ¼ niðx; tÞ �
1
s
ðniðx; tÞ � neq

i ðx; tÞÞ ð6Þ

To avoid memory race condition, n0iðx; tÞ is used during the stream-
ing step to store the PDF without overwriting niðx; tÞ as shown in
Fig. 2(b).
The iteration loop in VLBM with n0iðx; tÞ, it avoids memory race condition in Eq. (1).



Z. Wang et al. / Computers & Fluids 115 (2015) 192–200 195
Note that in this operation, the computations of Eqs. (2) and 4–6
only involve the current cell x and no information from the neigh-
boring cells are required. Therefore, there is no uncoalesced mem-
ory access in GPU, which can yield high efficiency parallel execution.

2.1.2. Streaming kernel
In general, streaming operation results in particle movement

from current cell to its neighboring cells. There are two methods
which can be described as ‘push’ and ‘pull’ algorithms depending
on the streaming direction. As shown in Fig. 3 ‘Push’ approach
pushes particles in current cell to its neighbors. In implement, it
yields aligned read and unaligned write in GPU memory.
Whereas ‘Pull’ approach pulls fluid particles from neighboring cells
to the current cell, yielding unaligned read and aligned write as
shown in Fig. 4. It has been reported that the cost of a misaligned
read to be less than a misaligned write in GPU [19,22]. Therefore,
we employ pull algorithm in our implementation.

In VLBM, bounce-back boundary condition has been integrated
in the streaming operation as

niðx; t þ DtÞ ¼ ð1� Pðx; tÞÞn0iðx� eiDt; tÞ þ Pðxþ ei�Dt; tÞn0i� ðx; tÞ
ð7Þ

where i⁄ corresponds to the direction opposite to the ith direction
ei� ¼ e�i. Particles in cell x at time tþ Dt in a streaming operation
are from two sources: (i) streaming from its upwind neighboring
cells, ð1� Pðx; tÞÞn0iðx� eiDt; tÞ and (ii) bounce-back from the down-
wind cells, Pðxþ ei�Dt; tÞn0i� ðx; tÞ. This modified streaming process
ensures that particles are advected or reflected to their appropriate
cells in the fluid domain without mass loss. When Pðx; tÞ ¼ 0, Eq. (7)
recovers the streaming operation in conventional node-based LBM
(a) Initial state (b) Post-streaming state

Fig. 3. Push streaming scheme, current cell’s PDFs which are represented by blue
arrows are propagate to its neighbors in next time step. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

(a) Initial state (b) Post-streaming state

Fig. 4. Pull streaming scheme, the updated PDFs of previous time step in neighbors
which represented by blue arrows are propagate to the current cell. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
where only upwind streaming occurs. And when Pðx; tÞ ¼ 1, Eq.
(7) yields standard bounce-back boundary condition.

In conventional LBM parallel implementation, collision and
streaming operations are usually blended into one GPU kernel to
reduce the number of memory access [17–19]. After the kernel is
done, n0iðx; tÞ and niðx; tÞ are switched. If same GPU kernel is
employed in VLBM, there will involves a replicated computation
as two requests of n0iðx; tÞ are involved, as seen in Eq. (7), in the
streaming operation of VLBM. By separating the collision and
streaming kernels, we can not only avoid the replication but also
save one switch operation. Meanwhile, the separation of collision
and streaming kernels can avoid memory race condition, as thread
synchronization implicitly occurs when each kernel is performed.
Moreover, the separation makes the implementation convenient
to include more complicate collision model (e.g. turbulence model
or extra body force terms) and boundary conditions.

2.2. Memory arrangement

We take D3Q19 lattice model, shown in Fig. 5, as an example to
show the memory arrangement strategy. Assuming the size of a
computation domain is Nx � Ny � Nz. In whole computing process,
we need locate Nx � Ny � Nz globe memory in GPU for Pðx; tÞ to
store volume information, and separately locate 19 � Nx � Ny � Nz
memory for both niðx; tÞ and n0iðx; tÞ. In collision kernel, some inter-
mediary results (like, macroscopic value density Nðx; tÞ, uðx; tÞ and
equilibria neq

i ðx; tÞ) are saved in a register for each thread, as these
variables are defined locally in a kernel. The registers are a set of
very fast, low latency memories. Its transfer speed is ten times fas-
ter than globe memory, but only available in limited quantity. To
increase the memory access performance, we next optimize the
globe memory access pattern and register distribution.

