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a b s t r a c t

In this work, we numerically study decaying isotropic turbulence in periodic cubes
with frame rotation using the lattice Boltzmann method (LBM) and present the results
of rotation effects on turbulence. The implementation of LBM is on a GPU (Graphic
Processing Unit) platform using CUDA (Compute Unified Device Architecture). Through
the accelerated GPU-LBM simulation, we look into various effects of frame rotation on
turbulence. It has been observed that rotation slows down the decay of kinetic energy
and enstrophy. Rotation also breaks isotropy and induces vortex tubes in the direction of
frame rotation. Characteristics related to velocity and its derivatives have been studied
with and without rotation. Without rotation, the kinetic energy and enstrophy decay
follow −10/7 and −17/7 scaling respectively whereas in the presence of rotation with
the relatively small Rossby number (large rotation intensity), the energy decay slows
down to −5/21 scaling when the initial isotropic turbulence energy spectrum is scaled
to k4. These scalings with and without rotation are in quantitative agreements with the
predictions fromKolmogorov hypotheses respectively. The skewness and kurtosis are seen
more fluctuating in rotational turbulence, which agrees with the results from NS-based
computation. Using this accelerated and validated GPU-LBM computation tool, we are
further studying the inverse energy transfer behavior with and without rotation aiming to
quantify the effects of rotation on the inverse energy transfer to reveal underlying physics
of a particular stage of the turbulence development. The results will be presented in near
future.

Published by Elsevier Ltd

1. Introduction

Decaying isotropic turbulence (DIT) in a periodic box has enabled much of our progress in understanding universal
features of turbulence. Although artificial, isotropic turbulence defies much beyond the well-known Kolmogorov k−5/3

energy spectrum [1] in the inertial range where k is the wave number. When the box is subjected to a rotation, e.g., for
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a vertical axis (� = Ωzk), the nonlinear flow dynamics will be modified. Whereas DIT in a non-rotating system remains
approximately isotropic, the vertical length scale increases dramatically in the rotating case. In rotational turbulence, there
exist twomajor time scales. One is τL ∼ L/urms associatedwith the eddies at characteristic integral length scale L and velocity
urms. Another is τΩ ∼ 1/Ωz associated with rotation. These two time scales are characterized by the Taylor microscale
Reynolds number (Reλ = urmsλ/ν) and the Rossby number (Ro = urms/(2ΩzL)), where urms =

√
2k/3 is the root mean

square of velocity field, λ =

15νu2

rms is the transverse Taylor-microscale length, k is the kinetic energy, and ν is the
kinematic viscosity of the fluid. The dynamics of rotational turbulence is dictated by a competition between the linear
rotation effect and nonlinear turbulent energy transfer.

Rotational turbulence is of significant importance in engineering, geophysical, and astrophysical flows. Efforts have been
made to study the effect of rotation in a turbulent flow, as a first step to gain better understanding of the fluid dynamics
of geophysical systems. Rotation plays an important role in such systems. For rapid rotation (very small Rossby numbers),
significant progress has been made by applying resonant wave theory [2,3], two-point spectral closures [4,5], and weak
turbulence theory [6]. In these approaches, the flow is considered as a superposition of inertial waves with a short period,
and the evolution of the system for long times is derived considering the effect of resonant triad interactions. Recently, due
to the development of computation capability, direct numerical simulation (DNS) and large-eddy simulation (LES), which
solve the Navier–Stokes (NS), were performed [7,8] to study the effects of rotation on turbulence with a moderately small
Ro number.

In the last two decades, the lattice Boltzmannmethod (LBM) [9,10] has emerged as an alternative to solve fluid dynamics
on the mesoscopic level for complex flows [11,12]. As opposed to conventional CFD which solves the NS equations directly,
the LBM is based on the Boltzmann equation and kinetic theory [13]. One of the most attractive advantages of LBM over
NS solvers is the suitability of parallelism due to its inherent local data access pattern. Recently, parallel computation on
graphics processing units (GPUs) for scientific research emerged due to the high performance and efficiency of computation
against the traditional computation on central processing units (CPUs). The computation capacity of GPUs is almost one
order of magnitude larger than that of mainstream CPUs in terms of both peak performance and memory bandwidth. As a
result, GPU parallel computation is promising to make the demanding computation tasks such as those in computational
fluid dynamics [14,15] especially when the flow is turbulent. In LBM, the computation on each node is independent and
the data transmission only happens between two adjacent nodes. This localized data communication mode and inherent
additivity of its numerical implementation make LBM ideally suitable for GPU parallel computation. In the last few years,
implementations of LBM on a single GPU have been reported [16–24] speedup ratios ranging from one to two orders of
magnitude depending on the algorithms, the complexity of flows, and the hardware availability. Tölke et al. [20] used shared
memory to avoidmisaligned accesses at the expense of adding an extra kernel to exchange data on some nodes. On the latest
GPUs, the performance of misaligned memory accesses is enhanced due to the improved hardware architecture. Obrecht
et al. [24] used standard memory access and only one kernel in LBM simulation. The performance for D2Q9 model [24] was
compared with Tölke’s shared memory scheme [20], showing a 15% improvement.

