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The Lagrangian dynamics of the velocity gradient tensor A in isotropic and homogeneous

turbulence depends on the joint action of the self-stretching term and the pressure Hessian. Existing

closures for pressure effects in terms of A are unable to reproduce one important statistical role

played by the anisotropic part of the pressure Hessian, namely the redistribution of the probabilities

towards enstrophy production dominated regions. As a step towards elucidating the required prop-

erties of closures, we study several synthetic velocity fields and how well they reproduce aniso-

tropic pressure effects. It is found that synthetic (1) Gaussian, (2) multifractal, and (3) minimal

turnover Lagrangian map incompressible velocity fields reproduce many features of real pressure

fields that are obtained from numerical simulations of the Navier Stokes equations, including the

redistribution towards enstrophy-production regions. The synthetic fields include both spatially

local, and nonlocal, anisotropic pressure effects. However, we show that the local effects appear to

be the most important ones by assuming that the pressure Hessian is local in space, an expression

in terms of the Hessian of the second invariant Q of the velocity gradient tensor can be obtained.

This term is found to be well correlated with the true pressure Hessian both in terms of eigenvalue

magnitudes and eigenvector alignments. VC 2011 American Institute of Physics.

[doi:10.1063/1.3638618]

I. INTRODUCTION

The study of the velocity gradient tensor in fully devel-

oped turbulence has led to interesting findings and has con-

tributed to improved understanding of many statistical and

geometrical properties of turbulent flows. In particular,

recent progress has been made in the study of the Lagrangian

dynamics and modeling of the velocity gradient tensor (see

Ref. 1 for an overview of the subject). This tensor is given

by Aij¼ @ui=@xj, where u is the velocity vector. Taking a

spatial gradient of the Navier-Stokes equations, the follow-

ing transport equation for A is obtained:

dA

dt
¼ �A2 � Pþ �DA; (1)

where d=dt stands for the Lagrangian time derivative, � is the

kinematic viscosity, and Pij¼ @2p=@xi@xj is the pressure Hes-

sian. The first term �A2 is the self-stretching term. The re-

stricted Euler (RE) approximation, which assumes an

isotropic pressure Hessian Pij¼�tr(A2)dij=3 and neglects vis-

cous effects, leads to an autonomous set of coupled ordinary

differential equations.2 The intrinsic dynamics of the RE sys-

tem leads to a finite time divergence of the components of A

during which the vorticity x ¼ r ^ u gets aligned with the

eigenvector of the rate of strain, S ¼ Aþ A>
� �

=2, associated

with the intermediate eigenvalue, as often observed in real tur-

bulence.1,3,4 To prevent the development of unphysical finite

time singularities, both the anisotropic part of the pressure

Hessian and the viscous diffusion term have to be modeled.

This was the subject of former works.5–7 In particular, clo-

sures were proposed in Ref. 7 for P and �DA in terms of the

local value of A. The local closures of Ref. 7, when inserted

into the dynamics generated by Eq. (1) under the action of a

stochastic forcing term, lead to stationary statistics of A along

Lagrangian trajectories which compare well with those

obtained from direct numerical simulations (DNS) of the

Navier-Stokes equations at moderate Reynolds numbers.8 At

higher Reynolds numbers, predictions of the stochastic model

proposed in Refs. 7 and 8 turn out to become unrealistic,

mainly because of the weakness of the closure for the aniso-

tropic part of the pressure Hessian.

Indeed, the pressure Hessian is related to the spatial dis-

tribution of the velocity gradient using singular integral

operators9–13 according to

@2p

@xi@xj
¼ �trðA2Þ dij

3
� P:V:

ð
kijðx� yÞtrðA2ÞðyÞdy: (2)

In the above equation, the integral is understood as a Cauchy

principal value (P.V.), and kij is the Hessian of the Green’s

function for the Laplacian operator, namely

kijðxÞ ¼
@2

@xi@xj

1

4pjxj ¼
jxj2dij � 3xixj

4pjxj5
: (3)
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One can see from Eq. (2) that only the isotropic part of the

pressure Hessian is purely local (the first term on the right-

hand side (RHS) of Eq. (2)). All the nonlocal effects of pres-

sure Hessian enter through the anisotropic part (or deviatoric

part corresponding to the second term in the RHS of Eq. (2)).

Hence, in this view, the RE approximation can be understood

as the neglect of all the nonlocal effects implied by the

incompressibility condition (or pressure field).

