
Journal of Turbulence
Vol. 13, No. 12, 2012, 1–29

Studying Lagrangian dynamics of turbulence using on-demand fluid
particle tracking in a public turbulence database

Huidan Yua†, Kalin Kanovb, Eric Perlmanb, Jason Grahama, Edo Frederixa+,
Randal Burnsb, Alexander Szalayc, Gregory Eyinkd and Charles Meneveaua∗

aDepartment of Mechanical Engineering; bDepartment of Computer Science; cDepartment of
Physics and Astronomy; dDepartment of Applied Mathematics and Statistics, The Johns Hopkins

University, Baltimore, MD 21218, USA

(Received 17 December 2011; final version received 28 February 2012)

A recently developed public turbulence database system (http://turbulence.pha.jhu.edu)
provides new ways to access large datasets generated from high-performance com-
puter simulations of turbulent flows to perform numerical experiments. The database
archives 10244 (spatial and time) data points obtained from a pseudo-spectral direct
numerical simulation (DNS) of forced isotropic turbulence. The flow’s Taylor-scale
Reynolds number is Reλ = 443, and the simulation output spans about one large-scale
eddy turnover time. Besides the stored velocity and pressure fields, built-in first- and
second-order space differentiation, as well as spatial and temporal interpolations are
implemented on the database. The resulting 27 terabytes of data are public and can be
accessed remotely through an interface based on a modern Web-services model. Users
may write and execute analysis programs on their host computers, while the programs
make subroutine-like calls (getFunctions) requesting desired variables (velocity and
pressure, and their gradients) over the network. The architecture of the database and
the initial built-in functionalities are described in a previous paper of Journal of Tur-
bulence (Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S.
Chen, A. Szalay, and G. Eyink, A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence, J. Turbul. 9 (2008), p.
N31). In the present paper, further developments of the database system are described;
mainly the newly developed getPosition function. Given an initial position, integration
time-step, as well as an initial and end time, the getPosition function tracks arrays of
fluid particles and returns particle locations at the end of the trajectory integration time.
The getPosition function is tested by comparing with trajectories computed outside of
the database. It is then applied to study the Lagrangian velocity structure functions as
well as the tensor-based Lagrangian time correlation functions. The roles of pressure
Hessian and viscous terms in the evolution of the symmetric and antisymmetric parts
of the velocity gradient tensor are explored by comparing the time correlations with
and without these terms. Besides the getPosition function, several other updates to the
database are described such as a function to access the forcing term in the DNS, a
new more efficient interpolation algorithm based on partial sums, and a new Matlab
interface.

Keywords: forced isotropic turbulence; Lagrangian time correlation; particle tracking;
turbulence database; web services

∗Corresponding author. Email: meneveau@jhu.edu †Present address: Department of Mechanical
Engineering, Indiana University–Purdue University, Indianapolis, IN, USA. +Permanent address:
Mechanical Engineering, Eindhoven University of Technology, The Netherlands.

ISSN: 1468-5248 online only
C© 2012 Taylor & Francis

http://dx.doi.org/10.1080/14685248.2012.674643
http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

http://dx.doi.org/10.1080/14685248.2012.674643
http://www.tandfonline.com

2 H. Yu et al.

1. Introduction

Due to advances in computer hardware and algorithms, turbulence simulations supported by
high-performance computing infrastructures have continued to expand. Direct Numerical
Simulations (DNS) of turbulent flows using on the order of 10003–40003 grid points have
been reported [1–4]. In the turbulence research community, the prevailing approach is that
individual researchers perform large simulations that are analyzed during the runs and
only a small subset of time-steps are stored for subsequent and by necessity more “static”
analysis. A number of representative snapshots are stored, while the majority of the time
evolution has to be discarded. As a result, much of the computational effort is not utilized
as effectively as it could have been. In fact, often large simulations of the same process
must be repeated after new questions arise that were not initially obvious. Storing the
entire space-time history of a simulation, however, generates datasets that are very large
and very difficult to access using prevailing approaches. Thus, the increasingly larger, top-
ranked simulations run the risk of becoming less and less accessible to the wider turbulence
scientific community.

As a step to develop new effective ways to translate the massive amounts of computa-
tional turbulence data into meaningful knowledge, a new “cyber fluid dynamics" paradigm
has been proposed, which combines high-fidelity DNS of turbulence with modern database
technology [5]. The newly created Johns Hopkins University (JHU) public turbulence
database (http://turbulence.pha.jhu.edu) archives a 27-terabytes (TB) dataset from a DNS of
forced isotropic turbulence consisting of 10244 (spatial and time) samples, spanning about
one large-scale eddy turnover time. The database stores velocity and pressure fields. The do-
main size is in a [0, 2π]3 domain and the Taylor-microscale Reynolds (Re) number is Reλ �
433. The spatial resolution is dx = 2π/1024 and the Kolmogorov scale is ηK = 0.00287
so that dx/ηK ∼ 2.1. The turbulence integral scale is L = 1.376, the velocity root-mean-
square (rms) value is u′ = 0.681 and the mean dissipation rate is ε = 0.092, in the units of
the simulation. The Kolmogorov time-scale is τK = 0.045. The stored time-steps are sepa-
rated by a time-interval of 0.002 (the original DNS was performed with a time-step of 2 ×
10−4 using a very conservative Courant-Friedrichs-Lewy condition (CFL) condition [5]).

One of the hallmarks of the database is a web services interface that allows users
to access data in a user-friendly fashion while allowing maximum flexibility to execute
desired analysis tasks. Remote users may write and execute analysis programs on their
own computers, while their programs make subroutine-like calls named getfunctions (e.g.
getVelocityAndPressure, getVelocityGradient, getPressureLaplacian, etc.) requesting de-
sired variables, such as velocity, pressure, and their gradients, over the network. First- and
second-order space differentiation as well as spatial and temporal interpolations are imple-
mented on the database as pre-defined functions. Instead of being restricted to analysis on
the fly during DNS, researchers may write and execute more specialized analysis programs
on their host computers at any time.

The data and the initial built-in functionalities have already been described in detail in a
previous publication [5]. Due to easy accessibility and flexibility, the database has attracted
researchers from all over the world since its inception, and its use has resulted in various
publications [6–14]. Nevertheless, current functionalities focus on extracting data at single
time-steps of the turbulent field, best suited for Eulerian studies of turbulence. There is also
considerable interest in the Lagrangian description of turbulence. A Lagrangian description
of turbulence has advantages in studies of turbulent transport and mixing processes, as well
as relating statistics with dynamical descriptions following fluid particles. An extensive
database of the precomputed Lagrangian trajectories for a large number of fluid and

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 3

inertial particles, and turbulence quantities along the trajectories, has been in operation for
several years [15].

The study of turbulence from the Lagrangian viewpoint has a long history, with the
earliest works of Taylor [16] and Richardson [17], both pre-dating Kolmogorov [18]. It
was recognized that transport issues are addressed naturally from the Lagrangian view-
point, which has since been successfully employed in the theoretical treatment of turbulent
mixing [19–23]. The Lagrangian concepts are also useful when considering entrainment
processes at turbulent/laminar interfaces [24], and the Lagrangian stochastic models are
widely used to model processes ranging from atmospheric pollution transport to turbulent
combustion [25]. The Lagrangian dynamics of the velocity gradient tensor can be used
to understand many fundamental and intrinsic properties of small-scale motions in high-
Reynolds turbulence [12]. Studying the Lagrangian turbulence requires following a large
number of particle trajectories in order to capture the overall space and time-scales. In
spite of significant progress in recent years [22, 26, 27], experimental Lagrangian mea-
surements remain challenging, especially for high Reynolds number turbulence. Extraction
of Lagrangian data from DNS is conceptually easy, but requires the full time evolution to
have been stored, such as in the JHU turbulence database, or to store the trajectories of a
predefined set of particles [15]. To track fluid particles with arbitrary initial locations, or
even for backward tracking over extended time periods, trajectories must be recomputed
on demand. However, using currently available tools in the JHU turbulence database, users
must send requests back and forth over the network for each integration time-step of the
particle tracking. Improvements to this approach must follow the best practices of databases,
such as “move the program to the data” [28].

As a new tool to facilitate Lagrangian analysis, we develop the getPosition function
inside the database. It tracks arrays of particles moving with the flow and returns particle
locations at the end of the trajectory integration time. The relevant algorithm and data
management approach for the new getPosition function is described in Section 2, and
the implementation is tested by comparing trajectories computed inside and outside the
database. In Section 3, we study the Lagrangian velocity structure functions and compare
the results from the JHU database at Rλ ∼ 430 with the results from the literature at
other Reynolds numbers. In Section 4, we study the Lagrangian time correlation functions
of the symmetric and antisymmetric parts of the velocity gradient tensor in which the
impact of various terms in the corresponding dynamical evolution equation is quantified
systematically, including these terms separately. In Section 5, we use the data to examine
important features of a model for the pressure Hessian tensor and how its predictions
compare with the data. We summarize the results in Section 6 with a short discussion.
Other recent updates to the JHU database, such as the new getForce function, more efficient
algorithms for interpolation, as well as new Matlab interfaces, are presented and documented
in Appendices A, B, and C, respectively.