The present work is part of our continuous efforts to investigate the universal features of DIT with and without rotation.
In our previous work [25], we assessed the reliability of LBM for performing DNS and LES of DIT with and without frame
rotation. Focuseswere on the quantitative comparisons of decay exponents of the kinetic energy k, the dissipation rate ε, and
the lowwave-number scaling of the energy spectrumwith established classical results. The LBM-LES captured theprominent
large-scale flow behavior through the comparisons of LBM-DNS vs. LBM-LES and LBM-LES vs. NS-LES. It was concluded
that both LBM-DNS and LBM-LES could well capture the important features of DIT. Due to the computation capability, the
Taylor-microscale–Reynolds number, Reλ, was relatively low with maximum resolution of 1283 and the results for DIT in
the presence of frame rotation was limited.

In order to accelerate the computation to meet the demanding computation cost for turbulence and make it possible
to perform computation on a local workstation, we implement LBM-DNS on the GPU platform based on the two existing
schemes in open Refs. [24,20] and select the better one [24] to perform the simulation. We study various rotation effects
on DIT with higher Reλ and smaller Ro. Our focus is on how rotation affects turbulence properties, such as the decay of
the kinetic energy, dissipation rate, and vorticity, the development of energy spectrum, the evolution of velocity-derivative
skewness and kurtosis, etc., which are keys on the turbulence energy cascade.

The remainder of the paper is organized as follows: in Sections 2 and 3, we introduce lattice Boltzmann equations for
DNS of rotational turbulence and the implementation of GPU parallel computing using CUDA. In Section 4, we present the
results of rotation effects on turbulence. Finally Section 5 provides a summary discussion and concludes the paper.

2. Lattice Boltzmann method for rotational turbulence

The LBM is based on grid computing which calculates the macroscopic physical quantities by mesoscopic particle
interactions [26]. The lattice Boltzmann equation (LBE) deals with the time evolution of particle distribution

fα(x + eαδt , t + δt) = fα(x, t) −
1
τ

[fα − f (eq)
α ] + Fα (1)

where fα is the single-partial distribution with discrete velocity eα and τ is the relaxation time caused by molecular
collision. In this work, we use the 3D 19-velocity (D3Q19) model due to its reliability and efficiency of computation [27].
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Correspondingly, the discrete velocity sets are (0, 0) for α = 0; (±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c for α = 1 ∼ 6; and
(±1, ±1, 0)c, (0, ±1, ±1)c, (±1, 0, ±1)c for α = 7 ∼ 18. Parameter c is the lattice velocity defined as c = δx/δt with δx
being the lattice length and δt the time step. In practice, c is usually set to 1. The equilibrium distribution function f (eq)

α is
formulated as [28]

f (eq)
α = ωα


δρ + ρ0


3eα · u

c2
+

4.5(eα · u)2

c4
− 1.5

u2

c2


(2)

where ωα is the weight coefficient, in D3Q19, ω0 = 1/3, ω1−6 = 1/18, ω7−18 = 1/36. The density ρ = ρ0 + δρ including
the mean density in the system ρ0 and the fluctuation of density δρ and the macroscopic velocity are obtained by

δρ =


α

fα =


α

f (eq)
α , ρ0u =


α

eα fα =


α

eα f (eq)
α . (3)

The force term Fα is the discrete format of an external force [29] as

Fα = −3ωαρ0
eα · a
c2

δt (4)

where a is acceleration determined by the external force. In the rotating flow, a = −2�z × u is the Coriolis force, where
� is the angular velocity of the frame of reference acting in the z-direction, � = Ωzk. Through the Chapman–Enskog
expansion [30], the LBE recovers Navier–Stokes equations as follows:

∂ρ

∂t
+ ρ0∇ · u = 0 (5)

∂u
∂t

+ u · ∇u = −∇p + υ∇
2u + a (6)

where p is the pressure which is given as p = c2s ρ/ρ0, cs is the sound speed of the model which is equal to c/
√
3, υ is the

viscosity which is shown on the model as lattice units like υ = c2s (τ − 1/2).

