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Abstract We investigate the behavior of flow variables, thermodynamic variables and their interaction in
rapidly sheared (S) homogeneous compressible turbulence using rapid distortion theory (RDT). We subject an
initially isotropic and incompressible flow field to homogeneous shear-rate of various strengths quantified by a
gradient Mach number (Mg) based on characteristic wavenumber. Our objective is to characterize the behavior
of flow/thermodynamic fluctuations and their linear interactions during the course of turbulence evolution.
Even though the mean shear-rate is held constant, the gradient Mach number progressively diminishes with
time as the relevant wavenumber increases due to the mean deformation. The evolution exhibits three distinct
phases which we categorize based on the character of pressure as: (i) Pressure-released (PR) stage which
is observed when St <

√
Mg0 and pressure effects are negligible; (ii) Wave-character (WC) stage wherein√

Mg0 < St < Mg0 and the wave character of pressure is in evidence; and (iii) Low-Mach number (LM)
stage when St > Mg0, where Mg0 is the initial gradient Mach number. In the PR regime we find that the ther-
modynamic fluctuations evolve from their initial state but velocity fluctuations grow unhindered by pressure
fluctuations. In the WC regime, the pressure fluctuations become significant and flow-thermodynamic interac-
tion commences. This interaction brings about equipartition of dilatational kinetic energy and thermodynamic
potential energy. The interaction also results in stabilization of turbulence, and the total kinetic energy growth
comes to a near standstill. Ultimately in the LM stage, kinetic energy starts increasing again with the growth
rate being very similar to that in incompressible RDT. However, the thermodynamic fluctuations continue
to grow despite the gradient Mach number being substantially smaller than unity. Overall, the study yields
valuable insight into the linear processes in high Mach number shear flows and identifies important closure
modeling issues.
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1 Introduction

The inherent complexity of turbulence is further compounded in compressible flows by the dynamic coupling
between flow and thermodynamic variables. In incompressible flows, pressure is merely a Lagrange multiplier
with the sole function of maintaining a divergence-free velocity field. Evolution of incompressible turbulence
is governed entirely by the momentum conservation equation subject to the kinematic incompressibility con-
straint. However, in compressible flows, pressure evolves according to a wave equation leading to profound
changes in turbulence physics including tight coupling between velocity fluctuations and those of pressure,
temperature, and density. As in the case of any compressible flow, compressible turbulence can be classified
into different types based on the applicable state equation. Possible categories of compressible turbulence
classification, in order of increasing complexity, are: (i) isothermal; (ii) isentropic; (iii) ideal gas and (iv) real
gas. Barotropic flows (isothermal and isentropic) are the simplest of compressible flows. In barotropic turbu-
lent flows, pressure is a direct function of density, and the energy equation is redundant. At the other extreme,
flows under the influence of real gas effects represent the most complex form of compressible turbulence.
Unfortunately, these flows do not easily lend themselves to fundamental analytical investigation. In this work,
we will consider ideal gas compressible turbulence, which is of intermediate degree of complexity and yet of
great utility. The extent of flow-thermodynamics coupling, given a state equation, depends upon factors such
as Mach number, type of mean-velocity gradient, intensity of thermodynamic fluctuations, etc. It has been
known for some time now that compressibility, in general, has a stabilizing influence on shear flow turbulence
(e.g., [5,15,22]). To a large extent, the compressibility effects manifest via the pressure-strain correlation [25]
and there have been efforts [1,11] to model this tensor and its trace—pressure-dilatation. However, as was
suggested by Simone et al. [28], compressibility may increase turbulence intensity under certain conditions.

1.1 Rapid distortion theory

Inviscid rapid-distortion theory (RDT) [2] has long been used to study important linear aspects of turbu-
lence physics. Insofar as incompressible flows are concerned, RDT has provided valuable insight into the
rapid pressure-strain redistribution process which has led to important improvements in closure modeling
(see reviews by [12,27] and references therein). In particular, RDT has played a significant role in improving
our understanding of the effects of system rotation [7], stratification [6] and mean-flow unsteadiness [10] on
turbulence. Analysis of compressible flows using RDT has been more recent—[4,7,8,28] and [19]. A brief
review of the work performed to date in RDT of compressible homogeneous turbulence can be found in the
recent work of Yu and Girimaji [30]. To date, application of RDT has been limited mostly to isentropic com-
pressible turbulence evolving under the influence of specific forms of mean velocity gradients. The restriction
to these special mean velocity gradients arises from the fact that homogeneity conditions are more restrictive
in compressible turbulence. Recently, Yu and Girimaji [30] developed the formalism required to extend RDT
of ideal-gas compressible turbulence to arbitrary mean velocity gradients. The governing equations consist of
mass, momentum, energy equations supplemented by the state equation of ideal gas. This permits a more com-
plete investigation of the role of pressure including flow-thermodynamics coupling. Some important aspects of
ideal-gas turbulence subject to homogeneous shear have been investigated using RDT by Livescu and Madnia
[19]. The small-scale structure and degree of anisotropy of velocity derivative moments have been carefully
examined in this work. Simone et al. [28] perform a close examination of the effect of distortion Mach number
(based on an integral lengthscale) on turbulent kinetic energy evolution. They find that at large Mach numbers,
kinetic energy grows more rapidly than in incompressible turbulence at early times and markedly more slowly
at later times.