In order to quantify the precise action of pressure in nu-

merical turbulent flows, it was proposed, in Ref. 8, to study

the probability current associated with pressure in the plane

spanned by the two highly relevant invariants of A, R and Q
(the so-called RQ-plane). One of these invariants, defined as

Q ¼ � 1

2
trðA2Þ ¼ 1

4
jxj2 � 1

2
trðS2Þ; (4)

quantifies the net balance, or competition, between enstrophy

and dissipation. The other important invariant, defined as

R ¼ � 1

3
trðA3Þ ¼ � 1

4
xiSijxj �

1

3
trðS3Þ; (5)

quantifies the competition between enstrophy production and

strain skewness (i.e., dissipation production). As it will be

recalled in the following, in terms of the velocity gradient

evolution in statistically stationary turbulence, pressure has

two important roles. First of all, pressure counteracts the de-

velopment of the singularity implied by the self-stretching

term. This feature is found to be well reproduced by existing

closures.8 The other important pressure action is the redis-

tribution of probabilities towards enstrophy production

dominated regions (i.e., towards R< 0). This is not repro-

duced well by existing closures. As discussed in Refs. 8 and

14, a related deficiency of the closures is that they all predict

that the pressure Hessian is proportional to Q. In the R�Q
plane dynamics, this implies that when Q¼ 0, the effect of

pressure Hessian also vanishes. For real turbulence, there is

no such vanishing of pressure Hessian effects when Q¼ 0.8

In this article, we investigate whether these particular

features of pressure (redistribution of probabilities towards

enstrophy production, and non-vanishing action even when

Q¼ 0) are inherent to true Navier-Stokes turbulence or can

also be observed in various approximations, namely syn-

thetic turbulent velocity fields. Various types of synthetic

fields are considered. The first type of synthetic field consid-

ered is Gaussian field obtained by superposing random-

phase Fourier modes with prescribed spectra. The second

type is called “multifractal”15 and consists of a Gaussian

field whose vorticity field is amplified by means of the “fluid

deformation closure” and made consistent with multifractal-

ity’s long-range correlations in physical space.16 The third

type of synthetic field is generated using the Lagrangian

mapping technique.17,18 It also relies on random-phase

Gaussian fields but then applies a multi-scale deformation

of fluid particles using a simple Lagrangian mapping. For

each of these synthetic velocity fields, a pressure field is

obtained numerically by means of the pressure Poisson

equation. As will be seen, unlike the local closures dis-

cussed above, these synthetic fields reproduce many correct

features of the pressure Hessian. In particular, they will be

shown to reproduce the redistribution of probability towards

enstrophy production, as well as displaying non-vanishing

action, even when Q¼ 0.

The second part of the paper studies to what degree spa-

tial locality is important in determining these properties of

the anisotropic part of the pressure Hessian. As can be seen

from the expression for the pressure Hessian (Eq. (2)), the

anisotropic part of the pressure Hessian is also the part that

is spatially nonlocal, i.e., the part that requires knowledge of

tr(A2) at positions y= x. Arguably, the more non-local

effects are important, the more challenging it is to formulate

closures in terms of local quantities. In order to examine the

degree of locality, in the second part of this paper, we

decompose the space integration in Eq. (2) into two parts: a

local part given by the integration over a small ball of radius

given by the Kolmogorov length scale gK and the remainder

being the “nonlocal” portion. We will show that neglecting

the second non-local contribution leads to an expression that

models the anisotropic part of the pressure Hessian in terms

of the Hessian of the invariant Q. Using DNS data, this

expression is compared with the true pressure Hessian.

II. PRESSURE HESSIAN FROM DNS AND SYNTHETIC
VELOCITY FIELDS

A. Probability current in the RQ-plane

1. Definition of the probability current

We follow the approach used in Refs. 8 and 19, based on

a Fokker-Planck equation for the dynamics of R and Q. To

summarize the approach, we remark that it can be shown that

the time evolution along a Lagrangian trajectory of the non-

dimensional invariants R*¼R=r3 and Q*¼Q=r2 is given by

dQ�

dt�
¼ �3R� � 1

r3
AikHp

ki �
1

r3
AikH�

ki; (6)

dR�

dt�
¼ 2

3
Q�ð Þ2� 1

r4
AikAklH

p
li �

1

r4
AikAklH

�
li; (7)

where r2 ¼ tr S2
� �� �

is the strain variance and t*¼rt is the

non-dimensional time. Also, H
p stands for (minus) the devia-

toric part of the pressure Hessian, i.e.,

Hp
ij ¼ �

@2p

@xi@xj
� dij

3

@2p

@xk@xk

� �
; (8)

