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In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically
solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly
distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle
distribution function. By introducing a volumetric parameterP(x,y,z,t) defined as the occupation of solid volume
in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation,
P = 1), fluid cell (pure fluid occupation, P = 0), and boundary cell (partial solid and partial fluid, 0 < P < 1).
The formulation of volumetric lattice Boltzmann equations are self-regularized through P and consist of three
parts: (1) collision taking into account the momentum exchange between the willfully moving boundary and the
flow; (2) streaming accompanying a volumetric bounce-back procedure in boundary cells; and (3) boundary-
induced volumetric fluid migration moving the residual fluid particles into the flow domain when the boundary
swipes over a boundary cell toward a solid cell. The MCVLBM strictly satisfies mass conservation and can handle
irregular boundary orientation and motion with respect to the mesh. Validation studies are carried out in four cases.
The first is to simulate fluid dynamics in syringes focusing on how MCVLBM captures the underlying physics
of flow driven by a willfully moving piston. The second and third cases are two-dimensional (2D) peristaltic flow
and three-dimensional (3D) pipe flow, respectively. In each case, we compare the MCVLBM simulation result
with the analytical solution and achieve quantitatively good agreements. The fourth case is to simulate blood flow
in human aortic arteries with a very complicated irregular boundary. We study steady flow in two dimensions and
unsteady flow via the pulsation of the cardiac cycle in three dimensions. In the 2D case, both vector (velocity) and
scalar (pressure) fields are compared to computation results from a well-established Navier-Stokes solver and
reasonably good agreements are obtained. In the 3D case, the unsteady flow pattern and wall shear stress are well
captured at the representative time instants during the pulsation. The validations demonstrate that the MCVLBM
is a relatively simple but reliable computation scheme to deal with static or moving irregular boundaries.
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I. INTRODUCTION

The recent development of the lattice Boltzmann method
(LBM) [1–3] has prompted tremendous advancements in its
capabilities to systematically model and simulate complex
flow properties [4–6]. The well-recognized advantages of
LBM include the capability to model multiphase flow, the
ease in treating complex boundaries, and the suitability to
implement massive parallel computing. The interaction of
a fluid with a rigid or elastic structure [7] is of crucial
significance in engineering, ecological, and biomechanics
systems. Damages associated with flow-induced vibrations [8]
in aircraft wings, bridges, or tall buildings can be catastrophic.
Understanding the mechanisms of fluid-structure interaction
(FSI) between wind and the elastic vibrations of blades is
critical for enhancing the efficiency of wind energy generation
[9]. Mechanical interactions between wind and plant organs or
systems [10] have been a major concern for humankind over
the ages due to the impact on the human living environment.
In biomechanics, correlations between an internal flow and
wall deformation often underlie a vessel’s biological function
or dysfunction [11–14] due to the fact that almost all vessels
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carrying fluids within the body are flexible. In most practical
cases, the interface between fluid and structure is irregular and
moving willfully and/or compliantly.

The LBM solves flow dynamics through prescribed discrete
kinetic equations for time evolution of discrete particle density
distribution functions due to molecular interaction, i.e., the
lattice Boltzmann equation (LBE). The macroscopic flow
properties are the direct results of the moments of these particle
density distribution functions. Mathematically the LBE is a
specially discretized representation of the Boltzmann equation
and it recovers Navier-Stokes (NS) equations up to the second
order of accuracy in space and time in the incompressible
limit [15,16]. Recently, it has been demonstrated that through
a moment expansion procedure, the LBM can be extended
to solve compressible fluid dynamics and complex flow
beyond NS equations [17]. At a fluid-structure interface, the
enforcement of boundary conditions in LBM is conceptually
straightforward [18,19]: a simple bounce-back after fluid parti-
cles hit the structure reverses all particle momentums such that
the nonslip boundary condition is realized; whereas a particle
specular reflection process that reverses the normal momentum
component and maintains the tangential counterpart reflects
the free-slip boundary condition [20].

The conventional LBM is node based. Fluid particles are
sitting at lattice nodes. The particle distribution functions

1539-3755/2014/89(6)/063304(12) 063304-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.063304


YU, CHEN, WANG, DEEP, LIMA, ZHAO, AND TEAGUE PHYSICAL REVIEW E 89, 063304 (2014)

represent the particle density distributions associated with
discrete molecular velocities. In the time evolution, particles
collide at the nodes and then stream from the current
node to the prescribed finite neighboring nodes along
their velocity directions. The well-established LBE with a
Bhatnagar-Gross-Krook (BGK) collision operator is written
as the following [2,3]:

fi(�x + �ei�t,t + �t) = fi(�x,t) + �i(�x,t) (1)

�i(�x,t) = −fi(�x,t) − f
eq
i (�x,t)

τ
, (2)

where �ei is the prescribed discrete molecular velocity in the
ith direction (i = 0,1, . . . ,b) and τ is the single relaxation
time. The time-evolving procedure includes two sequential
processes: (1) a collision during which particles at the located
node interact with each other so as to increase the local
entropy while conserving mass, momentum, and energy
conservation, and (2) a streaming during which the particle
moves to the prescribed neighboring nodes according to their
molecular velocity directions. It has been shown that LBM is
second-order accurate in both space and time [5].