3. GPU parallel implementation

The computation is carried out in a periodic cube with a size of Nx ×Ny ×Nz on the CUDA platform. Initially, an isotropic
turbulencewith prescribed energy spectrum [25] is injected in the cube and then the turbulence decays freely. In LBM, there
exist four computation segments in each time step including collision, boundary condition, streaming, and velocity/density
update.

In CUDA, a block refers to a batch of threads that can cooperate via shared memory and have synchronized execution,
whereas a warp is a group of threads as the minimal element processed in multiprocessors. We chose one dimensional
block such that each warp can be aligned to the array. The size of a warp is 32 threads for all existing CUDA GPUs, yet
this value might change with future hardware. The streaming, collision, and update of velocity and density are combined
into one kernel to reduce access latency. Although this combination may cost more storage and lead to lower occupancy,
it avoids repeated access of global memory for distribution functions and increases the efficiency of data communication.
The distribution functions containing z component, which are f5, f6, and f11 − f18 in the D3Q19 lattice model, would have
a shift along the z-axis. During the streaming, this misalignment would result in a misaligned access because the elements
in our array starts from the z-axis. To address this issue, Tölke et al. [20] split the misaligned streaming into two parts,
first to shift the data of distribution functions along the z-axis in shared memory and second to use aligned write to finish
streaming. The shift requires a set of arrays with the size of (the number of threads per block)× (word size) to be allocated in
the shared memory. For the D3Q19 lattice model, 10 arrays are needed. This amount usage of shared memory may limit the
occupancy for some device. Tölke’s algorithm for the streaming segment is shown in Fig. 1(a). Obrecht et al. [24] proposed
another approach based on two points. First, misaligned read is faster than misaligned write. Second, the additional kernel
to exchange the datamay consumemore time than themisaligned access. As a result, instead of taking advantages of shared
memory, they use misaligned read to carry on the streaming segment. After computation, all the data are written aligned to
global memory; see Fig. 1.

The CUDA implementation is on two Intel Xeon E5645 2.40 GHz Quad-Core CPUs and 64 GBmemory with a Tesla M2090
GPU card with ECC enabled by default. Commonly, the performance of a GPU-LBM program is measured by millions lattice
updated per second (MLUPS), which directly reflects how long it takes to finish the collision and streaming processes for all
the nodes at one time step. Without considering rotation in this part, we list the MLUPS performance of the two schemes
from [20,24] with single precision for four resolutions in Table 1. For the scheme using shared memory [20], Bailey [22]
has claimed an average performance of 246 MLUPS with a maximum value of 300 MLUPS in the case of Poiseuille flow.
For the scheme using misaligned read, Obrecht [24] tested for lid driven cavity flow and achieved a highest performance
of 516 MLUPS. Our evaluation shows the highest performance of 460 MLUPS using misaligned read and 445 MLUPS using
sheared memory scheme. The average performance of the former is around 455 MLUPS, and the latter around 430 MLUPS.
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Fig. 1. (a) Shared memory scheme [20]. (b) Misaligned read scheme [24].

Table 1
Performances of misaligned [24] and shared memory [20] algorithm.

Algorithm with misaligned read Scale 643 1283 1923 2563

MLUPS 451 460 460 449

Algorithm with shared memory Scale 643 1283 1923 2563

MLUPS 438 445 381 423

Table 2
GPU acceleration test comparing GPU-LBM and serial-CPU-LBM. The numbers in the ‘‘GPU’’
and ‘‘serial-CPU’’ columns are wall-clock time in second for 200 steps running. The speedup is
measured as the ratio of time spent with and without GPU implementation.

Resolution GPU-LBM Non-GPU-LBM Speedup

643 1.0 235.32 235.3
1283 13.57 3538.17 261.0
2563 190.1 62751.3 330.1

The misaligned method provides better performance on GPU acceleration. This shows that the straightforward misaligned
memory access can satisfy the requirement of LBM-based turbulence acceleration. The shared memory approach may
involve more processing efforts and no longer needed due to the improved GPU architecture.

The preliminary test of computation speed shows outstanding acceleration of the developed GPU-LBM over the original
serial CPU LBM. The comparison results are shown in Table 2. For the resolutions 1283 and 2563 which we use to study
turbulence fundamentals, more than 250 times speed-up are achieved, which greatly increases our research efficiency since
we are able to run 2563 case on our group workstation with fairly short computation duration. It should be pointed out that
both the CPU and GPU based implementations are not extensively optimized by fully exploiting functionalities provided by
the underlying hardware. In this paper, our focus is to present the underlying physics of rotational turbulence.We only show
that the LBM simulation can be greatly accelerated by GPU acceleration, which makes it possible to perform the simulation
of 2563 case on a local workstation. In the future, we will perform a thorough optimization of GPU programs and measure
and analyze GPU performance inmore detail and accuracy, and eventually lead to a public available platform for researchers.