2. The getPosition function: algorithm and data handling

Existing database built-in functionalities can retrieve velocity, pressure, as well as their
derivatives at a specific location and time within the archived time history. To study the
Lagrangian turbulence, one needs to perform an integration operation along fluid particle
trajectories, e.g., using the Runge–Kutta method, which at present requires data transfers
between a user’s computer and the database at every small time-step needed in the La-
grangian integration. A more user-friendly and efficient approach would be for a user to

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

4 H. Yu et al.

let the database compute the fluid trajectories by doing computations in the database. In
this section we describe the algorithm used for such integration, as well as the way the
computations are performed inside the various database layers. The end result is a new
getfunction called getPosition that allows to track arrays of fluid particles simultaneously
and returns final particle locations at the end of the specified trajectory integration time. It
supports both forward and backward tracking of fluid particles.

2.1. Fluid particle-tracking algorithm

The getPosition function uses the second-order accurate Runge–Kutta integration. Given
fluid particle locations Xp at a user-specified start time (tST), the function returns the
particle locations at a user-specified end time (tET). The user also specifies a particle
integration time-step (�t∗p). Forward tracking is accomplished by specifying tET > tST ,
whereas backward tracking is accomplished by specifying tET < tST . The sign of the time-
step need not be specified to make distinction between forward and backward tracking,
since inside the tracking algorithm it is taken to be �tp = sign[tET − tST]|�t∗p|.

Particle tracking is accomplished by integrating the following equation between times
tST and tET

dxp

dt
= u(xp, t), xp(tST) = Xp, (1)

where xp(t) and u(xp, t) denote the position of the fluid particle originating (at initial time
tST) from position Xp and the velocity field at the particle location, respectively. To advance
the particle positions between two successive time instants tm and tm+1(= tm + �tp), the
predictor step yields an estimate

x∗
p(tm) = xp(tm) + u(xp(tm), tm)�tp. (2)

The corrector step then gives the particle position at tm+1 as

xp(tm+1) = xp(tm) + �tp
1

2

[
u(xp(tm), tm) + u(x∗

p(tm), tm+1)
]
. (3)

or

xp(tm+1) = xp(tm) + 1

2

[
x∗

p(tm) − xp(tm)
] + 1

2
�tpu(x∗

p(tm), tm+1). (4)

The integration proceeds until tm reaches the user-specified tET . The last integration time-
step is typically done using a smaller time-step so that the integration ends exactly at the
specified tET . GetPosition then returns xp(tET) for all particles that were at initial locations
Xp.

For this integration scheme, the time-stepping error is of order (�tp)3 over one time-step.
In general, accurate spatial and time interpolations are crucial to obtain the fluid velocities
while tracking particles along their trajectories. Spatial interpolation with various optional
orders of accuracy can be specified by the user. Time interpolation is done by default
using PHCIP [5]. To call this function, a user needs to provide tST , particle number, an
array containing the positions of each particle at tST , �t∗p, and tET . On output, an array

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 5

containing the positions of each particle at tET is returned. As a time-step for particle
tracking, in what follows we use �tp = 0.0004 for tests and applications (i.e. there are five
particle-tracking time-steps for each database time-step), unless stated otherwise.

2.2. Data and particle movements across servers

Due to the movement of particles within different portions of the data volume, the imple-
mentation of the getPosition function on the various database layers is less straightforward
than the existing functions. In general, the data sets are stored in multiple data servers,
e.g. the current 27-TB DNS data are partitioned across six data servers. For the existing
functions, since only one specific time is touched, all the operations associated with a
particular point in space, including temporal and spatial interpolation, differentiation, etc.
can be executed within one of the data servers that store the data. The upper-level web
server plays a role to break down the user’s batch query into pieces corresponding to each
of the database servers and thus assigns each point query to a particular server, where the
data retrieval and computation happens. Each of the data servers perform the requested
computation for their portion of the entire batch. The retrieved variables are returned to the
web server, where they are assembled and sent back to the user.

For getPosition, because of the movement of fluid particles, it is often the case within the
desired time-integration period, that particles leave one data server and enter another data
server either after the prediction semi-step (Equation (2)) or the full time-step (Equation
(4)). In our current implementation, in order to alleviate the individual database servers
from the burden of keeping track of each individual particle and whether it is within the
boundaries of each server, we reassign all of the particles after each semi- or full-step.

Figure 1 shows the movement of data between the web server and the database servers.
During the first iteration of the algorithm the predictor step is evaluated. The initial set
of particle positions (xp(tm)) is distributed among the database servers according to the
spatial and temporal partitionings of the data. This step requires the velocity for each
particle at initial positions (u(xp(tm), tm)). The distribution of points across database servers
ensures that the data are available locally on each database server. Each set of predictor
positions (x∗

p(tm)) is evaluated according to Equation (2) in the computational module of

Figure 1. Interaction and data movement between the web server and database server during the
execution of the getPosition function.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

6 H. Yu et al.

each database server. The predictor positions are then returned to the web server. Using the
predictor positions, the web server reassigns the particles to the database servers, and the
corrector step is evaluated using Equation (4). This step requires the retrieval of the velocity
for each particle at the predictor positions (u(x∗

p(tm), tm+1)) and the initial particle positions,
both of which are provided by the web server. Positions xp(tm+1) are again evaluated in the
computational module of each database server and returned to the web server. This process
continues until the specified tET is reached. The reassignment of particles before each step
in the Runge–Kutta integration ensures that the data requested for each particle position
are guaranteed to be found on the database server that is issuing the request and performing
the integration.

2.3. Accuracy tests and performance

The accuracy of particle tracking inside the database (using getPosition) is tested by com-
paring the trajectories with those evaluated using particle tracking as coded on a local host
(called “local tracking”), which involves calls to the database at each of the integration
time-steps. The integration algorithm in both methods is identical, as described above.
It is found that both approaches return the same trajectories, typically up to the sixth or
seventh digit after the decimal point (essentially machine accuracy and chaotic behavior).
The agreement is illustrated below by comparing getPosition and local coding for two fluid
particles and tracking them from the beginning to the final time available in the database.
Figure 2 shows the coordinates of two particles starting from x = 3.02, y = 3.57, z = 5.36
(empty symbols) and x = 3.97, y = 4.96, z = 4.29 (solid symbols), and moving along
with the local flow. The particles are tracked in the whole-time domain until t ≈ 45τK .
Solid lines denote the integration done on a “local computer”, whereas symbols denote the
integration done using the getPosition function.

t/ K

x,
 y

, z

0 10 20 30 40
2

3

4

5

6

(a)

x

1

2

3

4

y
3

4
5

6
3

4

5

6

(b)

Figure 2. (a) Time evolution of two arbitrary fluid particles in x, y, z directions using the getPosition
function (symbols) and local coding (lines) using the same integral algorithm. Circles: x; triangles:
y, squares: z. Empty symbols: particle 1 starting from x = 3.02, y = 3.57, z = 5.36; solid symbols:
particle 2 starting from x = 3.97, y = 4.96, z = 4.29. Lines denote the integration done on a “local
computer”, whereas symbols denote the integration done using the getPosition function. (b) 3D view
of two particle tracks (symbols same as in part (a)).

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 7

A noticeable feature of getPosition compared to the Eulerian-based getFunctions is the
time expense because of the needed small integration time-step and the need to call the
getVelocity function twice in each integration step as described in Section 2 (Equations (1)–
(4)). For large number of particles (e.g. over 100) and long integration time, the resulting
calls can be very time-consuming if the particles are selected randomly in the entire domain.
In practice, it is more efficient to collect particles from several randomly selected sub-cubes,
e.g. consisting of 163 or 323 DNS grid-points. This is more efficient because it minimizes
I/O of the data that are stored in atoms of size 723 [5]. Overall, more sampling particles
are typically needed to achieve the same statistical convergence as compared to sampling
randomly over the entire domain, but the overall efficiency is still significantly improved
with such “sub-cube sampling”.

When comparing the speed of the GetPosition function with the speed of tracking
the particles on a local computer, we remark that it is difficult to obtain fully repeatable
performance measures, since the performance depends greatly on typical network speeds
and system load, which can vary greatly over time. Nevertheless, the relative trends as
shown in Figure 3 are typically observed. The figure compares integration times when using
GetPosition and particle tracking coded on a local computer (“local coding”), respectively,
using exactly the same algorithm. To perform the comparison, we select 10 sub-cubes of
size N (N grid-points on a side) at random locations, and track N3 particles starting at each
of the grid-points inside each sub-cube. We test two integration time-steps �tp and total
tracking time tET − tST . The time required to finish the total integration is obtained for each
of the 10 sub-cubes, and the times are averaged over 10 sub-cubes. Sub-cube sizes between
N = 2 and N = 49 were used, corresponding 8 to 117,649 particles being tracked in each
cube. In Figure 3, getPosition clearly shows the speedup against the local coding. For larger
�tp and small tET − tST in plot (a), the speedup increases suddenly as the particle number
increases above ∼4000. For large particle numbers, the time expense to use the getPosition
function can be three times less than tracking the particles on a local computer relying on
data transfers at each intermediate time. For the case of smaller �tp and longer tET − tST

Number of points

E
xe

cu
tio

n
tim

e
(s

)

100 101 102 103 104 1051

2

3

4

5

6

7

8

9

10

(a) Number of points

E
xe

cu
tio

n
tim

e
(s

)

101 102 103 104 10510

15

20

25

30

35

40

45

(b)

Figure 3. Performance comparison of getPosition (circles) vs. local coding (squares) of integration
for particle tracking with integration time-step �tp and time t = tET − tST . (a) �tp = 6.67 × 10−4,
tET − tST = 6.0 × 10−3; (b)�tp = 4.0 × 10−4, tET − tST = 2.0 × 10−2.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

8 H. Yu et al.

shown in plot (b), the execution time is observed to increase more gradually. The time
required to finish the integration using GetPosition increases weakly even as the particle
number increased significantly. This is because the sub-cube size (N) is always smaller
than the 723 data-atoms. Hence, I/O needs are taxed about the same regardless of the value
of N .