The bounce-back boundary condition and its extensions
to curved boundaries, thermal boundaries, and so on on the
node-based description have generally been found to work
well [20–31] for fixed rigid boundaries. Ladd was the first
to develop a moving boundary scheme [32], specifically for
suspension flows. The method introduces an additional term
along the bounce-back direction to account for the momentum
exchange between the fluid and moving solid boundary. Later,
Bouzidi et al. [33] proposed an LBE boundary condition
for moving boundaries by combination of the bounce-back
scheme and spatial interpolations of first or second order.
Recently, Yin and Zhang [34] further improved the bounce-
back scheme with velocity interpolation/extrapolation for
moving boundaries with more complicated geometries. Instead
of interpolating boundary density distribution functions as
in Bouzidi’s boundary condition [33], they evaluated the
velocity at the midpoint of the boundary lattice link via
interpolation or extrapolation, depending on the orientation
of the local boundary, from the desired boundary velocity
at the boundary node and the fluid velocity at a fluid node
near the boundary. The bases of these schemes to deal with
the curved boundary that cuts the lattice off nodes are either
point-wise particle density distribution interpolation or particle
density distribution transformation into local curve-linear
coordinate systems. As a result, most of these schemes do
not have exact conservations of mass and momentum and
might fail to maintain the detailed balance among particle
density distributions. For arbitrary curved structures, the
resulting numerical artifacts may contaminate the physics
of fluid dynamics [25–27]. Moreover, the realization of
high-order interpolations involving nonlocal information is
difficult and inefficient in general complex flows. Aidun
et al. [35] have tried to modify Ladd’s method to formulate
an impermeable boundary treatment with no mass exchange
across the boundary, while taking into account the momentum
exchange between the fluid and the solid particle. However,
like the Ladd approach, mass is only strictly conserved

when solid boundaries cover and uncover equal fluid volumes
simultaneously. The diffusive bounce-back condition [36,37]
is another viewpoint to realize no-slip boundary condition on
the lattice Boltzmann platform based on kinetic theory. Instead
of imposing the no-slip condition, the diffusive bounce-
back condition [36] specifies a boundary condition which
ensures positive-definite populations with the same concept of
diffusive boundary condition while retaining the simplicity of
bounce-back technique. A recently developed hybrid diffusive-
bounce-back boundary condition [37] achieved considerable
enhancement in the accuracy of the unsteady force calculation
at moderate and high Reynolds numbers. Regardless of the
successful applications of node-based LBM for suspension
flows where the moving structures are generally rigid and
regular such as spheres. When the structure is arbitrary in
three dimensions, the required interpolation or extrapolation
in node-based LBM becomes rather challenging.

The volumetric concept of LBM was specifically intro-
duced for arbitrary moving boundaries [18]. In fact, the
continuous bounce-back method Verberg and Ladd developed
[38,39] is a type of volumetric representation. In volumetric
lattice Boltzmann representation, fluid particles are uniformly
distributed in each lattice cell, instead of sitting at the grid
nodes in conventional LBM. The interface, i.e., the boundary
of the fluid, where the structure cuts the flow field is determined
by the occupation of solid percentage volume in each cell.
The solid percentage in a cell can achieve better control of
various hydrodynamic flux in or out of the cell and guarantee
the exact conservation of mass and momentum in the fluid
domain. The numerical artifacts in boundary discretization and
interpolation as employed in node-based LBM can be greatly
suppressed [19,40]. There have been efforts to extend volu-
metric representation in LBM for arbitrary curved boundaries.
An efficient fractional volumetric scheme [41] combining
the mass-conserved volumetric lattice Boltzmann method
(MCVLBM) [19] with a fractional propagation scheme [42]
was proposed to improve the stability of the thermal LBM
while keeping the accuracy and simplicity of the original
LBM. A volumetric boundary condition [18] was extended
[43] by introducing a local velocity-gradient-based correction
to the original evenly bounced-back particles and successfully
simulated flow past an impulsively started circular cylinder at
low and moderate Reynolds numbers. Recently, the boundary
condition was further developed to a generalized volumetric
boundary algorithm [44] and validated by vortex shedding
simulation from a circular cylinder by the same group.

In this paper, we develop an MCVLBM for willfully
moving arbitrary boundaries in FSI systems. Here “willfully
moving” means the boundary moves with prior defined
velocity, whereas “compliantly moving” means the boundary
is driven to move by the fluid. The MCVLBM consists of
three operations. First, the generalized collision in which the
momentum exchange between the fluid and moving boundary
(structure) are accounted for. Second, generalized streaming
including a volumetric bounce-back treatment where fluid and
the structure interact. Third, which is new to conventional
node-based LBM, boundary-induced migration to distribute
the residual fluid into the adjacent fluid region as the boundary
swipes the fluid domain. The third operation is introduced
to ensures mass conservation in the fluid domain when the
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boundary moves. This approach can handle arbitrary boundary
orientation and motion with respect to the mesh. To distinguish
fluid, solid, and boundary lattice cells, we introduce a param-
eter P(�x,t) to determine the composition ratio of solid versus
liquid in each cell. The volumetric lattice Boltzmann equations
are formulated based on P(�x,t) for all three operations, thus
the implementation of the MCVLBM is significantly simpler
comparing the existing LBM schemes for moving arbitrary
boundaries. To validate the proposed MCVLBM, we carry
out four application studies: fluid dynamics in syringes where
fluid is driven by a moving piston, two-dimensional (2D)
peristaltic flow driven by wall propagation, three-dimensional
(3D) pipe flow, and 2D and 3D blood flow in patient-specific
normal aorta. Quantitative comparisons between MCVLBM
and analytical solutions and qualitative comparisons between
MCVLBM and an established NS solver are made, respec-
tively. Satisfactory agreements are achieved.