An efficient way to reduce the memory latency of a GPU pro-
gram is to ensure that memory accesses are coalesced, meaning
all the threads in a block access consecutive memory locations.
Thus, the memory accesses are combined into one single request
by the hardware. In globe memory, to avoid extra de-referencing,
it is a common practice to flatten multiple dimension arrays into
a single dimension. Regularly, on the CPU, the PDF ni is stored as
in a 4-D array such as n[z][y][x][i]. Its flatten form is
n½z � Nx � Ny � 19þ y � Nx � 19þ x � 19þ i� for D3Q19 model. This
format is referred as ‘Arrays of Structure’ (AoS), which corresponds
to a single array with one element per spatial location, and each
element store 19 components of ni as shown Fig. 6. It has been
show that SoA is preferable for serial CPU implementations, as
the main thread would access the nodes one by one, and ni would
be likely to be stored in fast cache in CPU with this pattern. While
in GPU, such an access pattern is uncoalesced since the threads are
not accessing to consecutive memory locations. For example, the
accesses to the distribution n0 by each thread are separated in
memory space by 19 ⁄ 4 = 76 bytes (the 19 distributions ni) and
cannot be grouped into a single big memory access. They need to
Fig. 5. D3Q19 lattice model.



Fig. 6. Memory access pattern for an Array of Structures, that niðx; tÞ is addressed as n[z ⁄ Nx ⁄ Ny ⁄ 19 + y ⁄ Nx ⁄ 19 + x ⁄ 19 + i].

Fig. 7. Memory access pattern for an Structure of Array, Memory access pattern for an Array of Structures, that niðx; tÞ is addressed as
n[i ⁄ Nx ⁄ Ny ⁄ Nz + z ⁄ Ny ⁄ Nx + y ⁄ Nx + x].

196 Z. Wang et al. / Computers & Fluids 115 (2015) 192–200
be serialized into a lot of small accesses, which significantly slows
down the execution of the kernel.

We employ another alternate ordering method for niðx; tÞwhich
is so called ‘Structures of Array’ (SoA) format, as shown in Fig. 7.
The set of 19 distribution functions of niðx; tÞ are stored without
interlace. In this case, niðx; tÞ is addressed as
n[i ⁄ Nx ⁄ Ny ⁄ Nz + z ⁄ Ny ⁄ Nx + y ⁄ Nx + x]. Storing n in order of i
and then by spatial coordinates will lead neighboring threads
within one warp (typically, 32 threads) to access consecutive
memory. Then, the data transactions can be grouped into a single
larger transaction resulting in a coalesced access to improve the
put of globe memory [19,23].

For the existing second generation Kepler GPUs (compute
capability 3.5), a single Streaming Multiprocessors (SM) contains
65,536 registers. The D3Q19 solver needs approximately 50 regis-
ters per thread. If a block size of 1024 were used in GPU kernel, a
total of about 50K threads would be needed for each block, and
thus only one block could be launched, causing the remaining
15K registers unused. If a block size of 256 threads is used, it can
load 6 blocks for each SM at one time Furthermore, when a kernel
is allocated in a GPU, the maximum number of threads in an SM is
from 768 to 2048, depending on the compute capability. For maxi-
mum compatibility, 256 threads per block can get 100% utilization
across all levels of the hardware.

To avoid poor memory coalescing, we arrange threads to match
the layout of memory. The following Cuda C code snippet is an
example to summarize the arrangement of memory and thread
for computing streaming step as shown in Listing 1.