As mentioned before, the getPosition function may be used for backward tracking.
An interesting test is to track particles forward in time, arrive at some final position, and
then follow this operation by backward tracking for the same amount of time in order to
determine how far from the original position the fluid particle has been displaced. In the
absence of roundoff and discretization errors, one would expect the initial and final positions
to be the same independent of time. In the presence of roundoff and discretization errors
in a highly chaotic flow, one expects exponential spreading of fluid particle displacements,
with the Lyapunov exponents of the order of the appropriate inverse eddy turnover time-
scales. Suppose a fluid particle is located initially at Xp. It is first tracked forward from the
initial time tST = 0 until the time tET = t using getPosition (with an integration time-step,
�tp = 0.0004). The final positions are then used as initial positions for backward tracking,
setting tST = t and tET = 0 (with the same integration time-step |�tp| = 0.0004). We
denote the return location as X′

p. Such tracking is performed for a set of thousands of
particles. For small t we track 10,000 particles, for intermediate t we use 6000 particles,
and for long times (t > 1.7), a set of 2000 fluid particles is tracked. The difference between
Xp and X′

p is quantified using the rms position-difference (denoted as δxrms, δyrms, and
δzrms) of the three components of the position-difference vector X′

p − Xp.
The results from such forward and backward tracking tests are shown in Figure 4, where

the three rms values are shown as functions of the forward–backward integration time t .
At small t , the errors observed in Figure 4 are of the order of machine accuracy 10−7 and
can thus be considered to be round-off errors. At larger t , the growth of rms displacement
appears consistent with the Lyapunov exponents appropriate for different separation scales.

t
0 0.5 1 1.5 2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

x rms

y rms

z rms

Figure 4. Root mean square of three coordinates of the position-difference vector arising from
forward and backward fluid particle tracking using the getPosition function, plotted as function of
forward–backward tracking time t .

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 9

At small t (at t < τK), we expect that the errors will grow as ∼ exp(t/τK), where τK = 0.044
is the Kolmogorov time-scale of the data. This translates into a relatively steep slope of
log10(e)/0.044 ∼ 10. Up to times t ≈ 1, the rms separation distance upon return remains
smaller than one grid-spacing dx ∼ 6 × 10−3. Once the separation distances grow to scales
pertaining to the inertial range, one expects Lyapunov exponents of the order of ε1/3δx

−2/3
rms

(where ε ≈ 0.093 is the mean dissipation rate of the data). For example, for δxrms = 0.1,
this corresponds to a slope of log10(e) × 0.0931/3 × 0.1−2/3 ∼ 0.9 in the log-linear plot.
The range of slopes mentioned is quite consistent with the trends observed in Figure 4.

3. Lagrangian velocity structure functions

In this section, the new getPosition function is used to evaluate the Lagrangian structure
functions. It is well known that velocity differences across two points separated by a distance
r are highly intermittent in the inertial range of scales for η � r � L [29]. Much of the past
evidence for intermittency has been obtained from Eulerian quantities, i.e. the moments
of the spatial velocity increments. Among others, anomalous scaling of velocity increment
moments, and the evolving shapes of their probability density functions (PDF) at different
scales, are regarded as Eulerian hallmarks of intermittency [29]. Intermittency in temporal
velocity statistics, which for proper Galilean invariance properties should be evaluated in
the Lagrangian frame, moving with the fluid, has been studied in detail only more recently.
This is due to advances in experimental techniques [22, 26, 27] and in computer simulations
[30], as well as the availability of the Lagrangian time-series of turbulence (such as that
from data described in [31]).

A quantity of central interest for Lagrangian studies of turbulence is the Lagrangian
velocity structure function (LVSF). In analogy to the Eulerian velocity structure function,
the LVSF is defined as

Sp(τ) =< (δτ v)p >=< [v(t + τ) − v(t)]p >, (5)

where v denotes a single velocity component of a fluid particle. The time-lag is taken along
a fluid particle trajectory. There have been detailed assessments of the scaling behavior,
Sp(τ) =< (δτ v)p >∼ τ ξ (p), with a focus on the scaling exponent ξ (p) and its dependence
on moment order p. Recently, Biferale et al [30] presented a detailed comparison between
state-of-the-art experimental and numerical data of LVSF in turbulence. In their paper
[30], the DNS data were obtained from a statistically homogeneous and isotropic turbulent
flow with Reλ = 178 and 284. The experimental data were obtained at Reynolds number
ranging from Reλ = 350 to 815 in a swirling water flow between counter-rotating baffled
disks. They analyzed intermittency at both short, τ ≈ τη, and intermediate, τη < τ � TL,
time-lags.

Here we use the DNS data (Reλ = 443) in the JHU turbulence database to compute
LVSFs. We use the getPosition function to track about 14, 000 fluid particle trajectories.
For the sake of efficiency, when calling getPosition as mentioned above, we collect particle
trajectories starting from sub-cubes chosen randomly from the entire domain, and then
randomly select particles in each sub-cube. The particle number varies with the sub-cube
size, as indicated in Table 1. The largest time-lag is about 45τK , within the database’s
available time range.

Figure 5 shows the compilation of the normalized second-order LSVFs at different
Reynolds numbers from three datasets from DNS and four datasets from experimental
measurements. The solid line is from the analysis of the data in the JHU turbulence

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

10 H. Yu et al.

Table 1. Sub-cube sizes and particle numbers used for starting location of fluid particle tracking.

Sub-cube size Number of sub-cubes Particles per sub-cube Total particle #

128 2 800 1600
64 20 400 8000
32 26 200 3200
16 15 100 1500

database, and symbols are reproduced from Figure 1 in Ref. [30]. Solid symbols are for two
DNS results with relatively low Reynolds numbers and empty symbols are for experimental
data. The second-order LVSF increases in a short time range (τ < τK), reaches maximum
at τ ≈ 5τK , and then decreases at large times (τ > 10τK). However, no extended plateau
is observed in the intermediate time range, indicating that the power law regime typical of
the inertial range has not yet been achieved. The trends are mostly consistent between low
Reynolds DNS and high Reynolds experiments, although near the peak, the present results
overshoot the experimental data by about 3%.

Based on the standard Kolmogorov scaling that assumes Sp(τ) ∝ v
p
rmsRe

−p/2
λ (τ/τK)p/2

where the relations of ε ∝ v3
rms/L and TL/τK ∝ Reλ have been used (see [30]), we plot

the second- and fourth-order LVSF compensated using Re
p/2
λ /v

p
rms in Figure 6. Again, the

solid line is from the JHU turbulence database and symbols are digitized from Figure 3 in
Ref. [30]. It is seen that the solid line follows the trends of the other datasets quite well,
with good collapse between various lines for different Reynolds numbers as indicated.

K

S
2(

)/
(

)

10-2 10-1 100 101 1020

1

2

3

4

5

6

7

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

Figure 5. Time evolution of the normalized second-order Lagrangian velocity structure function
(averaged over the three components), i.e. S2(τ)/(ετ), at various Reynolds numbers in turbulence.
The solid line is computed from the data in the JHU turbulence database (Rλ = 443), and solid
symbols and empty symbols are reproduced from Figure 1 in Ref. [30].

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 11

K

R
e

S
2(

)/
v

’2 rm
s

10-2 10-1 100 101 102
10-2

10-1

100

101

102

103

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

(a)

K

R
e2 S

4(
)/

v
’4 rm

s

10-1 100 101 102
10-1

100

101

102

103

104

105

106

107

DNS, 443
DNS1, 178
DNS2, 284
EXP1, 350
EXP2, 690
EXP3, 815
EXP4, 690

(b)

Figure 6. Log–log plots of the second- and forth-order LVSF compensated using Re
p/2
λ /vp

rms vs.
normalized time-lag. (a) p = 2; (b) p = 4. The solid line is computed from the JHU turbulence
database (Rλ = 443), and solid and empty symbols are obtained from Figure 1 in Ref. [30].

It is concluded that the getPosition function can be used quite effectively to probe the
Lagrangian statistics in turbulence. There is good agreement with prior data regarding
temporal, Lagrangian structure functions.

4. Tensor-based Lagrangian time correlations of strain- and rotation-rates

The dynamics of the velocity gradient tensor Aij is of significant interest [12] because it en-
codes rich information about turbulence through its nine components (in three dimensions).
The Lagrangian autocorrelation time-scales for tensor elements themselves [7, 8, 32] are
of particular interest in the construction of models and for general physical understanding.
The time evolution of A following fluid particles can be obtained quite simply by taking
the gradient of the NS equations. For incompressible flow, the resulting equation reads

dAij

dt
= −AikAkj − ∂2p

∂xi∂xj

+ ν
∂2Aij

∂xk∂xk

, (6)

where d/dt stands for the Lagrangian material derivative and p is the pressure divided by
the density of the fluid. The first term on the right-hand side of Equation (6) denotes the
nonlinear self-interaction of A, the second term is a tensor called pressure Hessian Pij ≡
∂2p/∂xi∂xj , and the third is the viscous term. The tensor A contains nine elements, among
which eight components are independent, noticing the incompressibility condition. The
elements by themselves are not coordinate system invariants. So rather than evaluating nine
separate temporal autocorrelation functions for each tensor element, their characterization
should be done more compactly in a frame-invariant fashion. With this in mind, as in [7]
and [8], we use the tensor-based Lagrangian time correlation function of a second-rank
tensor C defined as

ρC(τ) ≡ 〈Cij (t0)Cij (t0 + τ)〉√〈(Cmn(t0))2〉 · 〈(Cpq(t0 + τ))2〉 . (7)

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

12 H. Yu et al.

K

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

S

Ω

A

Figure 7. Lagrangian autocorrelation function of full tensor A (solid line), its symmetry part (dash
dot line), and antisymmetric part (dash line).