An important predecessor to the present effort is the work of Livescu et al. [18]. In that paper, the evo-
lution of compressible turbulence subject to shear and heat release is investigated and important conclusions
are drawn. The authors demonstrate the complex interplay between compressibility, mean shear and heat
release effects on turbulence. In our work, to gain further clarity, we investigate the linear and non-linear
aspects of flow-thermodynamics interactions separately. Mean shear affects the large-scale linear interactions
more profoundly than it does the small-scale non-linear interactions. These linear interactions are amenable
to inviscid RDT investigation and is the subject of this paper. In many problems of interest to the current
study (turbulent mixing/combustion, viscous boundary layer heating in hypersonic flows, etc.), heat release
occurs in the small scales and has its most critical influence on non-linear interactions. To understand the non-
linear flow-thermodynamic interactions with heat release, we examine decaying, anisotropic compressible
turbulence with imposed temperature fluctuations. The results from that study are presented in the companion
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paper, Lee and Girimaji [17]. The goal of this study is to investigate the compressibility effects in rapidly
distorted homogeneous shear turbulence over a wide range of gradient Mach numbers and clearly character-
ize flow-thermodynamics interactions. Linear stability analyses have been reasonably successful in capturing
important aspects of stabilizing physics in supersonic flows (e.g., [13]). Thus motivated, we will use the linear
rapid distortion theory (RDT) to further our understanding of compressible turbulent shear flows.

Focus of current work. We perform ideal-gas compressible RDT analysis of initially isotropic turbulence
subject to homogeneous shear to: (i) characterize the behavior of flow and thermodynamic statistics in various
gradient Mach number regimes; and (ii) establish the nature of flow-thermodynamics interactions in the context
of the changing character of pressure in the different regimes. For this investigation we use the RDT equations
developed in [16,30] and employ isotropic incompressible initial field.

This paper is based on the M.S. thesis of Lavin [16]. For many of the detailed discussions, the reader
is referred to the thesis. The remainder of this paper is organized as follows. Section 2 briefly discusses the
governing equations in the rapid distortion limit. Numerical implementation issues are also discussed briefly.
Results and analysis are presented in Sect. 3. Section 4 provides a brief summary of the important findings
and concludes the paper.

2 Reynolds-averaged rapid distortion theory

The first step in deriving compressible RDT fluctuating-field equations is choosing the type of averaging to
be employed. While Favre-averaging offers many physical advantages, the equations governing the evolution
of fluctuations have been found to be very complicated. In this paper, we will employ the simpler Reynolds
averaging as has been done in all preceding RDT works. The ensuing equations are called R-RDT equations,
and details of their derivation can be found in [30]. In this section, we present only the salient features of the
derivation and also briefly discus the numerical implementation.

2.1 RDT equations

We start with the conservation equations of mass, momentum and energy for an inviscid calorically perfect
compressible medium:

∂ρ

∂t
+ Uk

∂ρ

∂xk
= −ρ

∂Uk

∂xk
; (1)

∂Ui

∂t
+ Uk

∂Ui

∂xk
= − 1

ρ

∂p

∂xi
; (2)

∂T

∂t
+ Uk

∂T

∂xk
= −T (γ − 1)

∂Ui

∂xi
(3)

where Ui , p, ρ and T represent velocity, pressure, density and temperature, and γ denotes ratio of specific
heats. The symbols xi and t represent spatial coordinates and time. Note that the following caloric equation of
state has been used to express energy Eq. (3) in terms of temperature:

E = cvT (4)

where E and cv are specific internal energy and specific heat at constant volume. For a perfect gas, the three
thermodynamic variables are related through the state equation:

p = ρRT (5)

where R is gas constant.
The instantaneous values of velocity, pressure, density and temperature are decomposed into Reynolds-aver-

age (denoted by (.) or 〈.〉) and fluctuating (denoted by (.
′
)) components. We restrict our focus to homogeneous

shear turbulence so that the gradients of mean thermodynamic properties are zero in addition to the mean
velocity gradient being spatially uniform and temporally invariant.
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2.1.1 Mean equations and parameters

We consider homogeneous shear of strength S:

∂Ui

∂x j
=

⎛

⎝
0 S 0
0 0 0
0 0 0

⎞

⎠ . (6)

Under the influence of such a mean velocity field, mean density does not evolve in time:

∂ρ

∂t
= −ρ

∂Uk

∂xk
= 0. (7)

The governing equation of mean temperature (T ) can be derived by averaging the instantaneous energy
Eq. (3):

dT

dt
= −u

′
j
∂T ′

∂x j
− (γ − 1)T ′ ∂u

′
j

∂x j
. (8)

Sound speed, a, is related to mean temperature as follows:

a =
√

γ RT . (9)

In DNS studies of homogeneous shear [25], a gradient Mach number based on an integral lengthscale has been
recognized as the relevant parameter:

Mg = SL

a
, (10)

where S is the mean velocity gradient (S ≡ ∂V1
∂x2

) and L is an integral length-scale. However in an RDT anal-
ysis, the relevant lengthscale is one that is characteristic of the wavenumbers under consideration. Since this
lengthscale is inverse of the magnitude of wavenumber, in this work we define gradient Mach number as:

Mg = S

a |κ| , (11)

where |κ| represents a norm of the wavenumbers under consideration. This gradient Mach number (11) is a
measure of the relative significance of pressure effects to inertial effects in the velocity amplitude equation of
a characteristic RDT mode.