It is noted that some existing work use shared memory and an
intrinsic memory-less intra-warp shuffle operation for the memory
intensive streaming operations [26,27]. However, it have been
shown to be ineffective at improving the performance of the mem-
ory-intensive streaming operation in current Kepler GPU, in spite
of the fact that it increases the number of coalesced accesses to
globe memory [22]. Therefore, a ‘naive’ implementation that has
misaligned access to globe memory is taken due to its lower regis-
ter usage and no need for any additional control flow.

3. Application study

With the accelerated VLBM, we perform patient-specific com-
putational hemodynamics for an anonymous diseased carotid
artery anatomically segmented from a CT angiography taken dur-
ing a former clinical visit. The original image resolution is
0.4 ⁄ 0.4 ⁄ 0.45 (mm3) and the image size is 512 ⁄ 512 ⁄ 52(pixel3).
The image segmentation is done by simplified LBM [25], which
solves a level set equation. The VLBM resolution from the image
is 69 ⁄ 64 ⁄ 176. In order to check the convergence, we generated
three larger resolutions of 88 ⁄ 81 ⁄ 228, 88 ⁄ 81 ⁄ 228, and
108 ⁄ 101 ⁄ 286 through interpolation during the segmentation.
Convergence check has confirmed that the resolution based on
the original image information is good. At the artery inlet, a pul-
satile velocity from a generic ultrasound record, seen in Fig. 8(A).
The entire pulsation is divided by 1008 time points to be fed in.
At each time point, a paraboloid-like 2D velocity field [25] with
the given velocity value as the maximum at center and zero at wall
to mimic the realistic blood flow.

The computation is carried out on an NVIDIA Geforce GTX 780
GPU, which has 2304 CUDA cores with 900 MHZ clock frequency
and 3 GB globe memory. To evaluate the GPU parallel performance,
the serial computation is performed with Intel i7-3770 CPU, which
has 4 computing cores with 3.4 GHZ and 8 GB DDR3 Random
Access Memory (RAM). For the carotid artery study, the VLBM
blood flow simulation is evaluated for 5000 iteration steps and four
grid resolutions with different ratios between boundary cells and
fluid cells were considered and Table 1 shows the execution times
for each cases.

As the resolution increase, the number of boundary cell which is
related to surface area of vessel would increase more slowly than
the number of fluid cell relating to volume. That makes the ratios
between boundary cells and fluid cells reduce from 1/4 to 1/7.
But the performance of parallel computing is robust to that
changes with about 36 times speedup, due to perform same com-
putation scheme to both boundary cells and fluid cells. On the
other hand, different treatment need be performed to deal with
inlet and outlet condition, which would cause execution paths in
streaming step. But since relatively few cell in source and sink
slices, the aspect is not crucial for the overall performance. The
GPU acceleration reduces the computation cost of highest res-
olution from two days (serial VLBM) to one hour (GPU VLBM).
For original image resolution, CPU 2 h, GPU 3.4 min for just one
pulsatile cycle which need 31,705 iterations. This acceleration is
extraordinarily significant since it does not require to use remote
supercomputing resources.



Listing 1. Thread and memory arrangement for streaming step.

Fig. 8. (A). Pulsatile velocity profile extracted from a generic Doppler Ultrasound
recording to drive blood in the carotid artery at the inlet. (B). Representative planes
where quantitative velocity profiles are studied.

Table 1
Execution times of blood simulation for different grid size.

Grid size Resolution
(m/cell)

Boundary /
fluid

CPU
(s)

GPU
(s)

Speed
up

69� 64� 176 2.225e�4 �1/4 1199 34 35.2
86� 79� 221 1.7660e�4 �1/5 2255 63 35.8
106� 99� 279 1.4017e�4 �1/6 4183 117 35.7
133� 125� 352 1.1125e�4 �1/7 8151 226 36.1

Z. Wang et al. / Computers & Fluids 115 (2015) 192–200 197
Next, we present physical results of pulsatile flow is the carotid
artery where a stenosis is present in the internal carotid artery
(ICA, left branch) near the bifurcation. The representative time
points include two, (a) and (b), during acceleration (systole), three,
(d)–(f), during deceleration (diastole), as well as the peak point (c).
To compare the behavior in acceleration and deceleration, we have
selected same Re numbers, Re 200 for (a) and (e) and Re = 400 for
(b) and (d). We collect each pair next to each other in the discus-
sion of the results unless otherwise indicated. It is noted that the
validation of VLBM has been performed extensively in our previous
works [24,25] and the outputs from GPU-VLBM has been con-
firmed to be identical to those from serial-VLBM, here we present
the simulation results without further validations.