The remainder of the paper is organized as follows.
Section II develops the mathematical formulation of
MCVLBM including three processes: collision, streaming, and
migration. Four validation studies and quantitative and qual-
itative comparisons are presented in Sec. III. Finally Sec. IV
provides a summary discussion and concludes the paper.

II. MATHEMATICAL FORMULATION OF
MASS-CONSERVED VOLUMETRIC LATTICE

BOLTZMANN METHOD

In general, the LBM consists of a finite discrete set of par-
ticle velocities �ei (i = 0, . . . ,b), defined on a D-dimensional
lattice �, as illustrated in Fig. 1 for the D2Q9 lattice model.
Such a lattice consists of equally shaped cells and each cell
occupies a spatial domain D(�x) with volume �v = (�lD).
In conventional LBM, particles are sitting at lattice nodes
�x, see Fig. 1(a). The function fi(�x,t) represents the particle
density distribution associated with the velocity �ei . During
each elementary time step �t , particles at node �x collide and
then stream to the neighboring nodes �x + �ei�t(i = 1, . . . ,b)
along their velocity directions.

Alternatively, we employ the volumetric representation in
which particles are considered to be uniformly distributed in
lattice cells as shown in Fig. 1(b). If a flow involves moving
boundaries, the fluid domain will be continuously changing as
the boundaries move across the fluid domain. Fluid particles
distributed within cells where the boundary is located will be

FIG. 1. Illustration of (a) node-based lattice and (b) volume-based
lattice on D2Q9 lattice model.

FIG. 2. (Color online) Illustration of solid (P=1), fluid (P= 0),
and boundary (0 < P < 1) cells in a volumetric domain where P is
the portion of the solid in a lattice cell.

thus covering or uncovering. In MCVLBM, we introduce the
function ni(�x,t) representing the particle distribution function
with velocity �ei occupying a lattice cell �x at time t and deal
with the time evolution of the particle distribution function
analogy to LBE, i.e., Eq. (1)

ni(�x + �ei� t,t + �t) = ni(�x,t) + �i(�x,t), (3)

where �i(�x,t) is a collision term related to the change of the
particle distribution function due to molecular motion and the
momentum exchange between flow and the moving boundary.
For a fluid cell, particle distribution function ni and particle
density distribution function fi have the same value if the
volume of the cell �V is taken to be unity.

Cells adjacent to the moving boundary may be occupied
entirely by either a solid or fluid, while others may have partial
fluid and partial solid volumes. In the entire domain, cells can
be categorized through the occupation of solid volume in the
cell, defined by P(�x,t) ≡ �Vs(�x,t)/�V . Figure 2 illustrates
three distinct cell types adjacent to a boundary: fluid cell (P =
0, fluid only), solid cell (P = 1, solid only), and boundary
cell (0 < P < 1, partially solid and partially fluid,). When the
boundary moves, cell type may change in time along with the
volume fractions of the solid in the cell. Some cells are being
covered by the moving boundary while some other cells are
being uncovered. A boundary cell may become a solid cell or
fluid cell depending on the moving direction of the boundary.
The fluid volume portion of the cell is therefore

�Vf (�x,t) = [1 − P(�x,t)]�V. (4)

It is noted that the relation between the particle density
distribution function fi in traditional node-based LBM and
the particle distribution function ni in the volumetric LBM is
as follows:

fi(�x,t) = ni(�x,t)/�Vf (�x,t). (5)

With the described volumetric representation we construct
the mass-conserved volumetric lattice Boltzmann equation,
i.e., Eq. (3), through the following three processes, which
uniquely takes into account the moving arbitrary boundary.

A. Collision including willfully moving boundary

We first write the right-hand side of Eq. (3) as

n′
i(�x,t) = ni(�x,t) + �i(�x,t), (6)
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where n′
i(�x,t) represents the “postcollision” particle distribu-

tion function. The most convenient choice for �i(�x,t) is the
BGK model with a single time scale of relaxation

�i(�x,t) = − 1

τ
[ni(�x,t) − n

eq
i (�x,t)], (7)

where the equilibrium particle distribution function n
eq
i (�x, t)

is formulated as

n
eq
i (�x,t) = Nωi

[
1 + �ei · �U

c2
s

+ (�ei · �U )2

2c4
s

−
�U · �U
2c2

s

]
, (8)

where ωi is an appropriate weight of the ith velocity direction,
cs is the sound speed, and N (�x,t) = ∑

ni(�x,t).
To take into account the momentum change from a moving

boundary, we replace the macroscopic fluid velocity �u by
�U = �u + δ�u (according to the macroscopic physical collision
it processes empirically) in the formulation of equilibrium
particle distribution function, where

δ�u = τP(�x,t)�ub(�x,t)

+ τ
∑b

j=1 P(�x + �ej ,t)nj (�x,t)�ub(�x + �ej ,t)

N (�x,t)
, (9)

with �ub(�x,t) being the average velocity of the boundary in cell
�x at time t . This equation was constructed on an empirical
basis. The first part of the right-hand side is the change of
fluid velocity due to the moving of the solid portion in the
current cell and the second part is the bounced-back particles
which are streaming to the neighboring cells. The bounce-back
particles carry the amount of momentum changes due to the
moving boundaries that are proportional to the interaction time
and relative fraction of the bounced-back particles. Equation
(9) accounts for the momentum transfer induced by boundary
movement, but no extra mass is introduced. From Eqs. (6)
to (9), one can obtain the momentum in a cell �x after col-
lision N �u + PN �ub + ∑b

j=1 P(�x + �ej ,t)nj (�x,t)�ub(�x + �ej ,t).
The terms related to �ub identify the momentum transfer
between the fluid and solid when the latter is moving. It is noted
that either interior fluid cells (P = 0) or stationary boundary
(�ub ≡ 0) results in δ�u = 0 in Eq. (9). In these two cases, Eq. (6)
is identical to the node-based LBE for collision operation.