The tensor C can be taken as A but the same can also be done for the strain-rate tensor
S = 1

2 (A+AT) and the rotation tensor � = 1
2 (A-AT), as well as the pressure Hessian tensor

Pij in Equation (6).
Measurements of ρC(τ) for Cij = Aij , Sij , and ij are performed using the JHU

turbulence database, with the Lagrangian tracking done using the getPosition function. Over
10,000 fluid particles initially located at random positions in the whole domain are tracked
over one large eddy turnover time. Tensor values are extracted along their trajectories. We
show results on tensor-based Lagrangian autocorrelation functions of velocity gradient A
and its related parts in Figure 7. Repeating the analysis already performed in [7] we also
present the autocorrelation functions of S (dash line) and � (dash dot line). As shown in
Figure 7 and discussed in [7], the rotation exhibits much more “persistence” in time than
deformation rate. As can be expected, ρA (sold line in Figure 7) falls between ρS (dash
line) and ρ� (dash dot line) because A is a linear combination of S and �. Quantitatively,
as S completely loses its time memory when the time-lag is long enough (τ ∼ 10τK),
correlation functions of A and � display slower decay and lose most correlation after
about τ ∼ 30τK . These trends were already noted in [7]. While qualitatively this result is
in good agreement with theoretical predictions [33], numerical simulations [34, 35], and
experimental observations [36], here the difference between strain- and rotation-rates is
much more marked than that implied by the prior studies, which focused on the scalar
square-magnitudes of these variables.

A natural question to ask is, what are possible factors that cause the significant difference
in decay rates between strain- and rotation-rates.

One possible factor for the slow decay of rotation-rate could be due to contributions from
fluid particles that occur around and near small-scale vortical structures (worms). These
structures are known to be relatively long-lived. Inside such structures, the vorticity would
be relatively constant, pointing along the axis of the “worm”, and thus the rotation tensor
would be time-persistent in magnitude and direction. The idea then is to recompute the
autocorrelation function by systematically including or excluding rotation-dominated flow
regions. There are many ways to accomplish this, and we have experimented with several. In

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 13

the end, results pertaining to using the second invariant (Q-criterion) are qualitatively quite
similar to those of the other criteria, so those based on the Q-criterion are presented here.

The second invariant of A is defined as Q = − 1
2T r(AA) = − 1

2AijAji = 1
2 (ijij −

SijSij) for an incompressible flow (Aii = 0). It is often used to identify vortices as flow
regions with positive Q, i.e. Q > 0 [37]. We undertake analysis using conditional averaging
based on the Q-criterion at the initial time of the correlation function (τ = 0), attempting
to include (Q(t0) > 0) or exclude (Q(t0) < 0) initial points that are more or less likely to
be part of “worms” (elongated rotation-dominated coherent structures). The conditional
autocorrelations for rotation-rate � are thus computed according to

ρ+
� (τ) ≡ 〈ij (t0)ij (t0 + τ)|Q(t0) > 0〉√〈(mn(t0))2|Q(t0) > 0〉〈(pq(t0 + τ))2|Q(t0) > 0〉 , (8)

and similarly ρ−
� (τ) for Q(t0) < 0.

In Figure 8, the line with filled symbols is for positive Q conditional averaging, designed
to focus mostly on worms. It should be remarked that flow visualizations have shown that
Q > 0 isolates quite successfully regions that visually correspond to elongated vortices in
turbulence. Higher thresholds can also be used and the trends are qualitatively quite similar
to those shown. Clearly, Figure 8 shows that the correlation decay is even slower if one
focuses only on the rotation-dominated regions. But the difference with the unconditional
results is not that particularly large. When conditioning on Q < 0, i.e. excluding entirely
the rotation-dominated regions, the decay is slightly faster than the unconditional results.
However, the decay is still considerably slower than the decay of S. This demonstrates that

t/ K

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

S

Ω

Ω
+ , Q > 0.0

Ω
- , Q < 0.0

Figure 8. Conditional autocorrelations of rotation-rate tensor with different Q(0) > 0 and Q(0) < 0.
Lines with filled symbols correspond to Q(0) > 0 (dominated by rotation, plausibly more associated
to “worms”) and lines with empty symbols correspond to Q(0) < 0 (exclusion of “worms” by
focussing on strain-dominated regions). Solid and dashed lines are non-conditional autocorrelations
of the rotation-rate tensor and strain-rate tensor, respectively.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

14 H. Yu et al.

the coherent structures (“worms”) play a role in the slower decay rate of autocorrelation,
but perhaps not a dominant role, and certainly not the only one.

Another possible cause for the rapid decay of strain-rate is the distinct role of the
pressure Hessian. The coupled Equations (9) and (10) for Lagrangian evolutions of strain-
and rotation-rate tensors can be easily derived from the evolution of the velocity tensor
(Equation (6)) [38, 39]:

DSij

Dt
= jkik − SjkSik − Pij + ν∇2Sij , (9)

Dij

Dt
= jkSik − Sjkik + ν∇2ij . (10)

In the equations, the symmetric pressure Hessian appears only in the evolution of strain-
rate (Equation (9)), but not in the rotation-rate (Equation (10)), implying a direct effect
of pressure on strain-rate but only an indirect effect on rotation-rate (through the vortex
stretching and tilting by the strain-rate).

We use two ways to examine how pressure affects the dynamics of strain- and rotation-
rates. First, we examine the correlation functions of terms on the right-hand side of Equation
(9) with the rate-of-change of S respectively. Specifically, we look at the deviatoric parts
of the pressure Hessian, P d

ij = −[Pij − Pkkδij /3], and mutual interaction term, Md
ij =

jkik − SjkSik − 1/3(mkmk − SnpSnp)δij . The correlation coefficient of the rate-of-
change of S, aS = DS/Dt , with these terms is defined as,

ρaSC = 〈aSij
Cij 〉√〈(aSmn

)2〉〈(Cpq)2〉 , (11)

where C can be Pd or Md . We find that the correlation of Pd with aS (ρaSP ∼ 0.75) is much
larger than that of Md with aS (ρaSM ∼ 0.17), implying that pressure Hessian (its deviatoric
part) has a more dominant effect on the dynamics of strain-rate compared to the “velocity
gradient self-interaction part”. The pressure Hessian depends upon nonlocal flow processes
that at any given position introduce additional randomness. Thus, the fact that the temporal
decorrelation of strain-rate is much faster than that of rotation is to be expected if in its
evolution equation the effects of pressure Hessian dominate rather than the self-stretching
terms.

In order to explore the effects of various terms further, we investigate the dynamics of Sij

and ij systematically by integrating their evolution Equations (9) and (10), first including
only the inviscid self-stretching terms without pressure or viscosity, then including the
pressure Hessian term, and, finally, comparing the results to full DNS, which also includes
viscous terms. Numerical time-integration of ODEs in Equations (9) and (10) is performed
using the fourth-order Runge–Kutta algorithm in the cases with only self-stretching, and
also with the pressure Hessian available in the JHU database. The values of Sij , ij , and
Pij at the start time of the integration are retrieved along the trajectories. Over 10,000
fluid particle locations are tracked using the GetPosition function during the time evolution
in order to obtain the instantaneous pressure Hessian components from the turbulence
database. We compare the time correlations computed from the solutions of Equations (9)
and (10) with the DNS data analysis. In Figure 9, solid symbols are for rotation rate, while
empty symbols are for strain-rate. Three types of results are shown: circles (DNS analysis,
i.e. including self-stretching inviscid terms, pressure Hessian, as well as viscous terms),
squares (dynamics with self-stretching inviscid terms and pressure Hessian but without

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 15

K

S
 ,

Ω

0 0.02 0.04 0.06 0.08
0.6

0.7

0.8

0.9

1

Ω, RK (NL)
Ω, RK (NL+PH)
Ω, DNS (NL+PH+Vis)
S, RK (NL)
S, RK (NL+PH)
S, DNS (NL+PH+Vis)

Figure 9. Lagrangian autocorrelation functions of strain- and rotation-rate tensors obtained through
particle tracking in the DNS data (circles), and from the Runge–Kuta integration of strain- and
rotation-rate tensors according to Equations (9) and (10), including the pressure Hessian term but
without viscous terms (squares), and without the pressure Hessian term nor viscous terms (triangles).
In all cases, time-integration is done following the same particle trajectories tracked in the database
using the GetPosition function. NL: nonlinear term; PH: pressure Hessian term; Vis: viscous term.

viscous terms), and triangles (dynamics with self-stretching inviscid terms but without
pressure Hessian and no viscous terms).