Fig. 9 shows the contours of normalized velocity magnitude on
represented transverse planes at represented time points during a
pulsation with indicated Re numbers in Fig. 8(A). The contour
scales are specified for Re = 100 of (f), Re = 200 of (a) and (e),
Re = 400 of (b) and (d), and Re = 533 of (c). As expected, larger Re
numbers (bottom row) driven faster blood flow than the small Re
numbers (top row). Velocity skewness [28,29] is observed in the
ICA at each time point, more severe in diastole, (c)–(e), than sys-
tole, (a) and (b). Quantitative measurements of the difference
between diastole and systole periods are shown in Fig. 10 where
streamwise velocity profiles along an estimated center line on each
representative transverse plane, (a)–(f) in Fig. 8(B) at represented
time points during a pulsation with indicated Re numbers in
Fig. 8(A). The solid lines are for the plane below the bifurcation
and dashed lines are for the top branches. It is seen that in the
common carotid artery (CCA) which is the part below the bifurca-
tion and the external carotid artery (ECA, the right branch), veloc-
ity profiles are parabolic for all the time points implying that for
the intensity of pulsation used in this study, blood flow in both
CCA and ECA can be regarded as a Poiseuille flow. Whereas in
ICA, (e) and (g), flow is irregular. For the case of (e) where the
stenosis is located, the velocity profile (green dashed lines) is
irregular with much larger peak value than all other peak values
for all the time points, meaning that high velocity maintains at
plane (e) during the pulsation. The detail velocity contours on
plane (e) at each time point are shown in Fig. 11. While the velocity
value varies with the Re number, the irregularity (skewness) are
more profound during diastole ((d)–(f)).



198 Z. Wang et al. / Computers & Fluids 115 (2015) 192–200
Wall shear stress (WSS) [25] is of great interest from medical
point view as it characterizes the interaction between a blood
flow and inner wall of an artery. We show both anterior and
Fig. 9. Contours of normalized velocity magnitude on representative transverse
planes at represented time points during a pulsation with indicated Re numbers in
Fig. 8(A).

Fig. 10. Streamwise velocity profiles along an estimated center line on each representat
with indicated Re numbers in Fig. 8(A).
posterior views of the WSS distributions on the inner wall of
the carotid artery in Figs. 12 and 13 respectively. The contour
scales are the same for all the time points. Although the stream-
wise velocity at the stenosis significantly varies with Re number
during the pulsation as shown above, the large WSS (velocity gra-
dient) maintains with the same intensity where the stenosis
locates for all the time points. When Re is higher (bottom rows),
the intensive WSS affects larger area in the ICA than low Res (top
rows). This implies that when a stenosis is formed, the inner wall
may be damaged more profoundly than the inner wall of a normal
artery.
4. Discussion and future work

In this work, we perform GPU parallelization and optimization
for VLBM, which was recently developed for solving complex flow
with arbitrary curved boundaries. The advantages of VLBM over
conventional node-based LBM stem from the self-regulation of
the volumetric parameter Pðx; tÞ in the VLBE for particle collision
and streaming. First, the VLBE satisfies mass conservation strictly.
Second, the implementation of VLBM is rather simply after the
solid volume percentages are determined in boundary cells. And
third, no-slip boundary condition is integrated in the streaming
formulation thus significantly enhances the capability of
parallelization. With no intention to produce results with medical
insights, we study a pulsatile blood flow in a patient-specific caro-
tid artery segmented from an anonymous clinical CT image to
evaluate the GPU implementation. Above 30 times speed-up is
achieved thus make it possible to complete a patient-specific com-
putational hemodynamic simulation within clinical accepted time
frame, e.g. less than one hour. Simulations of fluid dynamics and
WSS are presented and known behavior of velocity and WSS dis-
tributions are captured.