2.1.2 Fluctuating flow equations

As stated in the introduction, two of the principal objectives of this work are to characterize the behavior of
various turbulence statistics at various stages of evolution and explain the observed behavior in terms of the
action of pressure during the different phases. For this we will need to develop equations for various turbulence
statistics such as u′

i u
′
j , T ′T ′, etc. In deriving the fluctuating field equations, as per classic RDT methodology,

we disregard all terms that are non-linear in fluctuations. Thus the rapid distortion equations for fluctuating
fields can be written as [16,30]:

∂ρ′

∂t
+ U k

∂ρ′

∂xk
= −ρ

∂u′
k

∂xk
; (12)

∂u′
i

∂t
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= −u′
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− RT
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= −(γ − 1)T

∂u′
k

∂xk
. (14)



Flow-thermodynamics interactions

Again, as per common practice, to solve the linear RDT fluctuating field ODEs, we transform the equa-
tions to Fourier space (e.g., [23]). The fluctuating variables in (12)–(14) are expressed in terms of their Fourier
components, and their evolution equations can be written as:

dρ̂

dt
= −iρκk ûk; (15)

dûi

dt
= −ûk

∂Ui

∂xk
− i(RT̂ + RT

ρ
ρ̂)κi ; (16)

dT̂

dt
= −i(γ − 1)T κk ûk . (17)

where i is the imaginary unit equal to
√−1. The wavenumber vector evolves as [23]:

dκi

dt
+ κk

∂U k

∂xi
= 0. (18)

Equations (15)–(18) can be directly solved and then used to construct the required covariances of fluctuat-
ing terms. Instead, we follow the particle representation method (PRM) approach recommended by Kassinos
and Reynolds [14]. The PRM strategy significantly reduces the statistical error encountered in computing
statistics from individual wave-vector realizations. Accordingly, we define various Fourier covariances, which
can be interpreted as conditional moment for a given wavenumber [23]. Detailed description of the evolution
equations of these co-variances is available in [16,30]. The equation set comprises of 26 linear ODEs.

Important caveats: Before proceeding with the results and analyses, it is important to understand the limi-
tations of the RDT methodology in general. The forms of the basic conservation and state equations used are
valid only for continuum fluid that is close to thermodynamic equilibrium. Rarefied gas and high-temperature
real-gas effects that influence many hypersonic flows are not accounted for in this study. Only the so-called
‘hydrodynamic’ high Mach number effects are considered. The omission of non-linear terms in the conser-
vation equations further restricts the generalization of RDT findings to turbulent flows. However, RDT is the
best tool to develop fundamental understanding of the so-called ‘rapid’ pressure effects. Rapid pressure-strain
correlation is an important turbulence process that is primarily responsible for any stabilizing/destabilizing
influence of compressibility. Overall, in agreement with [19] and [28], we suggest that the current RDT method
is well suited for investigating linear turbulence physics for a wide range of gradient Mach numbers.

2.2 Numerical implementation and verification

In this work we employ a high-fidelity fourth-order Runge-Kutta scheme to solve the ODEs. The scheme has
been previously validated in [9] and [30]. The initial velocity field is incompressible and statistically isotropic.
Initial conditions for the wavenumber vector and 25 covariances are specified in Fourier space. The details
can be found in [9] and [30], and we will only present the salient points here. The wavenumber κ(t = 0)
and corresponding velocity covariance Ri j (t = 0) are first chosen: wavevectors are distributed uniformly on
a unit sphere to render a statistically isotropic initial field. To ensure initial incompressibility, velocity vectors
for each wavevector are chosen such that they are normal to the respective wavevector. Density is set so that
ρ = 1.0, while initial mean temperature is set to 300 K. Finally, the RMS (root mean square) of density and
temperature fluctuations are specified as percentages of the mean density and temperature, respectively. In our
study, it is found that the results are independent of the initial temperature fluctuations so long as the intensity
of the fluctuations is less than 3%. Discernible differences are seen only beyond 5%. All results presented
here are for initial temperature intensity less than 3% and no density fluctuations. The pressure fluctuations
are determined from temperature fluctuations. The initial pressure fluctuations do not necessarily satisfy the
Poisson equation. This is justified by the fact that pressure equilibration takes a few acoustic times and in
high-speed shear flows any induced velocity perturbations will not be correlated to pressure perturbations. The
initial length scale is taken to be unity: l0 = 1/ |κ(t = 0)| = 1. The mean flow of interest is the steady homo-
geneous shear as defined in (6). The magnitude of S, the sound speed and initial length-scale of perturbation
determine the initial gradient Mach number (11), which is the chief parameter of the present study.
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2.2.1 Parameter range

We perform RDT computations with different gradient Mach numbers ranging from Mg0 ≡ Mg(t = 0) = 0.01,
which represents the incompressible limit to Mg0 = 2,880, which represents the so-called pressure-release
or Burgers limit [28]. In the Burgers limit, the timescale of pressure is very long compared to that of shear.
Although, not of practical utility, computations of Mg0 = 2,880 are used to validate the numerical implemen-
tation by comparison against Burgers pressure-released limit analytical results [28]. Other relevant parameters
that are not considered in this study include change in turbulent Mach number, initial solenoidal-dilatational
composition ratio and initial intensities of thermodynamic fluctuations.

During the course of a simulation, the gradient Mach number changes as the wavenumber evolves according
to Eq. (18). Using this equation we can write

dκ1(t)

dt
= 0; implying κ1(t) = κ1(0);

dκ2(t)

dt
= −κ1

∂U1

∂x2
; implying κ2(t) = κ2(0) − κ1(0)St; (19)

dκ3(t)

dt
= 0; implying κ3(t) = κ3(0).