As can be seen in Figure 9, for the decay of the correlation function for the strain-rate,
the pressure Hessian plays a dominant role in accelerating the decay-rate away from the
longer time-scales it would have if only the inertial self-stretching terms were retained
(triangles). Interestingly, if the pressure Hessian term is included but not the viscous term
(squares), the decorrelation is even slightly faster than if the viscosity is included as in
DNS. The difference is not major and we do not have any clear explanation why viscous
forces would, in this case, slightly increase the memory of the strain-rate tensor evolution.
Conversely, for the rotation memory, inclusion of pressure Hessian changes very little the
decay of correlation. The change observed occurs because the strain-rate becomes more
rapidly decorrelated with pressure effects, and this modulates the vortex stretching and
tilting by the strain-rate tensor. Inclusion of viscous effects reduces correlation by a small
further amount.

5. Testing the recent fluid deformation approximation to model pressure Hessian

In this subsection, we examine a recently proposed model for the anisotropic pressure
Hessian term in Equation (6) that can be used in stochastic Lagrangian models for the
velocity gradient tensor. As a background about the model, we recall that assuming the
pressure Hessian is isotropic (i.e. neglecting ∂2

ijp − ∂2
kkp δij /3) and neglecting the viscous

term in Equation (6) leads to a closed formulation for A, the so-called Restricted-Euler (RE)
equation. The RE system is a set of nine (eight independent) ordinary differential equations
for Aij that has analytical solutions [40]. Remarkably, this simple system is already sufficient
to explain a number of non-trivial geometrical trends found in real turbulence [40, 41].
Nevertheless, the RE system leads to nonphysical finite-time singularities because the self-
stretching is not constrained by any energy exchange or loss mechanism in the system. In

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

16 H. Yu et al.

the past two decades, modeling efforts have aimed at regularizing the RE system to avoid
the nonphysical singularity (see [12] for a review). One of the efforts is the recent fluid
deformation approximation (RFDA) as proposed in [42]. The starting point of RFDA is the
Eulerian–Lagrangian change of variables,

∂2p(x, t)

∂xi∂xj

≈ ∂xp,m

∂xi

∂xp,n

∂xj

∂2p(x, t)

∂xp,m∂xp,n

, (12)

where spatial gradients of Dij = ∂xi

∂xp,j
are neglected. As mentioned above, x and xp de-

note the Eulerian space location and the Lagrangian particle location, respectively. The

Lagrangian pressure Hessian, ∂2p(x,t)
∂xp,m∂xp,n

, is modeled as an isotropic tensor based on the as-
sumption that as time progresses, one loses memory about relative orientations of the
initial locations xp as far as the present value of pressure is concerned. By introducing the

Cauchy-Green tensor C, Cij ≡ ∂xi

∂xp,m

∂xj

∂xp,n
, and using the Poisson equation as a constraint,

the pressure Hessian becomes

∂2p(x, t)

∂xi∂xj

= − T r(A2)

T r(C−1)
C−1

ij . (13)

Based on the idea that any causal relationship between initial and present orientations will
be lost after a characteristic Lagrangian correlation time-scale of tensor A, the Cauchy-
Green tensor C in Equation (13) is further replaced by a new tensor called the “recent
Cauchy-Green tensor” CτK

that can be expressed in terms of simple matrix exponentials,
CτK

= eτK AeτK AT

.
The trace of the pressure Hessian requires no modeling, since it is equal to the trace of

−A2, by construction in the model, and by the incompressibility condition in real turbulence.
Hence, we only examine the deviatoric part of this tensor. We compare the temporal
autocorrelations of the deviatoric pressure Hessian by using the tensor-based correlation
function as defined in Equation (7). Particle tracks are evaluated using the GetPosition
function using over 10,000 particles. The model uses matrix exponential evaluations [43].
The results are shown in Figure 10. The dashed line is from the RFDA-based model, and
the solid line from DNS. It is seen that the autocorrelations computed from the model
decay more slowly than DNS. The deviatoric pressure Hessian in DNS looses most of its
memory at τ ≈ 1.5τK , whereas the model term maintains some memory up to τ ≈ 4τK .
While the model has shown promise in predicting many features of the velocity gradient
tensor in turbulence [42, 44], challenges remain in applications at high Reynolds numbers.
The present observations of differing correlation times may point to possible improvements
in the model.

Next, we test how the modeled pressure Hessian captures features of individual re-
alizations and time-series of the two most relevant invariants of the velocity gradient A,
the Q and R invariants. Q has already been defined as Q = − 1

2AijAji , while R is given
by R = − 1

3AijAjkAki . Physically these invariants are interpreted as quantifying the com-
petition of enstrophy versus dissipation, and of enstrophy production versus dissipation
production, respectively. The dynamics and statistics of these two variables have attracted
much interest. Their evolution equations are derived by forming appropriate products with

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 17

t / K

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

d
P,DNS
d
P, model

Figure 10. The Lagrangian autocorrelation function of deviatoric pressure Hessian from DNS (solid
line) and modeling (dash line).

Equation (6) and taking the trace [40]:

dQ

dt
= −3R − AikPki − AikVki, (14)

dR

dt
= 2Q2

3
− AijAjkPki − AijAjkVki, (15)

where Vij ≡ ν∂2A/∂xi∂xj .
We track a single particle and record a time-series of relevant terms across the entire

time range available in the database. Figure 11 shows various terms from DNS. The dashed
line is the rate of change of Q and R as evaluated from their database values along the
trajectory, the circles are the restricted Euler self-stretching term, the solid line comes from
the pressure Hessian, and the triangles are viscous terms. The viscous term is evaluated
based on taking the difference of other terms on the right-hand side to the temporal rates
of change of Q and R.

As can be seen, the dynamics are highly intermittent with a sudden, rapid burst of
activity near t/τK ∼ 31 for this particular fluid particle’s history. It is observed that the
pressure Hessian is a major contribution to the sum and it mainly opposes self-stretching,
whereas the viscous term is small and contributes only marginally. Very interestingly, close
examination shows that the pressure Hessian has a “phase delay” that follows rapid changes
in the velocity gradient invariants. The delay appears to be of the order of ∼ 1

2τK .
Next, the ability of the RFDA-based model in [42] for pressure Hessian to predict

the effects on the invariants is shown by providing an enlarged view of time-series in

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

18 H. Yu et al.

Figure 11. Sample time-series for various terms in the evolution of Q (top) and R(bottom) for some
fluid particle along its trajectory during the entire time duration in the database (approximately one
large-eddy turnover time).

the vicinity where the burst of activity is observed. In Figure 12 we compare the DNS
pressure Hessian term with that predicted by the RFDA model, where the pressure Hessian
contracted with Aij and AikAkj is obtained from the RFDA-based model. Qualitatively,
there is a general agreement of the occurrences of large peaks, and their signs. However, the
model amplitudes appear to be somewhat too large, and the model does not predict some
of the smaller amplitude fluctuations. It is also quite obvious that the model “predates”
the real pressure Hessian by about ∼ 1

2τK , which is not surprising, since it is based on the
local velocity gradient tensor through the matrix exponential closure. Finally, the previous
observations can be made more quantitative by computing the two-time cross-correlation
function between the real and modeled pressure Hessian tensors. We use an expression
similar to Equation (7) written as a cross-correlation between two different tensor time
signals. In particular, in Equation (7) we take Cij (t0) to be the modeled pressure Hessian,
and Cij (t0 + τ) to be the real Hessian tensor. Figure 13 shows the resulting cross-correlation
function. It confirms the prior observations: There is a peak correlation after a time delay
of about ∼ 1

2τK so that the model predates the real pressure Hessian signal in time. The
correlation peak of around 40% is quite substantial, given the many assumptions made in
deriving the model. Such observations will be useful in motivating further improvements
to the model.

6. Summary and discussion

This paper describes algorithms and implementation details of updates to the JHU turbu-
lence public database system, made after the first publication [5] describing the original

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 19

P Q

25 30 35 40

-0.5

0

0.5

1

1.5

2

DNS
model

t/ Kt/ K

P R

25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

DNS
model

Figure 12. Contributions of pressure Hessian to the dynamics of Q (left) and R (right). DNS: solid
line; model: dash line.

system. The updates include new GetFunctions, namely GetPosition, to track a number of
fluid particles moving along with the simulated flow and is useful in Lagrangian studies of
turbulence. Also, the GetForce function is developed in order to query the forcing term that
was used in DNS during simulation (see Appendix A).

Table 2 lists the complete getFunctions available for use.
Other recent upgrades also include improved interpolation schemes (Appendix B) and

a new library for Matlab access (Appendix C).

τ/τK

ρ M
od

-D
N

S
 (

τ)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Figure 13. Two-time cross-correlation function between real and modeled pressure Hessian (its
deviatoric part).

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

20 H. Yu et al.

Table 2. List of GetFunctions for queries to the JHU turbulence public database. The entries
mean the following. diff: differentiation (FD: centered finite difference, options for 4th-, 6th-, and
8th-order accuracies); int: interpolation type (NoInt: no interpolation; Lag: Lagrangian polynomial
interpolation, options for 4th-, 6th-, and 8th-order accuracies); PCHIP: piecewise cubic Hermite
interpolation.