B. Streaming including bounce-back boundary condition

Streaming means particles moving from the current cell to
neighboring cells. Since a boundary cell is generally occupied
partially by fluid, only an appropriate volume fraction of
fluid particles will be able to stream to its neighboring cell,
determined by the fluid fraction of the receiving cell. The
volume fraction streaming is illustrated in Fig. 3. Considering
ni particles stream from cell A to cell B in the ith direction,
assume the solid fraction of cell B is PB , the receiving of
these particles depends on the fluid fraction of cell B, i.e.,
(1 − PB)ni , and PBni particles will be bounced back to cell
A in the opposite direction. If cell B is a fluid cell with
PB = 0, all ni will stream in and there will be no bounce-back,
thus the streaming process is identical to the node-based
LBE for the streaming operation. As a result, particles in
cell �x at time t + �t after the streaming operation are from
two sources: (i) streaming from its upwind neighboring cells

FIG. 3. (Color online) Illustration of volume fraction streaming:
considering ni particles stream from cell A to cell B in the ith
direction. Assuming the solid fraction of cell B is PB , the receiving of
these particles depends on the fluid fraction of cell B, i.e., (1 − PB )ni ,
and PBni particles will be bounced back to cell A in the opposite
direction.

[1 − P(�x,t)]n′
i(�x − �eiΔt,t), and (ii) bounce-back from the

downwind cells P(�x + �ei∗Δt,t)n′
i∗(�x,t), as shown in Eq. (10)

below

n′′
i (�x,t + �t) = [1 − P(�x,t)]n′

i(�x − �eiΔt,t)

+P(�x + �ei∗Δt,t)n′
i∗(�x,t), (10)

where i∗ corresponds to the particle velocity direction opposite
to the ith direction. That is �ei∗ = −�ei . This modified streaming
process ensures that particles are advected or reflected to their
appropriate places in the fluid domain but does not introduce
any extra mass. When P(�x,t) = 0, the above equation reduces
to node-based LB form where only upwind streaming occurs.

C. Boundary-induced migration of particles

The generalized streaming process including the bounce-
back of particles described above is not sufficient to ensure
mass conservation in the fluid domain. As a boundary crosses a
boundary cell, the fraction of solid volume in the cell increases
until it eventually becomes a solid cell, e.g., the dashed cells
in Fig. 4. At the instant that the boundary cell becomes a solid
cell, there might be fluid particles left behind. For instance,

FIG. 4. (Color online) Boundary cells (dashed) at time t become
solid cells at t + �t due to the moving of the boundary.
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the rest particles that are not part of the streaming process will
be stayed, and a few nonrest particles which may remain from
the streaming process as the boundary moves through the cell
according to Eq. (10); these fluid particles must be migrated
into the fluid domain. The migration may be formulated as
follows:

ni(�x,t + �t) = [1 − P ′(�x,t + �t)]n′′
i (�x,t + �t)

+
b∑

j=1

n∗
i,j (�x − �eiΔt,t + �t), (11)

where i = 0,1, . . . ,b and

n∗
i,j (�x,t + �t) = P ′(�x,t + �t)n′′

i (�x,t + �t)

× [1 − P ′(�x + �ejΔt,t)]n′
j (�x,t)/

×
b∑

k=1

[1 − P ′(�x + �ekΔt,t)]n′
k(�x,t). (12)

In the above, P ′ is the fraction of particles in cell �x. When
the boundary is covering a boundary cell, we force P ′ part
(P ′ = 0 for the fluid cell,P ′ = 1 for the solid cell, and 0<P ′ <1
for the surface cell) of the total particles in cell �x, the second
term at the right -hand side of Eq. (11) after streaming migrates
to its neighboring cells according to the particle distribution
specified by Eq. (12). Although the variation of P ′ from
time step to time step is not unique, it must be modeled
in such a way as to guarantee that no particles remain in
the cell when it becomes a purely solid cell, i.e., finally the
surface cell becomes a purely solid cell, namely, P(�x,t) = 1.
Equation (11) insures all particles remaining in cell �x migrating
out, which make mass conserve in the flow field.

In our analysis we model P ′ as

P ′ = Pα/[P + a(1 − P)], (13)

with α = 1 for P(�x,t) − P(�x,t − �t) > 0, and α = 0 for
P(�x,t) − P(�x,t − �t) � 0 so that the boundary-induced par-
ticle migration only operates when solid fractions in boundary
cells are increasing in time. The parameter a is introduced to
adjust the rate of the particle migration when the boundary cuts
into the flow domain corresponding to α = 1 in Eq. (13). It is
noted that Eq. (13) is an empirical model. Instead of migrating
the residual particles out at the last time step when a boundary
cell becomes a solid cell, the introduction of P ′ allows particle
migration at time steps when the fluid domain is covered. As
shown in Fig. 5, when a increases, more fluid particles are
migrated when P closes to 1, whereas small a results in early
migration before the boundary cells become a solid cell. This
model is effective to reduce pressure fluctuation when the row
or column in the fluid domain is uniform, as discussed below.