and H� ¼ �r2A is the viscous term (recall that in the RE

approximation, H
p¼H

�¼ 0). The Fokker-Planck equation

describing the time evolution of the joint density PðQ�;R�Þ
may be written as

@P
@t�
þ

@

@Q�

@

@R�

0
B@

1
CA:W ¼ 0; (9)

where the divergence of the probability currentW controls

the time variations of the joint probability density P.
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The probability current can be written in terms of conditional

averages as

W ¼
dQ�

dt�

dR�

dt�

0
B@

1
CA
�����Q�;R�

* +
PðQ�;R�Þ (10)

and can be decomposed into W ¼WRE þWp þW� ,

where the probability currentsWRE,Wp, andW� are asso-

ciated, respectively, to the effects on the Lagrangian evolu-

tion of the invariants Q and R (Eqs. (6) and (7)) of the

restricted Euler term �A2, of (minus) the pressure Hessian

�P and of diffusivity �r2A entering in Eq. (1). In this arti-

cle, we will focus on the probability current associated with

the pressure HessianWp. It can be written as

Wp ¼
�AikHp

ki=r
3

�AikAklH
p
li=r

4

� �����Q�;R�
	 


PðQ�;R�Þ: (11)

More details are provided in Ref. 8.

2. DNS velocity fields

In the following, we will make extensive use of data

from standard DNS of the Navier-Stokes equations, for a

Taylor-based Reynolds number of order Rk ¼ 145. DNS is

based on a pseudo-spectral method with 2nd-order accurate

Adams-Bashforth time stepping; the computation box is

cubic (size 2p) with periodic boundary conditions in the

three directions and spatial resolution 5123. Statistical statio-

narity is maintained by an isotropic external force acting at

low wavenumbers in order to ensure a constant energy-

power supply. It provides, in the units of the simulation, a

constant energy injection rate �h i ¼ 0:001. The kinematic

viscosity of the fluid is �¼ 0.000285. The Kolmogorov’s

scale is gK ¼ ð�3= �h iÞ1=4 ¼ 0:0123 so that dx=gK � 1 since

dx¼ 2p=512.

We display in Fig. 1(a) the vector plot and streamlines

of the probability current Wp associated with the pressure

Hessian (Eq. (11)) in the R*Q*-plane, as it was done in Ref.

8. Three main remarks can be made at this stage: (1) first, the

pressure Hessian counteracts the development of the finite

time singularity along the right tail of the Vieillefosse line

implied by the RE term, (2) probabilities are found to be

very low in the dissipation production dominated region

(i.e., R*> 0 and above the Vieillefosse tail) meaning that

pressure does not play there a significant role, and (3) pres-

sure redistributes the probabilities towards the enstrophy pro-

duction dominated region (i.e., the flux is directed to the left,

towards R*< 0). As far as the restricted Euler term is con-

cerned, as is well known,1,2 the deterministicWRE probabil-

ity current pushes probabilities toward the right tail of the

Vieillefosse line (data not shown). This result helps to create

a picture of the time evolution of velocity gradients along

Lagrangian trajectories in stationary flows: The RE term

“pushes” the probabilities towards the right tail towards and

along the Vieillefosse line, while the pressure regularizes the

implied finite time singularity and redistributes the probabil-

ities towards the left part of the plane such that, in turn, the

RE term can act again, etc. To that picture should be added

the viscous diffusion effects,W� pushes the probabilities to-

ward vanishing R and Q not only along the Vieillefosse line

but also everywhere else, and stochastic forcing, such that

the full probability currentW (Eq. (10)) is divergence free,

in order to ensure stationary statistics (Eq. (9)).8

FIG. 1. Probability currentWp associated with the pressure Hessian—Eq. (11)—for the DNS velocity field and the three synthetic velocity fields—Eqs. (12),

(13), and (15)—in the R*Q*-plane, where R� ¼ R= SijSij

� �3=2
and Q� ¼ Q= SijSij

� �
. The streamlines and vector plots of Wp are shown in (a,c,e,g). The iso-

probability contours of the magnitude ofWp are shown in (b,d,f,h). Contours are logarithmically spaced by factors of 10, starting at 1 for the contour closest to

the origin. The thick lines represent the zero-discriminant (or Vieillefosse) line: 27
4

R2 þ Q3 ¼ 0.
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We display also in Fig. 1(b) the amplitude ofWp, using

logarithmic spacing of iso-probability lines. It can be seen

that indeed no current is discernible in the right part of the

plane. We remark that it would be interesting to quantify

whether the effect of anisotropic pressure Hessian is orthogo-

nal to the RQ-plane in this region, when the RQ plane is

extended into three-dimensions, as proposed and studied in

Ref. 20.