Function name Spatial diff. Spatial int. Temporal int. Outputs

GetVelocity – NoInt, Lag 4,6,8 NoInt, PCHIP ui

GetVelocityAndPressure – NoInt, Lag 4,6,8 NoInt, PCHIP ui, p

GetVelocityGradient FD 4,6,8 NoInt, Lag 4,6,8 NoInt, PCHIP
∂ui

∂xj

GetPressureGradient FD 4,6,8 NoInt, Lag 4,6,8 NoInt, PCHIP
∂p

∂xi

GetVelocityHessian FD 4,6,8 NoInt, Lag 4,6,8 NoInt, PCHIP
∂2uk

∂xi∂xj

GetPressureHessian FD 4,6,8 NoInt, Lag 4,6,8 NoInt, PCHIP
∂2p

∂xi∂xj

GetVelocityLaplacian FD 4,6,8 NoInt, Lag 4,6,8 NoInt, PCHIP
∂2ui

∂xj ∂xj

GetForce – NoInt, Lag 4,6,8 NoInt, PCHIP fi

GetPosition – Lag 4,6,8 PCHIP xi(tET)

The new GetPosition function was applied to measure various Lagrangian statistical
features of turbulence. In terms of Lagrangian structure functions, we document good
agreement with a variety of previously published results, both numerical and experimental.
New results are obtained in characterizing the precise effects of pressure Hessian and
viscous terms in the Lagrangian evolution of the strain- and rotation-rate tensors. The
faster decay of autocorrelation for the strain-rate tensor is confirmed to be, clearly, related
to the pressure Hessian effects. They tend to be more “stochastic” than the self-stretching
terms. The viscous terms were seen to slightly enhance the memory for the strain-rate while
decreasing memory for the rotation-rate (or vorticity).

The new tool was also used to examine the time evolution of pressure Hessian and to
compare it with a recent model based on the local velocity gradient tensor. The comparisons
were made using the Lagrangian autocorrelation function and its rate of decay, comparing
DNS with the model. It was found that the model decays more slowly, showing that the true
pressure Hessian has dynamics that are more short lived than the velocity gradients upon
which the model is based. Some representative observations about the model were also
made on hand of individual time traces along Lagrangian trajectories, comparing terms in
the equations of invariants Q and R. It is observed that the pressure Hessian “lags” strong
excursions in velocity gradients, consistent with a “restitution mechanism” that needs some
time to build up the required response.

Further ongoing developments of the public database system include additional datasets
such as magneto-hydrodynamic turbulence, and turbulent channel flow.

Acknowledgements
The authors acknowledge the valuable assistance from other members of the database team (Jan
VandeBerg, Rich Ercolani, Sue Werner, and Victor Paul). This research is supported by a National

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 21

Science Foundation CDI-II grant no. CMMI-0941530. E. Frederick acknowledges international
travel support from the Eindhoven University of Technology.

References

[1] P.K. Yeung, S.B. Pope, and B.L. Sawford, Reynolds number dependence of Lagrangian
statistics in large numerical simulations of isotropic turbulence, J. Turbul. 7 (2006),
N58.

[2] S. Hoyas and J. Jimenez, Scaling of velocity fluctuations in turbulent channels up to
Reτ = 2000, Phys. Fluids 18 (2006), 011702.

[3] J. Schumacher, K.R. Sreenivasan, and V. Yakhot, Asymptotic exponents from low-
Reynolds number flows, New J. Phys. 89 (2007), pp. 1–19.

[4] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high Reynolds number isotropic turbu-
lence by direct numerical simulation, Annu. Rev. Fluid Mech. 41 (2009), pp. 4165–
4180.

[5] Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen,
A. Szalay, and G. Eyink, A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence, J. Turbul. 9 (2008),
p. N31.

[6] B. Lüthi, M. Holzner, and A. Tsinober, Expanding the Q-R space to three dimensions,
J. Fluid Mech. 641 (2009), pp. 497–501.

[7] H. Yu and C. Meneveau, Lagrangian refined Kolmogorov similarity hypothe-
sis for gradient time-evolution in turbulent flows, Phys. Rev. Lett. 104 (2010),
084502.

[8] H. Yu and C. Meneveau, Scaling of conditional Lagrangian time correlation functions
of velocity and pressure gradient magnitudes in isotropic turbulence, Flow Turbul.
Combust. 85 (2010), pp. 457–472.

[9] M. Holzner, M. Guala, B. Lüthi, A. Liberzon, N. Nikitin, W. Kinzelbach, and A.
Tsinober, Viscous tilting and production of vorticity in homogeneous turbulence,
Phys. Fluids 22 (2010), 061701.

[10] A.G. Gungor and S. Menon, A new two-scale model for large eddy simulation of
wall-bounded flows, Prog. Aero. Sci. 46 (2010), pp. 28–45.

[11] W. Liu and E. Ribeiro, Scale and rotation invariant detection of singular patterns in
vector flow fields, SSPR & SPR Proceedings of the 2010 Joint IAPR International
Conference on Structural, Syntactic, and Statistical Pattern Recognition, LNCS No.
6218, pp. 522–531.

[12] C. Meneveau, Lagrangian dynamics and models of the velocity gradient tensor in
turbulent flows, Annu. Rev. Fluid Mech. 43 (2011), pp. 219–245.

[13] C.C. Wu and T. Chang, Rank-ordered multifractal analysis (ROMA) of probability
distributions in fluid turbulence, Nonlinear Processes Geophys. 18 (2011), pp. 261–
268.

[14] G.L. Eyink, Stochastic flux freezing and magnetic dynamo, Phys. Rev. E, 83 (2011),
056405.

[15] F. Toschi, iCFDdatabase2, available at http://mp0806.cineca.it/icfd.php (accessed De-
cember 2011).

[16] G.I. Taylor, Diffusion by continuous movements, Proc. London Math. Soc. 20 (1922),
pp. 196–212.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

22 H. Yu et al.

[17] L.F. Richardson, Atmospheric diffusion shown on a distance-neighbor graph, Proc.
R. Soc. London, Ser. A 110 (1926), pp. 709–737.

[18] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941), pp. 301–314;
also Proc. R. Soc. A 434 (1991), pp. 9–13.

[19] B.I. Shraiman and E.D. Siggia, Scalar turbulence, Nature 405 (2000), pp. 639–646.
[20] B. Sawford, Turbulent relative dispersion, Annu. Rev. Fluid Mech. 33 (2001), p.

289–317.
[21] P.K. Yeung, Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech. 34

(2002), pp. 115–142.
[22] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu.

Rev. Fluid Mech. 41 (2009), pp. 375–404.
[23] G. Falkovich, K. Gawedzki, and M. Vergassola, Particles and fields in fluid turbulence,

Rev. Mod. Phys. 73 (2001), pp. 913–975.
[24] M. Holzner, A. Liberzon, N. Nikitin, B. Lüthi, W. Kinzelbach, and A. Tsinober, A

Lagrangian investigation of the small-scale features of turbulent entrainment through
particle tracking and direct numerical simulation, J. Fluid Mech. 598 (2008), pp.
465–475.

[25] S.B. Pope, Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid Mech. 26
(1994), pp. 23–63.

[26] R. Zimmermann, H.T. Xu, Y. Gasteuil, M, Bourgoin, R. Volk, J.F. Pinton, and E.
Bodenschatz, The Lagrangian exploration module: An apparatus for the study of
statistically homogeneous and isotropic turbulence, Rev. Sci. Instrum. 81 (2010),
055112.

[27] D.H. Kelley and N.T. Ouellette, Separating stretching from folding in fluid mixing,
Nature Phys. 7 (2011), pp. 477–480.

[28] Szalay, A., S.P.Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R.J. Brunner Designing and
mining multi-terabyte astronomy archives: The Sloan digital sky survey, Proceedings
of the ACM SIGMOD International Conference on Management of Data, Dallas, TX,
2000.

[29] U. Frisch, Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press,
Cambridge, UK, 1995.

[30] L. Biferale, E. Bodenschatz, M. Cencini, A.S. Lanotte, N.T. Ouellette, F. Toschi,
and H. Xu, Lagrangian structure functions in turbulence: A quantitative compari-
son between experiment and direct numerical simulation, Phys. Fluids 20 (2008),
065103.

[31] L. Biferale, G. Boffetta, A. Celani, A. Lanotte, and F. Toschi, Particle trapping in
three-dimensional fully developed turbulence, Phys. Fluids 17 (2005), 021701.

[32] R. Benzi, L. Biferale, E. Calzavarini, D. Lohse, and F. Toschi, Velocity-gradient statis-
tics along particle trajectories in turbulent flows: The refined similarity hypothesis in
the Lagrangian frame, Phys. Rev. E 80 (2009), 066318.

[33] R.H. Kraichnan and J.R. Herring, A strain-based Lagrangian-history turbulence the-
ory, J. Fluid Mech. 88 (1978), pp. 355–367.

[34] P.K. Yeung, Lagrangian characteristics of turbulence and scalar transport in direct
numerical simulations, J. Fluid Mech. 427 (2001), pp. 241–274.

[35] P.K. Yeung, S.B. Pope, E.A. Kurth, and A.G. Lamorgese, Lagrangian conditional
statistics, acceleration and local relative motion in numerically simulated isotropic
turbulence, J. Fluid Mech. 582 (2007), pp. 399–422.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 23

[36] M. Guala, A. Liberzon, A. Tsinober, and W. Kinzelbach, An experimental investigation
on Lagrangian correlations of small-scale turbulence at low Reynolds number, J. Fluid
Mech. 574 (2007), pp. 405–427.

[37] J.C.R. Hunt, A.A. Wray, and P. Moin, Eddies, stream, and convergence zones in
turbulent flows, Research Rep. CTR-S88, Center for Turbulence, Stanford University
Stanford, CA, pp. 193–208, 1988.