From these equations, it is easy to deduce that

κ2(t) ∼ κ2(0)

(
1 + S2t2

3

)
. (20)

Since the relevant lengthscale is inverse of the magnitude of wavenumber, we can estimate the lengthscale
of characteristic turbulence fluctuations at given time t as

l(t) = 1/ |κ| ∼
√

3

3 + S2t2 . (21)

where κ2(0) ∼ 1. We can now estimate the gradient Mach number (11) as a function of time:

Mg(t) ∼ Sl(t)

a0
= Mg0

√
3

3 + S2t2 ∼ √
3

Mg0

St
. (22)

Thus, in all cases, the gradient Mach number decreases with time. Initially incompressible flows will continue
to remain incompressible at all times. Given adequate time, even very high Mg0 flows will ultimately evolve
into a low Mach-number regime.

2.2.2 Spectral-grid and time-step resolution study

We now establish the adequacy of the Fourier space (number of wave-vector modes) and time discretization
employed in this study. To examine the dependence of the RDT results on spectral discretization, we present
results from three isotropically distributed sets of wave-vectors of different populations (N ): 6,079, 12,000 and
16,000. It is very important to recognize that the solenoidal and dilatational portions of the velocity field have
completely different resolution requirements. As a result, we examine not only the total kinetic energy behavior
as a function of resolution, but also the individual characteristics of the solenoidal (vortical) and dilatational
(acoustic) fields. For the homogeneous shear flow configuration employed in this study, the fluctuating veloc-
ity in the streamwise (1-) direction is nearly purely solenoidal. The fluctuating velocity in the stream-normal
direction (2-) is almost entirely dilatational or acoustic. It is important to recall that the fluctuations in the
stream-normal direction nearly vanish in low speed shear flows due to the incompressibility constraint. We
investigate the results for initial gradient Mach number of unity as this features the maximum level of acoustic
fluctuations.

In Figs. 1, 2, 3 and 4 we present time evolution of kinetic energy, u1u1 and u2u2 with the three set of
wave-vectors. It is immediately evident that the total kinetic energy evolution exhibits some small amplitude
oscillations at late times and the three computations exhibit some disparity. To gain further insight, we exam-
ine the solenoidal and dilatational energies individually next. Expectedly, the solenoidal part (Fig. 4—u1u1)
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Fig. 1 Evolution of kinetic energy, k (= ui ui
2 ) in simulations with different Fourier grids. N denotes total number of wave-vectors

of a spectral grid and k0 is initial kinetic energy. Initial gradient Mach number is unity
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Fig. 2 Evolution of u2u2. Initial gradient Mach number is unity

exhibits no oscillations and the computations of the three computations generally agree well to within statistical
error. This leads to the inference that solenoidal field generally needs much smaller level of resolution and this
has been demonstrated in the incompressible RDT works of Girimaji et al. [9] and Mishra and Girimaji [21].
In this compressible RDT study, the acoustic part of the velocity field u2u2 exhibits oscillations with generally
small but distinct difference between the computations (Figs. 2 and 3). The frequency of oscillation does not
change with different resolutions, but the amplitude decreases marginally with superior resolution. However,
there is clearly no systematic change in the overall result with change in the wave-vector population from
6,079 to 16,000. The disagreement between the various resolutions is smaller at higher or smaller gradient
Mach number computations [16].

Now we present an explanation for the observed behavior of acoustic oscillations at the different resolu-
tions. The persistence of oscillations in RDT calculations seen at late times have been observed and explained
in previous studies [28] as well. Inherently, each individual wavenumber simulated exhibits acoustic high-fre-
quency oscillations especially at late times as the acoustic timescale becomes much smaller than the solenoidal
timescale. The collective behavior of the RDT ensemble depends upon the number of energetic contributing



T. A. Lavin et al.

25 30 35 40
3.5

4

4.5

5

5.5

6

6.5

7

St

<
u 2u 2>

/2
k 0

N=6079
N=12000
N=16000

Fig. 3 Evolution of u2u2 (magnified view). Initial gradient Mach number is unity
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Fig. 4 Evolution of u1u1. Initial gradient Mach number is unity

modes. At early times, all modes are nearly equally energetic due to the initial specifications. Therefore, the
contributing statistical sample size is large and the acoustic oscillations of the various modes cancel out to yield
smooth evolution of statistics. With passage of time different modes evolve at different rates. Soon fewer and
fewer high energy modes contribute to the overall statistics. Due to shrinking sample size, the statistics begin
to mirror the oscillations of the few contributing modes. Irrespective of the initial number of wave-vectors,
at sufficiently long times, the statistics will exhibit oscillatory evolution due to diminishing number of con-
tributing wave-vectors. For the purposes of the present study, it is deemed that an initial population of 6,079
wave-vectors provides the requisite statistical resolution over the duration of the simulation. Higher number of
wave-vectors may yield slightly smoother evolution of the statistics at late times without altering the physical
inferences.

To establish the adequacy of the temporal discretization, we perform computations with a smaller time-step
size and compare the results with the original set of computations. Figure 5 compares the evolution of dilata-
tional kinetic energy for a representative gradient Mach number (similar study was performed with different
initial gradient Mach number as well) in simulations with two different time-step sizes. The agreement is
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Fig. 5 Evolution of u2u2 in simulations employing different time-step sizes. Initial gradient Mach number is unity and the total
number of wave-vectors is 6,079 for both simulations

excellent. Similar agreement is seen in other quantities as well. The exact agreement between the two cases
clearly demonstrates that original time step size is adequate.