Three types of further work are ongoing. First, we are adding the
segmentation part in the GPU platform and further optimizing the
GPU algorithm to further increase the acceleration, targeting to
complete a typical patient-specific computation from image to
quantitative fluid dynamics within 15 min. Second, we are adding
ive transverse plane, (a–f) in Fig. 8(B) at represented time points during a pulsation



Fig. 11. Contours of streamwise velocity on plane (e) in Fig. 8(B) at represented time points during a pulsation with indicated Re numbers in Fig. 8(A).

Fig. 12. (Anterior view) WSS distribution on the inner wall at represented time
points during a pulsation with indicated Re numbers in Fig. 8(A).

Fig. 13. (Posterior view) WSS distribution on the inner wall at represented time
points during a pulsation with indicated Re numbers in Fig. 8(A).

Z. Wang et al. / Computers & Fluids 115 (2015) 192–200 199
one more mesoscale model for deformable structure in the com-
putational platform to mimic the real arteries which are inherently
elastic. Third, we are applying the GPU accelerated computational
tool to perform secondary analysis of existing medical images from
clinic via massive patient-specific computational hemodynamics
aimed to identify unprecedented hemodynamic indicators for
clinical assessment and prediction of fatal cardiovascular diseases
such as stroke and heart attack. Meanwhile, the unified and GPU
accelerated computing platform will enable medical practitioners
to access the quantitative fluid dynamics and WSS information in
diseased arteries simultaneously with CT/MRI imaging promoting
deeper understanding of vascular diseases and laying the ground-
work for future improvements in patient care and clinical decision
making.



200 Z. Wang et al. / Computers & Fluids 115 (2015) 192–200
References

[1] Chen HD, Chen SY, Matthaeus WH. Recovery of the Navier–Stokes equations
using lattice-gas Boltzmann method. Phys Rev A 1992;45:R5339–42.

[2] Benzi R, Succi S, Vergassola M. The lattice Boltzmann-equation—theory and
applications. Phys Rep-Rev Sec Phys Lett 1992;222:145–97.

[3] Qian YH, Dhumieres D, Lallemand P. Lattice Boltzmann model for Navier–
Stokes equation. Europhys Lett 1992;17:479–84.

[4] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid
Mech 1997;30:329–64.

[5] Aidun CK, Clausen JR. Lattice-Boltzmann method for complex flows. Annu Rev
Fluid Mech 2010;42:439–72.

[6] Harris S. An introduction to the theory of the Boltzmann equation. New
York: Holt Rinehart and Winston Inc; 1970.

[7] Bhatnagar PL, Gross EP, Krook M. A model for collisional processes in gases I:
small amplitude processes in charged and in neutral one-component systems.
Phys Rev 1954;94:511–25.

[8] Chapman S, Cowling TG. The mathematical theory of non-uniform gases. 3rd
ed. London: Cambridge University Press; 1970.

[9] He XY, Luo LS. Theory of the lattice Boltzmann method: from the Boltzmann
equation to the lattice Boltzmann equation. Phys Rev E 1997;56:6811–7.

[10] Ye Yu, Li Kenli. Entropic lattice Boltzmann method based high Reynolds
number flow simulation using GUDA on GPU. Comput Fluids 2013;88:241–9.

[11] Myre J, Walsh SDC, Lilja D, Saar MO. Performance analysis of single-phase,
multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on
GPU clusters. Concur Comput Pract Exp 2011;23:332–50.

[12] Zhao Y. Lattice Boltzmann based PDE solver on the GPU. Visual Comput
2007;24:323–33.

[13] Sun X, Wang Z, Chen G. Parallel active contour with lattice Boltzmann scheme
on modern GPU. In: IEEE international conference of image processing; 2012.
p. 1709–12.

[14] Chloe A, Tommaso M, Herve D, et al. Lattice Boltzmann method for fast
patient-specific simulation of liver tumor ablation from CT images. In: MICCAI;
2013. p. 323–30.