[38] K.K. Nomura and G.K. Post, The structure and dynamics of vorticity and rate of strain
in incompressible homogeneous turbulence, J. Fluid Mech. 377 (1998), pp. 65–97.

[39] A. Tsinober, An Informal Conceptual Introduction to Turbulence, 2nd ed., Springer,
New York, 2009.

[40] B.J. Cantwell, Exact solution of a restricted Euler equation, Phys. Fluids A 4 (1992),
p. 782.

[41] P. Vieillefosse, Local interaction between vorticity and shear in a perfect incompress-
ible fluid, J. Phys. (France) 43 (1982), p. 837.

[42] L. Chevillard and C. Meneveau, Lagrangian dynamics and statistical geometric struc-
ture of turbulence, Phys. Rev. Lett. 97 (2006), 174501.

[43] Y. Li, L. Chevillard, G.L. Eyink, and C. Meneveau, Matrix exponential-based closures
for the turbulent subgrid-scale stress tensor, Phys. Rev. E, 79 (2009), 016305.

[44] L. Chevillard, L. Biferale, F. Toschi, and C. Meneveau, Modeling the pressure Hessian
and viscous Laplacian in turbulence: Comparisons with DNS and implications on
velocity gradient dynamics, Phys. Fluids 20 (2008), 101504.

[45] K. Kanov, E. Perlman, R. Burns, Y. Ahmad, and A. Szalay, I/O streaming evaluation
of batch queries for data-intensive computational turbulence, Supercomputing 2011.

[46] R.J. Purser and L.M. Leslie, An efficient interpolation procedure for high-order three-
dimensional semi-Lagrangian models, Mon. Weather Rev. 119 (1991), p. 2492.

Appendix A. GetForce function

Information about the forcing term fi(x, y, z, t) (force per unit mass, i = x, y, z) applied
during DNS has been stored in the database and can be retrieved using the function GetForce.

During DNS, an effective forcing is applied in Fourier space by rescaling low-k Fourier

modes (with magnitudes 0.5 ≤ k ≤ 2.5, k =
√

k2
x + k2

y + k2
z) to maintain their kinetic en-

ergy to prescribed values consistent with the −5/3 spectrum. The forcing region is divided
into two shells, 0.5 ≤ k ≤ 1.5 and 1.5 < k ≤ 2.5. The spectrum is held fixed at a value of
0.3 in shell 0.5 ≤ k ≤ 1.5, and at a value equal to 0.13 in shell 1.5 < k ≤ 2.5 shell (these
values are obtained empirically so that the simulated spectrum is close to a k−5/3 trend at
low k).

In order to represent rescaling in terms of a forcing term, we express time-advancement
in terms of a first-order time-advancement and write the discretized Navier–Stokes equation
(NSE) in Fourier space as follows:

ûn+1
i (kx, ky, kz) = ûn+

i (kx, ky, kz) + f̂i(kx, ky, kz)dt, (A1)

in which ûn+
i = ûn

i + (· · ·)dt with (· · ·) for terms on the right-hand side of NSE, but
excluding the forcing term. Also, dt is the time-step of the DNS.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

24 H. Yu et al.

In the DNS, the rescaling induces a difference between ûn+
i and ûn

i in the wave-number
range 0.5 ≤ k ≤ 2.5 that is equivalent to a force-term defined in two shells as follows:

f̂ n
i (kx, ky, kz) = 1

dt

⎛
⎝ 0.55√∑

0.5≤k≤1.5[(ûn+
x)2 + (ûn+

y)2 + (ûn+
z)2)]/2

− 1

⎞
⎠ ûn+

i (kx, ky, kz)

(A2)

for shell 0.5 ≤ k ≤ 1.5 and

f̂ n
i (kx, ky, kz) = 1

dt

⎛
⎝ 0.36√∑

1.5≤k≤2.5[(ûn+
x)2 + (ûn+

y)2 + (ûn+
z)2)]/2

− 1

⎞
⎠ ûn+

i (kx, ky, kz)

(A3)

for shell 1.5 < k ≤ 2.5, where ûx , ûy , ûz denote the three velocity components in

Fourier space and k =
√

k2
x + k2

y + k2
z is the magnitude of wavenumber vector k. In this

way, the energy in these shells E(k = 1) = ∑
0.5≤k≤1.5(û2

x + û2
y + û2

z)/2 and E(k = 2) =∑
1.5<k≤2.5(û2

x + û2
y + û2

z)/2 is maintained at 0.3 and 0.13.
There exist in total 80 discrete wave-number modes in these two shells. There are 20

modes for kx = 0, 30 modes for kx > 0, and another 30 modes for kx < 0. In the database,
the complex Fourier coefficients f̂x , f̂y , f̂z corresponding to kx ≥ 0 (50 modes) are stored,
the remaining 30 modes (kx < 0) are the conjugates of modes kx > 0.

Using the GetForce function, force values at any prescribed position (x, y, z) are eval-
uated in the database from the forcing’s Fourier coefficients using direct summation of the
Fourier series according to

fi(x, y, z, tn) =
∑

kx ,ky ,kz

ei(kxx+kyy+kzz) f̂ n
i (kx, ky, kz), (A4)

where i can be x, y, and z. Values of fi(x, y, z, t) at arbitrary times t can be obtained by
specifying PCHIP temporal interpolation.

In order to document the use of this function, we examine various terms in the NSE,

∂tu + u · ∇u = −∇p + ν∇2u + f (A5)

that were solved during DNS (as explained above, the forcing term is implicitly included
in the spectral rescaling at every time-step). We evaluate the local square error defined
according to

σ 2
dif = 〈[∂tu + u · ∇u − (−∇p + ν∇2u + βf)]2〉. (A6)

The goal is to compare the case where we include (β = 1) and do not include (β = 0), the
forcing term. We would expect that including the forcing term should reduce the error. If
we evaluate the velocity gradients occurring in the nonlinear term, the pressure gradient,
and the viscous Laplacian using pseudo-spectral differentiation, and use the same time-
differentiation as used in the DNS, the error should be exactly zero (to machine accuracy)

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 25

at every point in the domain. However, if we use the spatial finite differencing available
in the getFunctions, and the first-order time derivative, some error is expected. Instead, if
we box-filter each of the terms in boxes of size �, with increasing � the error would be
expected to become smaller. Especially the difference between including and not including
the forcing term (which by construction only affects the largest scales of the flow) is
expected to become larger as � grows.

Thus, we also define the error associated with the coarse-grained terms according to

σ 2
dif,� = 〈([∂tu + u · ∇u]� − [(−∇p + ν∇2u + βf]�))2〉. (A7)

The square brackets [...]� denote box-filtering in a cube of size �. In Figure A1 we show
dependence of the rms error σdif,� as a function of �.

The computation of σdif follows three steps: First, randomly generate N cubes with size
� in the whole domain; second, collect all the terms in Equation (A5) by calling getVelocity,
getVelocityGradient for the left-hand side and getPressureGradient, getVelocityLaplacian,
and getForce for the right-hand side for every point in each cube and compute the mean
of each term; third, evaluate the square error. The filter size � varies from 0.006 to 0.3,
corresponding 1 to 49 grid-points. In the figure, it is seen that when the filter size is small,
say � < 0.02, forcing seems not to play a role because the numerical errors introduced
from differentiation and time/spatial interpolations dominate and suppress any effects of the
forcing term. As filter size increases, the numerical errors fade such that the forcing term
becomes more important. When the filter size is large enough, e.g. � > 0.2, the difference
between left- and right-hand sides of Equation (A5) vanishes when forcing is included,
while σrms,� without forcing remains quite large, making the effects of the forcing term
apparent in closing the balance in the momentum equation.

ℜ

σ rm
s

0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

without force term

with force term

Figure A1. Magnitude of error between left- and right-hand sides of Equation (A5) and dependence
on the box-filtering size �, including the force term (closed circles) and not including the force term
(empty circles).

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

26 H. Yu et al.

Appendix B. Partial sums evaluation for interpolations

We have implemented a new method for the evaluation of spatial interpolation used in the
database routines, which we summarize below. The method is described in more detail in
[45]. It is also applicable to the temporal interpolation and differentiation evaluations, but
we are still in the process of implementing it for those computations.

The database routines perform the Lagrange polynomial interpolation of order specified
by the user. For N th-order Lagrange polynomial interpolation of a point p′ in 3D space, we
have

f (p′) =
N∑

k=1

l
q− N

2 +k
z (z′)

N∑
j=1

l
p− N

2 +j
y (y ′)

N∑
i=1

l
n− N

2 +i
x (x ′)

·f (xn− N
2 +i , yp− N

2 +j , zq− N
2 +k) . (B1)

In the above equation, p′ = (x ′, y ′, z′) is the target location and the data stored in the database
at location (xi, yj , zk) is given by f (xi, yj , zk). Since data in the database are stored at the
nodes of a discrete grid, the grid location (xn, yp, zq) is computed as n = int(x ′

�x
+ 1

2),

p = int(y ′
�y

+ 1
2), q = int(z′

�z
+ 1

2), where �x, �y, and �z are the widths of the grid in
the x, y and z dimensions, respectively. The Lagrange coefficients l in Equation (B1) are
as follows:

liθ (θ ′) =
∏α+ N

2

j=α− N
2 +1,j �=i

(θ ′ − θj)

∏α+ N
2

j=α− N
2 +1,j �=i

(θi − θj)
, (B2)

where θ can be x, y, or z, and α can be n, p, or q, respectively.
The evaluation of the Lagrange polynomial interpolation requires data from a cube of

width N around the target location. In the current version of the database, edge overlap
ensures that all of the necessary data are contained within a single database atom, and hence
a single database I/O is needed to perform computation. However, in general the data may
be spread across multiple such database atoms or even across multiple database servers. In
order to ensure the efficient processing of large batch queries submitted by our users, we
evaluate the interpolation by means of partial sums.