4. Results of rotational turbulence

Wenowpresent physical results forDIT in the presence of rotationusing the developedGPU-LBMcodebased onObrecht’s
misaligned implementation [24]. All the results shown below are from 1283 and 2563 simulations. The initial energy spectra
are scaled as k4 [25] unless otherwise indicated.

We first show the decay of kinetic energy (E(t)/E0) and enstrophy (Ω(t)/Ω0)with no rotation (Ωz = 0) and energy decay
with varying Ro numbers in Fig. 2. In the unbounded flows, in the case of an initial large scale spectrum ∼ k4, theoretical
predictions of the decay scalings of kinetic energy [31] and enstrophy [8] are

E(t) ∼ t−10/7, Ω(t) ∼ t−17/7. (7)

The LBM results in Fig. 2(a) quantitatively capture both scalings of−10/7 and−17/7 and are in quantitative agreementwith
established numerical results [8]. In Fig. 2(b), it is seen that the energy decay slows down when the Ro number decreases
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Fig. 2. Decay of energy and enstrophy. (a) Re = 95, 1283 , without rotation and (b) Re = 105, 2563 , with and without rotation.

Fig. 3. Contours of ωz in late time originated from the same prescribed isotropic turbulence field (a) with Reλ = 95 in a 1283 . (b) without rotation
(Ro = ∞) and (c) with rotation (Ro = 3).

corresponding to the increase of rotation frombottomup, indicating that rotation prohibits energy decay.When the rotation
is strong enough, the energy decay is scaled as −5/21, agreeing with the Kolmogorov prediction [8].

The evolutions of z component of the vorticity (ω = ∇ × u) in 3D both in the condition of no rotation (b) (Ro = ∞) and
with rotation (c) (Ro = 3) are shown in Fig. 3, both of which are originated from the same isotropic turbulence. Visualization
of the flow vorticity is intuitive to read. It is clearly shown thatwithout rotation, seen in Fig. 3(b), the vorticity fieldmaintains
isotropic at the late time, whereas with reference rotation, anisotropic behavior is observed. In Fig. 3(c), rotation induced
vorticity tube in the z direction appears, implying the rotation effect on turbulence decay. This behavior was observed by
Teitelbaum and Mininni [8] in their computation.
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Fig. 4. Evolution of velocity-derivative skewness and kurtosis in the cases of (a) no rotation (Ro = ∞) and (b) rotation (Ro = 3), Reλ = 95, 1283 .

The velocity derivation characteristics are presented by skewness Si and kurtosis Ki defined as [8]

Si =


∂ui

∂xi

3
 

∂ui

∂xi

2
3/2

(8)

Ki =


∂ui

∂xi

4
 

∂ui

∂xi

2
2

(9)

respectively, where i presents the Cartesian coordinates x, y, and z. The results are presented in Fig. 4. It is shown that
skewness and kurtosis in the case of no rotation, three components have no obvious fluctuation in Fig. 4(a). When the
rotation is added, the consequence is shown in Fig. 4(b). It is seen that the three components of skewness and kurtosis have
more fluctuation, while Sx ≈ −Sy, Kx ≈ Ky all the time. This result qualitatively agrees with what is presented in [8].

5. Summary

We have developed a GPU-LBM code using CUDA for simulating DIT in a periodic cube with and without frame rotation.
The GPU parallel implementation has greatly accelerated the computation, around 300 times faster over non-GPU parallel,
which makes it possible to run 2563 with Reλ approximately 120 on a local workstation with short computation duration.
We run a large number of cases to systematically study various effects of rotation on turbulence. It has been showed that in
the presence of rotation, energy decay slows downwhen the Ro number decreases, i.e., rotation increases. This indicates that
rotation prohibits energy decay. The rotation induced vortex tube along the rotation axis is captured. The decay scalings of
kinetic energy with and without rotation and the scaling of enstrophy quantitatively agree with the Kolmogorov analytical
prediction, demonstrating that the developed GPU-LBM simulation is a reliable numerical tool to study underlying physics
of rotational turbulence.

In this study, we have observed that kinetic energy is not only transferred to small motion scales following the well-
known −5/3 Kolmogorov scaling, but also to a large motion, which is in the inverse direction of the well defined energy
cascade (not shown here) before energy starts to decay. Using this accelerated and validated GPU-LBM computation tool,
we parametrically investigate the scalings of inverse energy transfer and the rotation effects on the inverse energy transfer
aiming to find universal features of the particular stage of the turbulence development. Meanwhile, we are implementing
GPU-LBM on multiple GPU cards to further promote the computation efficiency.
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