The resulting density, velocity, and pressure are obtained as
follows:

ρ(�x,t) =
∑

ni(�x,t)/[1 − P(�x,t)], (14)

�u(�x,t) =
∑

eini(�x,t)/
∑

ni(�x,t), (15)

and

p(�x,t) − p0 = c2
s [ρ(�x,t) − ρ0], (16)

FIG. 5. Parameterizations of P ′ by P for different a’s. P ′ =
P/[P + a(1 − P)].

where p0 and ρ0(=1) are reference pressure and density
respectively.

III. APPLICATION STUDIES FOR VALIDATION

We perform four application studies to validate MCVLBM:
flow in a syringe and peristaltic flow for a moving boundary
(2D), pipe flow for a curved boundary (3D), and blood flow
in a human aorta for an arbitrary boundary in 2D and 3D,
respectively. For the 2D cases, we use the two-dimensional
nine-velocity (D2Q9) lattice model [2] with b = 8, see
Fig. 1(b). The discrete particle velocities �ei and the weighting
factor ωi (i = 0,1,2, . . . ,8) are �ei = (0,0)

√
3cs and ωi =

4/9 for i = 0, �ei = (cos[(i − 1)π/2],sin[(i − 1)π/2])
√

3cs ,
and ωi = 1/9 for i = 1,2,3,4, and �ei = (cos[(i − 5)π/2 +
π/4],sin[(i − 5)π/2 + π/4])

√
3cs and ωi = 1/36 for i =

5,6,7,8. Whereas for the 3D case, we use the three-
dimensional nineteen-velocity (D3Q19) lattice model with
b = 18 [42]. The discrete particle velocities �ei and the weight-
ing factor ωi (i = 0,1,2, . . . ,18) are �ei = (0,0)

√
3cs and

ωi = 1/3 for i = 0, �ei = (±1,0,0)
√

3cs,(0, ±1,0)
√

3cs,(0,0,

±1)
√

3cs and ωi = 1/18 for i = 1 − 6, and �ei = (±1,

±1,0)
√

3cs,(±1,0, ±1)
√

3cs,(0, ±1, ±1)
√

3cs , and ωi =
1/36 for i = 7−18. In both dimensions, cs = 1√

3
in Eq. (8).

In all cases the Mach numbers are less than 0.03.

A. Fluid dynamics in syringes

The schematic of a syringe geometry together with its
nomenclature is illustrated in Fig. 6. The piston serves as a

 

 D 

L l 

d 

FIG. 6. Schematics of a syringe geometry and nomenclature. The
flow is driven by the piston moving with velocity �ub.
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FIG. 7. Time evolution of volume flux in three syringes with sizes
of 30, 40, and 50 cc (1 cc = 1 mL = 1000 mm3).

moving boundary with a constant velocity �ub. The flow is
driven by the piston from left to right and discharges at the
narrowed exit on the right. When the piston moves, a column
of cells is cut simultaneously. In this case, the Reynolds number
is relatively small and the flow is laminar. We apply pressure
(density) and the velocity flow boundary condition [24] at the
outlet where density is specified to be a constant ρ0 and the exit
velocity vectors are forced to be parallel. In addition, there is
a no-slip boundary at the top and bottom walls. The boundary
condition at the inner piston is automatically taken care of
in the collision, Eqs. (8) and (9) for a moving boundary and
streaming in Eq. (10) for the no-slip boundary condition.

To check the mass conservation when the piston covers
the boundary cells, we first close the exit and evaluate the
total fluid mass in the flow domain when the piston moves.
It is confirmed that the mass is strictly conserved. The fluid
volume ejected at the exit should balance the fluid volume
driven forward by the piston at each time step. Figure 7 shows
the time evolution of volume flux in three syringes with sizes
30, 40, and 50 cc, 1 cc = 1 mL = 1000 mm3, respectively. The
three sizes are obtained through coherent adjustments of length
L and diameter D for target syringe size V = π (D/2)2L. Each
horizontal dashed line corresponds to the volume flux driven by
the piston to push the fluid forward for the given syringe size.
It is seen that in each syringe the volume flux at the piston side
and the syringe exit are balanced after the flow becomes steady,
which again demonstrates the mass conservation of the fluid.
The existence of an unsteady adjustment period in each syringe
right after the piston motion is initiated is observed. This initial
adjustment period is to be expected and does not violate mass
conservation. It is due to the fact that the LBM is a weakly
compressible fluid solver where mass density fluctuations in
the fluid domain creates compressible sound waves that bring
the system to a nearly incompressible equilibrium state. The
vertical solid lines indicate the time when the flow reaches a
steady state in the syringes, respectively. The time Ts depends
on the syringe size, the larger the size of the syringe, the
longer Ts . Close examinations show that Ts is linear to the

Syringe Size (cc)

T
s(

s)

10 20 30 40 50

300

400

500

600

700

FIG. 8. Linearity between the time to reach steady state and
syringe size.

size of the syringe as shown in Fig. 8. Such an adjustment
time is somehow real in nursing practice because the same
linear relation was observed in experimental measurements
[45]. This is due to the fact that any fluid is compressible,
more or less.

Figure 9 shows the streamline distribution in a syringe at a
time when the aspect ratio of length to diameter is sufficiently
large and thus fully developed flow between the piston and
syringe exit can be reached. It is seen that the velocity profile
in the center of the syringe is close to parabolic, while deviating
from parabolic near the piston and at the exit. The transition
in the flow pattern in these two regions compares well to
the calculation by Watson et al. [47] for an axisymmetric
syringe flow using a finite difference method. The small eddies
observed in the corners are called Moffatt-type eddies [46],
which were not detected in the corresponding axisymmetric
simulations since the strengths of the eddies were not strong
enough, as Watson indicated.