In [30] it was shown that the current RDT methodology recovers published [23] incompressible RDT kinetic
energy and Reynolds stress anisotropy data precisely. At the other extreme, for very high gradient Mach num-
ber, Yu & Girimaji [30] show that the current method produces results that match the exact pressure-release
analytical solution given in [28]. At intermediate Mach numbers, it must be pointed out that the velocity field
results are consistent with that of isentropic RDT of [28]. Thus, the RDT numerical implementation employed
in this paper produces results that are fairly insensitive to time-step and Fourier-grid size and yields physically
correct behavior at the asymptotic limits of zero and very large (2,880) Mach numbers.

2.3 RDT validation

To demonstrate the relevance of inviscid linear theory to physical intermediate Mach number turbulence, we
compare our RDT results against homogeneous-shear direct numerical simulation (DNS) data of [28]. As
RDT neglects non-linear interactions and viscous effects, we cannot expect a precise agreement with DNS.
We only aim for qualitative agreement that captures all the key physical trends. We compare the evolution of
RDT and DNS solenoidal anisotropy component bs

12 over a limited Mach number range in Fig. 6. Note that
very high Mach number simulations that are easily performed with RDT cannot be calculated with DNS due to
extremely large computational costs. Although there are distinct differences between RDT and DNS attribut-
able to non-linear effects, the general trends with increasing Mach number are very similar. The transient-peak
and asymptotic bs

12 values in the two cases are quite close. The dilatational anisotropy component bd
12 from

DNS and RDT are compared in Fig. 7. DNS indicates that the dilatational shear stress is quite insensitive to
Mach number and RDT captures this trend very well. In fact, at higher Mach numbers, the agreement between
RDT and DNS is quite good at all times. This is due to the fact that linearization is more justified at larger
gradient Mach numbers than at smaller values. Livescu et al. [19] show more comparisons between RDT and
DNS that further justify the use of RDT as an analytical tool to investigate compressible turbulence phenomena.

3 Results and analysis

In keeping with the objectives of the study, this section is sub-divided into three parts: (i) characterization
of velocity fluctuations; (ii) characterization of thermodynamic fluctuations; and (iii) investigation of flow-
thermodynamic interactions.
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Fig. 6 Solenoidal b12 anisotropy component of initially-incompressible homogeneous turbulence in pure shear at various Mach
numbers (arrows indicate direction of increasing Mach number). Solid line represents the incompressible limit. Plots are shown
for a DNS [28] (reprinted with permission from Cambridge University Press, Copyright [1997]) and b R-RDT

Fig. 7 Dilatational b12 anisotropy component of initially-incompressible homogeneous turbulence in pure shear at various Mach
numbers (arrows indicate direction of increasing Mach number). Solid line represents the incompressible limit. Plots are shown
for a DNS [28] (reprinted with permission from Cambridge University Press, Copyright [1997]) and b R-RDT

3.1 Characterization of velocity fluctuations

We first consider the evolution of kinetic energy. In the incompressible rapid distortion limit, turbulence behaves
like an elastic phenomenon and its evolution depends on total deformation (St) rather than deformation rate (S)
itself. At a given value of St , turbulence experiences the same mean deformation irrespective of the gradient
Mach number. Further, it can be shown that incompressible RDT turbulence evolution is independent of S when
considered in normalized time St . Therefore, it is common practice to consider incompressible turbulence evo-
lution in St units. Following [28], we first show the kinetic energy evolution of compressible turbulence in St
time units in Fig. 8 for a range of Mach numbers. Also included for comparison is the pressure-release (Burgers
limit) analytical solution of [28]. Most evident is the fact that for a given total deformation (St) the kinetic
energy is not a monotonic function of Mg0. Temporal evolution of the low Mach number cases (Mgo ≤ 0.7) is
very similar to that of incompressible turbulence. The intermediate Mach number cases (1 ≤ Mg0 ≤ 5) grow
distinctly more slowly than the incompressible cases. High Mach number cases (Mg0 > 5) exhibit a more
complex behavior. At early times the kinetic energy grows very rapidly as in Burgers turbulence. Then, at
some intermediate time, which depends on the initial Mach number, the growth rate slows down almost going
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3 [28]) overlaps the case Mg0 = 2,880 over the displayed range of shear time

to zero. At later St times, the kinetic energy is distinctly smaller than that of incompressible cases at the same
level of deformation. Simone et al. [28] and Sarkar et al. [25] identify this slowdown in kinetic energy growth
at intermediate and high Mach numbers as the stabilizing influence of compressibility.

Unlike incompressible turbulence, it is easy to verify that compressible RDT equations are not invariant to
S in strain-normalized time St . Therefore, it may be instructive to examine the kinetic energy growth in other
timescales. Clearly, acoustic timescale should be important in compressible turbulence. In Fig. 9, evolution
of turbulent kinetic energy is presented in acoustic (ta0/ l0) time units. Since the initial acoustic velocity and
lengthscale are identical for all cases, the observed behavior can be regarded as real-time evolution. This scaling
of time presents a vastly different and perhaps a clearer picture of the time evolution. The kinetic energy of the
low Mach number (Mg0 < 0.7) cases show no significant growth during the first several acoustic time units.
When growth does start, it is qualitatively same in all low-Mg0 cases. In the high Mach-number cases consid-
ered (Mg0 > 5), turbulence evolution exhibits three distinct stages: early period of rapid k growth followed by
duration where k is nearly a constant and a final period increased growth rate. The intermediate Mach-number
cases exhibit only two stages: initial period of slow or no growth followed by more rapid growth. Significantly,
asymptotic growth rate in all cases appear quite similar. Despite the variable growth rates of intermediate
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Fig. 10 Kinetic energy versus normalized time

and high Mach number cases, for a given elapsed time, kinetic energy content increases monotonically with
Mach number. Clearly, incompressible and Burgers real-time evolution represent the two extreme limits of
homogeneous compressible shear flow behavior. Interestingly, the final-stage growth of all intermediate and
high Mg0 appear to set in at about one acoustic time unit: 0.5 ≤ ta0

l0
≤ 3. It is significant to note that one

acoustic time unit (t = l0/a0) also corresponds to St = Mg0 and the time when the time-evolving gradient
Mach number is unity Mg(t) ≈ 1. This final stage of high Mg0 cases is qualitatively similar to the asymptotic
growth stage of low-Mg0 cases.