[15] Cosmin Nita, Lucian MI, Constantin S. GPU accelerated blood flow computation
using the lattice Boltzmann method. In: High performance extreme computing
conference (HPEC); 2013. p. 1–6.
[16] Stratford K, Pagonabarraga I. Parallel simulation of particle suspensions with
the lattice Boltzman method. Comput Math Appl 2008;55:1585–93.

[17] Tolke J. Implementation of a lattice Boltzmann kernel using the compute
unified device architecture developed by NVIDIA. Comput Visual Sci
2010;13:29–39.

[18] Kuznik F, Obrecht C, Rusaouen G, Roux JJ. LBM based flow simulation using
GPU computing processor. Comput Math Appl 2010;59:2380–92.

[19] Delbosc N, Summers JL, Khan AI, Kapur N, Noakes CJ. Optimized
implementation of the lattice Boltzmann method on a graphics processing
unit towards real-time fluid simulation. Comput Math Appl 2014;67:462–75.

[20] Habich J, Feichtinger C, Kostler H, Hager G, Wellein G. Performance
engineering for the lattice Boltzmann method on GPGPUs: architectural
requirements and performance results. Comput Fluids 2013;80:276–82.

[21] Yu H, Chen R, Wang H, Yuan Z, Zhao Y, An Y, et al. A GPU accelerated lattice
Boltzmann simulation for rotational turbulence. Comput Math Appl
2014;67(2):445–51.

[22] Mark JM, Alistair JR. Memory transfer optimization for a lattice Boltzmann
solver on Kepler architecture Nvidia GPUs. Comput Phys Commun
2014;185:2566–74.

[23] CUDA C Best Practices Guide v5.5. Nvidia; 2013. p. 3–4.
[24] Yu H, Chen X, Wang Z, Deep D, Lima E, Zhao Y, et al. Mass-conserved

volumetric lattice Boltzmann method for complex flows with willfully moving
boundaries. Phys Rev E 2014;89:063304.

[25] Yu H, Wang Z, Zhao Y, et al. Unified mesoscale modeling—from radiological
images to in vivo fluid dynamics in blood arteries. Int J Numer Meth Biomed
Eng 2015. submitted for publication.

[26] Rinaldi P, Dari E, Venere M, Clausse A. A lattice Boltzmann Solver for 3D fluid
simulation on GPU. Simul Model Pract Theory 2012;25:163–71.

[27] Astorino M, Sagredo JB, Quarteroni A. A modular lattice Boltzmann solver for
GPU computing processors. SeMA J 2013;59:53–7.

[28] Vincent PE, Plata AM, Hunt AAE, Weinberg PD, Sherwin SJ. Blood flow in the
rabbit aortic arch and descending thoracic aorta. J R Soc Interface
2011;8:1708–19.

[29] Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T. Unsteady and
three-dimensional simulation of blood flow in the human aortic arch. Trans
ASME 2002;124(8):378–87.

http://refhub.elsevier.com/S0045-7930(15)00113-9/h0005
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0005
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0010
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0010
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0015
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0015
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0020
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0020
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0025
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0025
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0030
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0030
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0035
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0035
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0035
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0040
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0040
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0045
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0045
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0050
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0050
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0055
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0055
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0055
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0060
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0060
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0080
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0080
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0085
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0085
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0085
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0090
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0090
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0095
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0095
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0095
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0100
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0100
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0100
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0105
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0105
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0105
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0110
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0110
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0110
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0120
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0120
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0120
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0125
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0125
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0125
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0130
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0130
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0135
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0135
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0140
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0140
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0140
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0145
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0145
http://refhub.elsevier.com/S0045-7930(15)00113-9/h0145

	GPU acceleration of Volumetric Lattice Boltzmann Method for patient-specific computational hemodynamics
	1 Introduction
	2 Volumetric LBM and GPU parallelization
	2.1 VLBM parallel algorithm
	2.1.1 Collision kernel
	2.1.2 Streaming kernel

	2.2 Memory arrangement

	3 Application study
	4 Discussion and future work
	References