Localized spurious fluctuations in density, and therefore
in pressure since p = c2

s ρ in LBM, are observed when
the moving boundary cross a boundary cell. This periodic
discontinuity is due to the migration substep formulated as
Eq. (4). Figure 10 shows the time evolution of the relative
density difference, defined as �ρ = |ρ(�x,t) − ρ0|/ρ0, in the
boundary cell at the center. The spurious fluctuation appears
periodically due to the fact that the piston crosses all the
boundary cells aligned in the vertical direction simultaneously.

FIG. 9. Streamline distribution in a 25-cc syringe. The corner
eddies are called Moffatt-type eddies [46].

063304-6



MASS-CONSERVED VOLUMETRIC LATTICE BOLTZMANN . . . PHYSICAL REVIEW E 89, 063304 (2014)

FIG. 10. Time evolution of density (pressure) fluctuation
1000�ρ(=|ρ(t) − ρ0|/ρ0) in the center boundary cell when a = 500
(solid line), a = 1250 (dashed line), and a = 2000 (dotted line).
δ measures the drop of 1000�ρ when the moving boundary cuts
through a boundary cell.

If we use δ to measure the drop of 1000�ρ, we find that δ can be
dramatically reduced by adjusting the parameter a in Eq. (13).
The fluctuation level is large when a = 500 (solid line). It
drops by more than half when a increases to 1250 (dashed
line). When a = 2000 (dotted line), the spurious fluctuation is
literally removed. In Fig. 11 we show the density fluctuation
levels in the boundary cell b, the first and second fluid cells
b + 1 and b + 2, respectively, as a function of parameter a.
It is seen that the spurious density (pressure) fluctuation also
affects the flow field adjacent to the moving boundary, but
can be suppressed dramatically by increasing parameter a. It
should be pointed out that the adjustment of a of Eq. (13)
is empirical to adjust the paretical migration rate when the
boundary is cutting through a boundary cell. When the flow
domain is arbitrary, the paretical migration varies in space and
time, thus the spurious density fluctuation is expected to be
much less insignificant than the case being discussed.

FIG. 11. The dependency of the periodic density (pressure) drop
δ on parameter a. Three measured cells are the boundary cell b and
two next fluid cells b + 1 and b + 2, respectively, on the center line.

FIG. 12. Geometry and nomenclature for a 2D peristaltic flow.

B. 2D peristaltic flow and 3D pipe flow with analytical solution

In this section, we apply the MCVLBM to 2D peristaltic
flow and 3D pipe flow, respectively. Quantitative comparisons
with the analytical solutions are made for validation of
MCVLBM.

The geometric configuration and nomenclature for a 2D
peristaltic flow is shown in Fig. 12. The peristaltic walls are
sinusoidal and symmetric to the centerline of the chancel.
A transverse wave of deformation alternately contracts and
expands the wall position as it progresses with a constant
speed c in the horizontal direction. The shape of the peristaltic
wall is measured as

h(x,t) = ε + A cos [2π (x − ct)/λ], (17)

where λ, ε, and A are the wavelength, the half width of the
channel, and the amplitude of the wall deformation. The wall
motion is constrained to be in the vertical direction whereas the
wave propagates horizontally. The dimensionless time-mean
volume flow at a cross section located at x can be obtained via
an integral over one full period of peristalsis

�(x) = 1

εcT

∫ T

0

∫ h

0
u(y,t)dydt, (18)

where T = λ/c is the period. Shapiro et al. [48] and Jaffrin
and Shapiro [49] derived many results for the case where both
Re and ε/λ were negligible. In the case of no imposed pressure
gradient (referred to as “free pumping” because there is no flow
in the absence of wall motion), � can be given as a function
of amplitude ratio φ = A/ε

� = 3φ2/(2 + φ2). (19)

We select ε = 0.005 cm, c = 0.8 cm/s, λ = 0.4/π cm, and
ν = 0.02 cm2/s thus ε/λ = π/80 and Re = (εc)(ε/λ)/ν =
π/400 are small enough to be considered in the negligible
inertia and infinite wavelength limit. The relaxation time is set
to 0.95. A periodic boundary condition is imposed at the inlet
and exit. The bounce-back boundary condition for rigid walls
has been included in Eq. (10) for the streaming process. Using
φ as the independent variable by changing A from 0.0005 to
0.005 cm, we obtain the MCVLBM simulation results which
are nearly identical to the the analytical prediction as shown
in Fig. 13. Figure 14(a) shows the pressure contours and the
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FIG. 13. Comparison of MCVLBM vs. analytical solution: Di-
mensionless time-mean volume flow rate as a function of amplitude
ratio � = A/ε. Re = π/400 and ε/λ = π/80.

streamlines over contours of velocity magnitude are shown in
Fig. 14(b) for φ = 0.25.

The geometry and nomenclature for a 3D pipe flow is
portrayed in Fig. 15. The flow is driven by a constant pressure
gradient G = −dp/dx along the y direction. A periodic
boundary is applied at the inlet and outlet and no-slip boundary
on the walls. To compare to the analytical solution of Hagen-

FIG. 14. (Color online) (a) Contour of pressure. The colors of
the scale represent contours of gauge pressure normalized by μc/ε.
(b) Streamlines of velocity field over contours of velocity magnitude.

FIG. 15. Geometry and nomenclature for a 3D pipe flow. The
parabolic velocity profile corresponds to the analytical solution of
Hagen-Poiseuille flow [50]. umax = G/(4μ).