We next plot kinetic energy growth in Fig. 10 in mixed (geometric mean) strain-acoustic time: St/
√

Mg0.
Again, the three different stages of turbulence evolution are apparent. This scaling of time clearly demarcates
the duration of the first stage of growth. It is apparent that the switch from the rapid-growth first stage to nearly
zero-growth second stage happens at St ∼ √

Mg0 (dashed line in Fig. 10).

Regimes of turbulence Based on the kinetic energy evolution, we recognize—along the lines of [3,16,20,24,29]
– that three regimes of compressible turbulence behavior are possible. The demarcations between these regimes
are: the first regime occurs in the time interval 0 < St ≤ 2

√
Mg0; the time interval of the second stage is

2
√

Mg0 ≤ St ≤ O(Mg0); and the final regime of behavior occurs at all later times: St > O(Mg0). The
observations provide a basis for classifying the regimes as follows.

1. In the first regime, as evident from Fig. 8, the evolution is close to that of Burgers turbulence due to the
fact that pressure effects are negligible at the high Mach numbers. Thus, it is reasonable to call this early
period pressure-release (PR) regime.

2. With passage of time, the Mach number decreases as per (22), and at very large times (St > Mg0) the
Mach number falls below unity. It is reasonable to call this stage the sub-sonic or low-Mach number (LM)
regime.

3. Between PR and LM regimes lies the stage wherein the wave character of pressure manifests. Hence, we
call this the wave-character (WC) regime.

We will now examine the behavior of individual velocity correlations in the three regimes. Most of the
subsequent discussion employs mixed shear-acoustic time normalization as that evidently provides the clear-
est demarcation between the various regimes.

In Fig. 11 we present the evolution of the streamwise kinetic energy (u1u1). The behavior seen in the figure
is very similar to that of total kinetic energy exhibiting the three Mach number regimes. This should not be
surprising as the streamwise fluctuations constitute a very high fraction of total, kinetic energy. The evolution
of stream-normal kinetic energy (u2u2) is plotted in Fig. 12. The overall magnitude is much lesser than that
of u1u1 as there is no direct production of this component. While three regimes of behavior are again evident,
manner of evolution in each regimes is quite different from that of k and u1u1. In the PR regime, u2u2 is
virtually a constant initially and dips slightly toward the end. The u2u2 growth is oscillatory in the second and
third stages: the net growth is slightly higher in WC regime than during the LM period. The oscillatory nature
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Fig. 12 Stream-normal ( u2u2
2k0

) component of turbulent kinetic energy versus normalized time

is more pronounced in WC rather than LM stage. It is a simple matter to recognize that u2u2/2 represents
dilatational kinetic energy. With κ2 being the only significant component of wavevector at late times, any
fluctuation with non-zero u2 must be dilatational [19]. By the same token, the kinetic energy associated with
u1 and u3 is most likely due to solenoidal or incompressible motion. The evolution of u3u3 for the various
cases is shown in Fig. 13. This component is virtually unchanged from its initial value in the PR zone. During
the WC period, this energy component grows. But the growth rate in the intermediate regime appears to be a
function of initial Mach number. Smaller the initial Mach number, larger is the intermediate-regime growth
rate. The growth rate reaches its peak in the LM regime. The evolution of shear-stress (u1u2) is shown in Fig.
14 in St time and in Fig. 15 in St/

√
Mg0. The small Mach-number cases follow the incompressible behavior

fairly closely. The higher Mach-number cases show a significant difference. During the PR period u1u2 is neg-
ative as in the incompressible case but the magnitude is larger. This results in larger turbulence production and
higher levels of kinetic energy. The duration of PR regime increases with increasing initial Mach numbers. At
later times (WC regime), u1u2 is oscillatory around a mean value of zero. Consequently, production vanishes
explaining why the kinetic energy growth rate is nearly zero in the WC regime. With passage of more time, the
amplitude of u1u2 significantly diminishes even as the oscillations fade away. Finally, during the LM period,
the negative correlation between u1 and u2 is re-established as indicated by u1u2 values approaching that of
incompressible turbulence.
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3.2 Characterization of thermodynamic fluctuations

All of the previous works have focused on kinetic energy and by virtue of employing perfect-gas state equation
in this work, we present an accurate account of the internal/total energies and thermodynamic (density and
temperature) fluctuations as well.