3. Incompressible Gaussian stochastic velocity field
with K41 correlation structure

Let us write a Gaussian homogeneous, isotropic, and

incompressible vectorial field u(x),21,22 having a correlation

structure consistent with K41 scalings. It reads, in d -

dimensions,

u�ðxÞ ¼
ð

Rd
uLðx� yÞ x� y

jx� yj
d
2
þ 2

3
�

^ dWðyÞ; (12)

where dW(y)¼ (dW1(y), dW2(y),…,dWd(y)) is a Gaussian

vectorial white noise and uL is a large-scale cut-off which

involves the integral length scale L. The deterministic kernel

entering into Eq. (12) is regularized over the small length

scale e, namely :j j�¼ h�� :j j (* stands for the convolution prod-

uct), with a mollifier h�ðxÞ ¼ 1
�dh x

�

� �
and

Ð
hðxÞdx ¼ 1. It is

shown in Ref. 21 that the velocity u� xð Þ has a well-defined

limit when � ! 0, denoted by u(x), and such that

u xþ ‘eð Þ � u xð Þj jqh i � Cq ‘=Lð Þq=3
when ‘ ! 0, with Cq a

constant independent on the vector e.

A Gaussian vectorial field, such as from Eq. (12), is a

poor representation of turbulence since it does not reproduce

several important features such as a mean energy transfer

towards small scales (i.e., the skewness phenomenon), the

non-Gaussianity of velocity increments (i.e., the intermit-

tency phenomenon), and the alignment of vorticity with the

intermediate eigenvector of the strain rate tensor.1,3,4 Never-

theless, it is useful to consider it in the analysis of the statisti-

cal quantities in which we are interested, such as the

probability currentWp associated with the pressure Hessian

(Eq. (11)). In particular, we look at which part can be attrib-

uted to Gaussian statistics and which part is really linked to

turbulence.

The Gaussian velocity field (Eq. (12)) is computed in a

periodic box in d¼ 3 space dimensions, using N¼ 10243 col-

location points. The regularizing parameter � is chosen as

�¼ 6dx, where the spatial resolution is dx¼ 1=N. For the

mollifier h and the large scale cut-off u, we take Gaussian

functions. See Ref. 15 for further numerical details. The

Pressure p is defined via the Poisson equation Dp¼�tr(A2),

where A is the (Gaussian) velocity gradient tensor.

Figure 1(c) shows the vector plot and streamlines of the

probability currentWp obtained from the Gaussian velocity

field—Eq. (12). It can be seen that the pressure from the

Gaussian field does not counteract directly the singularity

along the direction of the right tail of the Vieillefosse line, as

is the case in the DNS. Also, there is a significantly higher

probability current in the right side region (i.e., R*> 0 and

above the Viellefosse tail) than in the DNS. The pressure

obtained from the Gaussian field is only realistic in the ens-

trophy production dominated region (i.e., R*< 0), where the

behavior shows indeed a trend to push the probability density

towards this region. Also, the streamlines cross the Q¼ 0

line meaning that the pressure field from the Gaussian veloc-

ity field does produce non-zero effect even when Q¼ 0.

In Fig. 1(d),Wp-amplitude is shown. It can be seen that

the amplitude iso-values are symmetric with respect to the

R*¼ 0 line. We are thus led to the conclusion that a Gaussian

velocity field, and its associated pressure field, do not make

difference between dissipation production dominated regions

(R*> 0) and enstrophy production dominated regions

(R*< 0).

4. Incompressible multifractal stochastic velocity field
with KO62 statistics

Based on the recent fluid deformation imposed by the

Euler flow7 and further heuristic introduction of the multi-

fractal structure of turbulence as observed from extensive

empirical data (see, e.g., Ref. 16), Ref. 15 proposed the fol-

lowing 3D random vectorial field:

u�ðxÞ ¼
ð

R3
uLðx� yÞ x� y

jx� yj
3
2
þ 2

3
�

^ eS�ðyÞdWðyÞ; (13)

where S is a tensorial Gaussian log-correlated noise of the

form,

S�ðyÞ ¼
ffiffiffiffiffiffi
5

4p

r
k
ð
jy � rj�L

ðy� rÞ � ½ðy� rÞ ^ dWðrÞ�
jy� rj7=2

�

"