Poiseuille flow [50], we set L = 0.01 m, R = 0.008 m, μ =
3e − 3 kg/(ms), and G = 1.2e − 9. The Reynolds number,
defined as Re = (2R)umax/ν, is about 5e − 4. When in the
steady state, the parabolic velocity profile is expressed as
u(r) = G/(4μ)(R2 − r2) where r = √

x2 + z2. We compare
the MCVLBM simulation result with the analytical solution
in Fig. 16 and both velocity profiles are nearly identical.

C. Blood flow in a human normal aorta

For the validation of MCVLBM for arbitrary geometry, we
simulate blood flow in a human aorta in two dimensions and
three dimensions, respectively. The 2D geometry was digitized
from a picture of a human aorta processed from a CT scan
(Fig. 17). Here we do not consider the wall elasticity for the
purpose to focus on the validation of VLBM for arbitrary
geometry. The parameters used in the 2D case are listed in
Table I. The blood is driven to enter the inlet upward at the
bottom and exits through one major outlet at the bottom and
two minor outlets at the top. Initially, the velocity field is set
to �u = 0 everywhere in the computational domain except at
the inlet where �u = �ub. The initial pressure field is uniform at
1.0(atm). We apply for bounce-back including driving velocity
�ub [51] at the inlet. In each inlet cell, n1, n5, and n8 are unknown
and can be defined from

ni = ni∗ − 6ωi∗Nb �ub · �ei∗, (20)

where i∗ is the opposite direction of i. Thus n1, n5, and n8 are
determined by the bounce-back of n2, n7, and n6 [see Fig. 1(b)]
plus driving term. The fully developed condition is applied at
the three outlets.

FIG. 16. Comparision of MCVLBM vs. the analytical solution:
parabolic velocity profile of Hagen-Poiseuille flow [50].
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FIG. 17. (Color online) A 3D aorta artery imaged from a human
being.

Mass conservation is confirmed through the comparisons
of mass fluxes at the inlet and the total amount of mass flux
at three exits, similar to the results obtained in Fig. 7. It is
found that around 88% of blood flows out at the major exit
while the remaining 12% goes out through the minor exits.
The velocity vector and streamline fields from MCVLBM
simulation are shown in Fig. 18. The flow has well-organized
velocity profiles for the defined velocity in Table I, implying
that in a normal aorta with normal driven velocity, blood
flow is laminar. Due to the geometry of the minor outlets
at the top, there exist vortices at the corners where the blood
starts to exit although the velocity magnitudes of them are
small. To achieve quantitative validation, we run the same
case using the prevailing commercial software ANSYS-FLUENT

with steady and laminar options. The comparisons of velocity
magnitude and pressure of MCVLBM versus ANYSYS-FLUENT

are shown in Figs. 19 and 20, respectively. Quantitatively good
agreements of the contours demonstrate that MCVLBM has
well captured the fluid dynamics of the blood flow in the aorta.

The 3D case is part of our ongoing medical-related research
project to study the alterations in shear stress and flow
patterns to unveil the development of atherosclerotic plaque
and embolic phenomena in human arteries including aortic,
carotid, and renal arteries. We have developed a unified
computing platform which integrates anatomical-structure

TABLE I. Aorta dimension and blood properties.

Height Length Blood viscosity Inlet velocity Inlet pressure
(m) (m) (Pa · s) (m/s) (atm)

3.18e-2 2.5e-2 3.5e-3 1.0 1.0

(b)(a)(a)

FIG. 18. (a) Velocity vector field. (b) Velocity streamlines.

extraction from radiological CT and MRI images and nu-
merical simulation in one computation setup using the LBM
[52]. The LBM successively solves a level set equation for
image segmentation and NS equations for fluid dynamics,
thus no mesh reconstruction is needed. The patient-specific
vessel geometry, volumetric ratio of solid versus fluid, and
the orientation of the boundary obtained in the process of
segmentation seamlessly feed to the MCVLBM simulation.
Considering the nature of blood flow, we use an ultrasound
image of the same patient to extract a pulsatile velocity profile
for the inlet boundary condition. At each time instant, the
driven velocity is fed at the inlet with a parabolic shape with
the maximum velocity equal to the corresponding velocity in
the pulsation. We study the hemodynamic features with and
without stenosis, aiming to discover hemodynamic indicators
to predict the rupture risk of atherosclerotic plaques. Such
hemodynamic indicators are currently absent in medical
practice. The validation of the simulation is done through a
comparison of velocity profiles from MCVLBM simulation
and recorded wave by duplex ultrasound.

Here we study hemodynamics in a normal aortic artery
segmented from a recorded CT dicom data of an anonymous
patient during a clinical visit. The pulsatile velocity profile

(a)

Velocity Magnitude (m/s)

2.4
2
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0 (b)

FIG. 19. Quantitative comparison of velocity magnitude contour.
(a) MCVLBM. (b) ANSYS-FLUENT.

063304-9



YU, CHEN, WANG, DEEP, LIMA, ZHAO, AND TEAGUE PHYSICAL REVIEW E 89, 063304 (2014)

(a)

Pressure (Pa)
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1600
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1000
700
400
100

-200
-500 (b)

FIG. 20. Quantitative comparison of gauge pressure contour.
(a) MCVLBM. (b) ANSYS-FLUENT.