3.2.1 Internal energy

The evolution of change in internal energy, �E (=cv(T − T 0)) as a function of Mach number is shown in Fig.
16. Again, the three-regime behavior is evident. In the PR regime, there is virtually no change in energy. In the
WC zone, there is a strong growth in internal energy even as oscillations are evident. Finally, the oscillations
fade away, followed by monotonic growth in the LM regime. Internal energy evolution bears a strong resem-
blance to that of u2u2 in all the regimes. In Fig. 17, the evolutions of internal energy and u2u2

2 are compared
for a few select cases. Strikingly, the two are nearly identical (even though the oscillations are out of phase) in
WC and LM regimes. This observation strongly suggests equipartition of energy between dilatational turbulent
kinetic energy and internal energy increase. This equipartition is seen in all of the computed cases.
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Fig. 16 Change in internal energy versus normalized time

3.2.2 Density and temperature fluctuations

The evolution of density and temperature fluctuations are given in Figs. 18 and 19 respectively. The density
variance does not grow in the PR regime, experiences oscillatory growth during WC period followed by mono-
tonic increase in the LM stage. Temperature evolution also shows a similar trend. Due to lack of coupling
between thermodynamic and flow fields, the thermodynamic variables do not grow in the PR regime. In LM
regime, they grow nearly linearly as dilatational and solenoidal fields evolve independently.

3.3 Flow-thermodynamic interactions

The thermodynamic state variables—density and temperature—appear explicitly in the Navier-Stokes equa-
tions and serve as the conduits for flow-thermodynamics interactions. In this work we examine the flow-
thermodynamics interactions by focusing on the behavior of the pressure-strain correlation tensor (�i j ) and
its trace, pressure dilatation (�kk),
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�i j = p′
2

(
∂u

′
i

∂x j
+ ∂u

′
j

∂xi

)

. (23)

Specifically, we examine how the redistributions among the various Reynolds stress components and that
between kinetic and internal energy are affected by gradient Mach number.

In low gradient Mach number incompressible flows, density is constant and pressure is a Lagrange mul-
tiplier rather than a thermodynamic state variable. In this flow regime it has been well documented that
pressure-strain correlation transfers energy from streamwise (u1u1) and stream-normal (u2u2) fluctuations to
transverse (u3u3) fluctuations. Correspondingly, pressure-strain tensor components �11 and �22 are negative
and �33 is positive. Finally, pressure-dilatation is negligible indicating that there is no transfer of energy from
kinetic to internal form. These energy exchanges are schematically captured in Fig. 20.

As the gradient Mach number increases, pressure acquires thermodynamic significance and its evolution
is now governed by the energy and state equations. Under these conditions, pressure attains wave-like char-
acter and consequently pressure-strain correlation evolution becomes highly oscillatory. First we examine
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the behavior of �12 component in Fig. 21. As expected, �12 does not evolve much in the early PR stage,
because the flow field is dominated by inertial action and pressure has negligible role to play in this stage. In
the WC regime, owing to the dominant wave nature of pressure, �12 begins to evolve with oscillations that
continue into the LM regime as well. However in the LM regime, a distinct near monotonic growth can be
clearly observed. Moreover, we observe that at any given time instant ( St√

Mg0
), strength of �12 is higher in
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a simulation with higher initial gradient Mach number. All these trends observed in Fig. 21 are very similar
to the trends earlier seen in the case of thermodynamic fluctuations: T ′ T ′ and ρ

′
ρ

′ (Figs. 18 and 19). Since
the strength of pressure fluctuation is simply a linear combination of density and temperature fluctuations, we
can conclude that the overall behaviour of �12 correlation in various regimes of rapid-distortion is principally
shaped by the behaviour of thermodynamic fluctuations.

Our results reveal that a direct examination of the normal pressure-strain tensor components is difficult as
the oscillatory behavior obfuscates the overall energy transfer details. Instead, we investigate the evolution of
the temporal integral of the normal pressure-strain tensor components. Such an approach is reasonable as the
integral represents the net amount of transferred energy—recall that pressure-strain component is the transfer
rate. In Figs. 22, 23, 24, 25, we present the evolution of the integral of the normal pressure-strain correlation
tensor components and their sum—pressure dilatation. Again, in the beginning of the PR regime, all compo-
nents are understandably small and the flow evolves impervious to the thermodynamic state variables. However
toward the end of the PR regime (1 < St√

Mg0
< 2) pressure correlations become sizable and start influencing

the turbulent fluctuations. As can be seen from the figures, during this stage, the integrals of �11, �22, �i i are
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all negative and �33 is positive. The inference is that energy is drawn from u1u1 and u2u2 components and
deposited into internal energy and u3u3. These energy exchanges are schematically captured in Fig. 26.

As turbulence evolution enters the WC stage ( St√
Mg0

≥ 2), we see an important change in the energy
exchange dynamics. The sign of the integral of �22 changes to positive from negative, while those of �11 and
�i i continue to be negative during the WC and LM regimes. Further, �33 becomes sizable and continues to
grow. The corresponding energy transfer scenario is presented in Fig. 27. Pressure removes energy from the
streamwise fluctuations and transfers it into internal energy and also into stream-normal and transverse velocity
fluctuations. Furthermore, in a simulation with higher initial gradient Mach number, �11, �22 and �i i get
amplified indicating more transfer of energy from stream wise direction to stream-normal and to the internal
mode of energy. However, the tendency of energy transfer to transverse direction (u3u3) is monotonically
suppressed as gradient Mach number increases. This is evident in Fig. 24.