The Lagrange polynomial interpolation as well as any other linear computation can be
executed in parts by maintaining and updating a partial sum of the final result. We make use
of this observation to evaluate multiple target positions at the same time and by means of a
single, sequential pass over the data. We process all target positions in the user’s batch and
determine the entire set of database atoms that need to be read from the database in order to
perform the interpolation of each target. For each database atom read from the database we
increment the partial sums of all target positions whose interpolation kernel intersects the
database atom. Once all such atoms are processed, the interpolation of each target position
has been evaluated.

We make use of efficient procedures of Purser and Leslie [46] in the computation
of Lagrange coefficients. They present efficient ways to organize the coding, eliminating
redundant multiplications and making use of the fact that the values in the denominator of

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 27

Equation (B2) are constant to reduce the time complexity of the computation of coefficients
to O(N) from O(N3).

Appendix C. Matlab interface

The Matlab interface allows clients to interact with the turbulence database directly from
a Matlab session. This interface is based on Matlab web service functions, which com-
municate with the database directly using the Simple Object Access Protocol (SOAP). All
communication with the JHU turbulence database cluster is controlled through the Turbu-
lenceService Matlab class. This class creates SOAP messages, queries the database, and
parses the database response. For each database function a wrapper function has been cre-
ated to perform data translation and retrieval. One major advantage of the Matlab interface
to that of its C and Fortran counterparts is the readily available functions and tool boxes that
Matlab provides. With the Matlab interface, clients can retrieve sections of spatiotemporal
data from the database, view the data with Matlab’s plotting tools, or perform secondary
calculations on the data, all from the same Matlab session.

A standard distribution of Matlab contains a set of functions for creating (create-
SoapMessage), sending (callSoapService), and parsing (parseSoapResponse) SOAP mes-
sages. These routines use a W3C compliant Document Object Model (DOM) approach for
constructing and parsing the Extensible Markup Language (XML)-formatted SOAP mes-
sage. The DOM provides a generic mechanism to create XML documents. However, while
being robust and dynamic, the DOM approach holds the disadvantage of being computa-
tionally inefficient for large XML documents – this inefficiency becomes a limiting factor
for large database queries. To avoid this critical problem, we have developed faster replace-
ment functions to create and send the SOAP message, and to parse the SOAP response.
Therefore, by performing low-level string operations instead of employing the DOM, we
can rapidly build and parse extensive XML documents leading to a 100x speedup over the
original DOM approach. Due to this increase in efficiency, the Matlab interface possesses
similar performance characteristics as those of the C and Fortran database interfaces.

The bases for the Matlab database functions are created by using the createClass-
FromWsdl utility. This utility generates the TurbulenceService Matlab class from the Web
Service Definition Language (WSDL) functions of the database web service. These gen-
erated files are modified to incorporate the newly developed faster Matlab SOAP routines.
The purpose of the TurbulenceService class is to accommodate a request to the database by
taking data from Matlab, generating an appropriate SOAP message, sending the message
to the database, and finally retrieving and parsing the database response. While providing
a direct mechanism for interacting with the database, the TurbulenceService class returns
data packaged in a Matlab structure array, which may not be necessarily intuitive to most
Matlab users. We have therefore created wrapper functions, which translate the response
structure into directly accessible Matlab vectors.

The following code snippets illustrate the complete mechanism, starting from user-
generated request data and ending with a parsed database response, stored in response. From
a Matlab script, request data will be provided to the getVelocity TurbulenceService wrapper
function as demonstrated in Listing 1. This wrapper function calls the TurbulenceService
TS getVelocity function (see Listing 2), and translates its structure into a vector of velocity
components. The TS getVelocity function illustrated in Listing 3 assembles the data in
a Matlab structure, creates the SOAP message, sends the SOAP message, and parses the

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

28 H. Yu et al.

Figure C1. (a) Velocity contour plot generated using the Matlab interface as available for download.
(b) Visualization of “worms” using iso-Q surfaces in a small subset of the data generated using
the Matlab implementation of getVelocityGradients to evaluate Aij , computing the invariant Q =
− 1

2 AijAji at every point, and using Matlab 3D plotting tools.

Listing 1. Example call to get Velocity from Matlab interface.� �
% Set c l i e n t a u t h e n t i c a t i o n key
a u t h k e y = ’ . . . ’ ;
% Set t a r g e t d a t a b a s e
d a t a s e t = ’ i s o t r o p i c 1 0 2 4 c o a r s e ’ ;

% Set t e m p o r a l i n t e r p o l a t i o n scheme
t e m p o r a l = ’PCHIP ’ ;

% Set s p a t i a l i n t e r p o l a t i o n scheme
s p a t i a l = ’Lag6 ’ ;

% C r e a t e a s e t of (x , y , z)− c o o r d i n a t e s t o que ry a t a randomly
% chosen t ime s t e p
p o i n t s (1 : 3 , :) = . . . ;
t ime = 0 .002 * r a n d i (1 0 2 4 , 1) ;

% C a l l T u r b u l e n c e S e r v i c e wrapper t o pe r fo rm g e t V e l o c i t y r e q u e s t a t
% s p e c i f i e d p o i n t s
r e s p o n s e = g e t V e l o c i t y (au thkey , d a t a s e t , t ime , . . . , p o i n t s) ;

�� �

SOAP response. (A similar TurbulenceService is implemented for the getPosition function,
as illustrated in Listing 4).

For illustration of getVelocity, in Figure C1(a) is a velocity contour plot of sample data
from the turbulence database. The data were retrieved using the getVelocity function from
the Matlab interface and the contour plot was generated using Matlab standard contour
plotting tools. In Figure C1(b) a visualization of “worms” is shown in a small sub-cube
of the data at t = 0, using iso-Q surfaces generated using the Matlab implementation of
getVelocityGradients to evaluate Aij , computing the invariant Q = − 1

2AijAji at every point
in Matlab, and using Matlab 3D plotting tools.

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

Journal of Turbulence 29

Listing 2. Sample getVelocity wrapper function.� �
f u n c t i o n r e s p o n s e = g e t V e l o c i t y (au thkey , d a t a s e t , t ime , . . . , p o i n t s)

% C r e a t e t h e T u r b u l e n c e S e r v i c e o b j e c t and c a l l T S g e t V e l o c i t y
o b j = T u r b u l e n c e S e r v i c e ;
r e s p o n s e S t r u c t = T S g e t V e l o c i t y (obj , au thkey , d a t a s e t , . . . , p o i n t s) ;

% Return a v e c t o r o f v e l o c i t y components
r e s p o n s e = g e t V e c t o r (r e s u l t S t r u c t . G e t V e l o c i t y R e s u l t . Vec to r3) ;

end

�� �

Listing 3. Sample TS getVelocity TurbulenceService class function.� �
f u n c t i o n r e s p o n s e S t r u c t = T S g e t V e l o c i t y (obj , au thkey , d a t a s e t , . . . , p o i n t s)

% C o n s t r u c t a Mat lab s t r u c t u r e c o n t a i n i n g t h e d a t a
d a t a = s t r u c t (’ p o in t s ’ , s t r u c t (’ x ’ , p o i n t s (1 , :) , . . .) , . . .) ;

% C r e a t e t h e XML document , c a l l t h e s e r v i c e and p a r s e t h e r e s p o n s e
soapMessage = c r e a t e S o a p M e s s a g e (’ G etVeloc ity ’ , da t a , . . .) ;
r e s p o n s e = c a l l S o a p S e r v i c e (URL, soapMessage , . . .) ;
r e s p o n s e S t r u c t = pa r se S oa pR esponse (r e s p o n s e) ;

end

�� �

Listing 4. Example call to getPosition from Matlab interface.� �
% Set c l i e n t a u t h e n t i c a t i o n key
a u t h k e y = ’ . . . ’ ;
% Set t a r g e t d a t a b a s e
d a t a s e t = ’ i s o t r o p i c 1 0 2 4 c o a r s e ’ ;

% Set s p a t i a l i n t e r p o l a t i o n scheme
s p a t i a l = ’Lag6 ’ ;

% g e t P o s i t i o n i n t e g r a t i o n s e t t i n g s
s t a r t T i m e = 0 . 3 6 4 ;
endTime = 0 . 3 7 6 ;
l a g D t = 0 . 0 0 0 4 ;

% C r e a t e a s e t of (x , y , z)− c o o r d i n a t e s
p o i n t s (1 : 3 , :) = . . . ;

% C a l l T u r b u l e n c e S e r v i c e wrapper t o pe r fo rm g e t P o s i t i o n r e q u e s t a t
% s p e c i f i e d p o i n t s be tween s t a r t T i m e and endTime
r e s p o n s e = g e t P o s i t i o n (au thkey , d a t a s e t , s t a r t T i m e , endTime , lagDt , . . . , p o i n t s) ;

�� �

D
ow

nl
oa

de
d

by
 [

Jo
hn

s
H

op
ki

ns
 U

ni
ve

rs
ity

]
at

 1
0:

57
 0

4
M

ay
 2

01
2