Uin(t) (Fig. 21) is generic and has been adapted to fit a direct
numerical simulation. The density ρ, kinetic viscosity ν, and
the boundary conditions are the same as in the 2D case. The
height and inlet diameter of the aorta are H = 0.087(m) and
D = 0.023(m), respectively. The Reynolds number is defined
by Re = UinD/ν. Figure 22 shows the velocity fields at six
representative time instants corresponding to (a) Re = 419,
(b) Re = 607, (c) Re = 419, (d) Re = 0.34, (e) Re = 229,
and (f) Re = 81, respectively, during the cardiac pulsation. The
velocity magnitude is calculated from |V | =

√
u2

x + u2
y + u2

z .
The contour level of the velocity magnitude in each field
is appropriately scheduled, thus the flow pattern can be
visualized. It is seen that the peak values of |V | in different
time instants are closely related to the inlet velocity value.
The large velocity field corresponds to large inlet velocity and
vice versa. In each field, velocity is larger in the descending
aorta (left) than the ascending aorta (right). Meanwhile,

FIG. 21. Pulsatile velocity profile driving blood flow at the inlet.
The Reynolds number is defined as Re = UinD/ν.

FIG. 22. (Color online) Contours of velocity magnitude on
planes in vertical direction of six representative time points during
pulsation marked in Fig. 21. (a) Re = 419, (b) Re = 607, (c) Re =
419, (d) Re = 0.34, (e) Re = 229, and (f) Re = 81.

velocity skewness, implying the deviation of the velocity
profile from the parabolic shape, is clearly captured on the
planes in the descending part due to the curvature of the
branch at the top part. Fields (a) and (c) have the same
Re numbers, but in the acceleration and deceleration stage,
respectively. Although the Re numbers are the same, the
skewness is seen as more profound in the deceleration than the
acceleration.

Wall shear stress (WSS) acting on the inner layer of the
artery is the force per unit area that is exerted by a moving
viscous fluid on the artery. Here, we use Greek indexes to
denote the spatial coordinates. The summation over any pair
of identical Greek indexes is assumed. The local stress tensor
for the fluid is

Tαβ = −pδαβ + 2μSαβ, (21)

where δαβ is the Kronecker symbol and Sαβ is the strain rate
tensor. In LBM, the strain rate tensor can be calculated from
the nonequilibrium particle density distribution functions [53].
The formulation of Sαβ in MCVLBM is as follows:

Sαβ = − 1

2Nτc2
s

b∑
i

�eiα�eiβ

(
ni − n

eq
i

)
, (22)

where α = 1,2,3 and β = 1,2,3 correspond to nine compo-
nents. The WSS vector, sometimes also called the traction
vector, lies in the local tangent plane. It is computed by
subtracting the normal component

WSSα = Tαβχβ − (χβTγβχγ )χα, (23)
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FIG. 23. (Color online) Distribution of wall shear stress on the
artery of six representative time instants during the pulsation marked
in Fig. 21. (a) Re = 419, (b) Re = 607, (c) Re = 419, (d) Re = 0.34,
(e) Re = 229, and (f) Re = 81.

where the vector �χ indicates the normal direction of the local
tangent plane.

The WSS magnitude on the inner artery at the representative
time instants during the cardiac cycle are shown in Fig. 23. In
general the WSS is much larger during systole Figs. 23(a) to
23(c)] than the diastole [Figs. 23(d) to 23(f)] of the heart
beating. The WSS is intensive in the arch area over the
ascending and descending parts. The maximum WSSs appears
at the roots of the outflow branches during systole. The velocity
skewness and WSS intensity we capture are in good agreement
with an experimental study [54].

IV. SUMMARY AND FURTHER WORK

We have developed a mass-conserved lattice Boltzmann
algorithm for willfully moving arbitrary boundaries based on
a volumetric representation. In the MCVLBM, the simulation
is on lattice cells characterized by the percentage of solid
volume over the total cell volume thus categorizing the fluid

cell, solid cell, and boundary cell in the whole domain.
Momentum exchange at the boundary cells is incorporated
into a collision operator to account for the force applied
between the fluid and moving solid boundary, and volumetric
bounce-back is applied in the streaming implementation based
on the percentage of fluid and solid in neighboring cells.
Boundary-induced migration is introduced to redistribute mass
as the solid boundary crosses the fluid domain. This is a
new and essential action to ensure mass conservation with
arbitrarily moving solid boundaries. Unlike the node-based
LBM boundary treatments, the MCVLBM satisfies mass
conservation at all times. The scheme is independent of mesh
orientation and position with respect to the solid surface.
Four validation simulations characterizing a willfully moving
boundary but regular geometry, complex geometry but fixed
boundary in both two and three dimensions are performed.
Nearly identical results to analytical solutions in 2D peristaltic
flow and 3D pipe flow are achieved. The velocity and pressure
fields at a steady state in a human aorta are compared to
those from well-established commercial CFD software and the
agreement is reasonably well. Due to the self-regularized LBM
equations for collision, streaming, and boundary-induced
migration through parameter P(�x,t), the implementation of
MCVLBM for the arbitrary version is rather simple.

More clinically related simulations for the blood flow in
aortas are ongoing using the validated MCVLBM focusing
on the examination of shear and normal wall stresses on the
artery walls. We are particularly interested in the examination
of the distribution of normal and shear wall stresses on
the entire inner layer of healthy and diseased aortas and
the role of turbulence on the wall stresses. Meanwhile, we
are working on blood flow in the three-dimensional healthy
and diseased aortas. The correlations between wall stress
and the fluid dynamics of blood flow, the aorta geometry,
and the driven condition at the inlet are expected to pro-
vide information valuable in the management of patients
at risk or with already developed aortic aneurysms and/or
dissections.
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