We will now summarize and explain the observed behavior. In the early PR regime, flow-thermodynam-
ics interactions are negligible as the flow inertia dominates over pressure effects. Toward the end of the PR
regime, pressure fluctuations become important and begin to drive turbulence toward equipartition of energy
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Fig. 27 Energy transfer in WC and LM regimes of compressible turbulence (IE implies mean internal energy, I E = cvT )

between the internal mode and dilatational component (u2u2). Since in the beginning of the of PR regime
there is substantial disparity between u2u2/2 and internal energy (see Fig. 17, u2u2/2 > �E), the immediate
action of pressure is to: (a) lower u2u2 (via �22) and (b) increase internal energy (via �i i ). Thus in this phase
( St√

Mg0
< 2), both �22 and �i i must be negative, and this is evident in Figs. 23 and 25. Once the initial disparity

between u2u2/2 and internal energy is removed, the same equi-partitioning tendency of pressure fluctuations
now ( St√

Mg0
≥ 2) causes simultaneous increase in both internal energy and u2u2. This can be seen in Fig. 17 as

well. This simultaneous increase in stream-normal kinetic energy and internal energy is realized by negative
pressure dilatation (Fig. 25) and positive �22 (Fig. 23) in the WC and LM regimes.

4 Summary and conclusions

In rapidly sheared homogeneous compressible turbulence, it is known that kinetic energy exhibits three dis-
tinct evolution regimes depending on the value of gradient Mach number [28]. We label the three stages as
pressure-released (PR), wave-character (WC) and sub-sonic low-Mach number (LM) regimes in decreasing
order of Mach number. In this paper, we characterize the behavior of flow and thermodynamic fluctuations in
these regimes and examine flow-thermodynamics interactions. The main findings of the paper are now listed.

1. Mach number of relevance: The appropriate Mach number for characterizing RDT behaviour can be
gleaned by an examination of (16). It is clear that velocity amplitude of a given mode depends upon
wavenumber and mean strain-rate. This observation leads us to define the RDT gradient Mach number as:

Mg(t) = S

a |κ| (24)

where |κ| is the characteristic wavenumber at a given time t .
2. Time-scales of relevance: Turbulent kinetic energy growth is examined in acoustic and mixed acoustic-

shear times. In previous studies [25,28] the growth was investigated in shear time leading to the conclusion
that turbulence could grow faster for lower initial gradient Mach number than for larger initial gradient
Mach number. In acoustic (real) time, it is clearly demonstrated that larger initial gradient Mach number
lead to more rapid growth. It is the shear normalization of time that leads to the impression of more rapid
growth in low Mach number flows.
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3. Evolution of flow variables: Kinetic energy grows very rapidly in PR regime, very slowly in WC stage
and exhibit nearly incompressible evolution rate in the final LM stage. Streamwise fluctuations mirror this
behavior. However, stream-normal fluctuations exhibit a very different trend. They experience depletion in
the PR regime and subsequently rapid oscillatory growth in WC and LM stages. The transverse fluctuations
grow only during the LM stage in a manner similar to incompressible shear turbulence. It must be noted that
stream-normal fluctuations are dilatational in nature and the other two components are largely solenoidal.
In DNS calculations (e.g., [26]) this uninhibited growth of thermodynamic fluctuations is not observed.
Indeed, even in a viscous RDT simulation (unpublished work), the thermodynamic fluctuations decline
at late times. The explanation is straight-forward—viscous effect acts preferentially on the dilatational
fluctuations due to their smaller length-scale. Recall that the length-scale associated with dilatational field
is given by 1/κ2. As κ2 grows with time, the dilatational length-scale gets smaller and viscosity dissipates
these fluctuations very rapidly. The solenoidal field—which is orthogonal to κ2—is associated with longer
length scale and consequently is not dissipated as rapidly. As dilatation vanishes, the mechanism of energy
transfer from mechanical to thermodynamic fluctuations—pressure-dilatation—also diminishes leading to
a reduction and ultimate disappearance of thermodynamic fluctuations.

4. Evolution of thermodynamic state variables: Density and temperature fluctuations grow slowly in PR
regime and then very rapidly in WC and LM regimes. Interestingly, they continue to grow even at low
Mg values. This is due to the fact that any initial dilatation present in the incompressible regime cannot
be eliminated by the effects of pressure in RDT physics. At low Mach numbers, pressure will preserve
incompressibility only in the absence of any initial dilatational field. If a dilatational field is initially pres-
ent, even at low Mach numbers, density fluctuations can survive in the flow field. As discussed in the last
passage, in DNS studies, pressure-dilatation will diminish at later times due to viscous effects.

5. Flow-thermodynamics interactions: The interactions manifest via pressure-strain correlation tensor (�i j )
and pressure-dilatation (�kk). In all three regimes, pressure-dilatation acts to bring about equipartition
between dilatational kinetic energy and internal energy. The individual pressure-strain tensor components
behave differently in the three stages. In the PR stage, �11 and �22 are negative indicating energy transfer
from u1u1 and u2u2 to internal energy. In WC and LM regimes �22 becomes positive and �33 is also
positive and non-negligible. Thus the energy transfer in the final two stages are from u1u1 to u2u2, u3u3
and internal energy.

In summary, this study carefully characterizes the behavior of flow and thermodynamic fluctuations in high
Mach number shear turbulence. While these observations and inferences are of intrinsic interest, further anal-
ysis is needed to clearly explicate the underlying physical mechanisms. In a follow-up study [3], we examine
the influence of initial temperature fluctuations, turbulent Mach number and dilatational field on the turbulence
evolution. With the introduction of initial thermodynamic fluctuations the basic three-stage behavior remains
intact. It is found that these fluctuations only influence the onset and the duration of various regimes. By suit-
ably manipulating the thermal fluctuations one can prolong or curtail the stabilizing second regime. Variations
in turbulent Mach number do not significantly alter the onset or duration of the various regimes.
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