þ ½ðy� rÞ ^ dWðrÞ� � ðy� rÞ
jy� rj7=2

�

#
; (14)

with � denoting the tensorial product. The form of the sym-

metric matrix S� is inspired by the recent fluid deformation

closure experienced by the fluid over short times,15 and the

exponent 7=2 has been selected such that the components of

S are correlated logarithmically in space. A free parameter k
enters this construction and governs the level of intermit-

tency of the field. We will take in the sequel k2¼ 0.025 in

order to be consistent with empirical findings.23

Generation of the vectorial field u� xð Þ can be done accu-

rately and efficiently in periodic boxes using up to 10243 col-

locations points, in a similar way as done for the Gaussian

velocity field (Eq. (12)). The cost of the computation of the

matrix exponential is the limiting numerical step. It is esti-

mated at each point of space using a Padé approximant with

scaling and squaring (see Ref. 15 for details).

It has been shown numerically (Ref. 15) that the multi-

fractal velocity field—Eq. (13)—gives a realistic representa-

tion of instantaneous realizations of velocity fields in fully

developed turbulence in the inertial range in regard to the

following properties: (1) Longitudinal d‘u and transverse ve-

locity increments are intermittent, k being the intermittency

coefficient, (2) the third-order moment h d‘uð Þ3i is negative

and proportional to the scale ‘. The fact that there is negative
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skewness S ¼ h d‘uð Þ3i=h d‘uð Þ2i3=2
means that u exhibits a

non-vanishing mean energy transfer towards the small

scales, and (3) vorticity gets preferentially aligned with the

eigenvector of the strain-rate tensor corresponding to the in-

termediate eigenvalue.

We show in Fig. 1(e) the vector plot and streamlines of

the probability current Wp obtained from the multifractal

velocity field. It can be seen that, in a similar fashion to the

Gaussian case, streamlines are roughly symmetric with

respect to the R*¼ 0 line. This is not consistent with DNS in

the R*> 0 region, but it is still realistic in the R*< 0 region.

The difference with the Gaussian field is the fact that now

the joint density of R* and Q* is not symmetric with respect

to the R*¼ 0 line, showing thus the predominance of the

regions for enstrophy-enstrophy production (upper-left quad-

rant, which in turbulent flows is correlated with vortex

stretching) and dissipation-dissipation production (lower-

right quadrant, connected with biaxial straining in turbulent

flows). This is also the case for the probability current ampli-

tude, as shown in Fig. 1(f). We can see, therefore, that both

the Gaussian and multifractal velocity fields do not repro-

duce the void in probability in the R*> 0 region as observed

in DNS, but they do reproduce accurately the probability

current evolutions in the R*< 0 regions and the presence of

probability flux at Q¼ 0.

5. MTLM velocity field

We consider a third case of a synthetic velocity field.

The minimal turnover Lagrangian map (MTLM) velocity

field is obtained by distorting an initially random solenoidal

vector field, u0(x), over a hierarchy of spatial scales

f‘n¼ 2�nL, n¼ 1,…,Mg, where L is of the order of the inte-

gral scale and the smallest scale, ‘M, is in the order of Kol-

mogorov scale. This generates the multiscale recursive

sequence,

unðxÞ ¼ T½un � 1ðxÞ; ‘n� n ¼ 1;…;M; (15)

whose final step, uM(x), is the synthetic velocity field. Here,

T[	] stands for the distortion operations applied. At each level

n in the sequence, the velocity is filtered at scale ‘n and

decomposed into low-pass and high-pass filtered parts: u
<

and u>, respectively. The u< part is deformed by mapping

the velocity vectors from their collocation points, x, to new

positions that fluid particles moving at constant velocity in

Lagrangian coordinates would reach: u<(X(t), t)¼ u<(x, 0),

with X(t)¼ xþ tu<(x). The parameter t is taken equal to the

eddy-turnover time-scale corresponding to the spatial scale

‘n, computed using standard Kolmogorov scaling. New ve-

locity values at the collocation points are obtained by inter-

polation over nearby velocities that have come into a

neighborhood of radius ‘n around x after the mapping. This

deformed field u< is made solenoidal again by projection in

Fourier space, and the amplitudes of its Fourier modes are

scaled to conform to the target energy spectrum. Finally, u<

is recombined with the u> part, which at this stage still

remains as a Gaussian field.

The next generation in the hierarchy will take the com-

plete field u and will apply the same distortion operations,

now with the field decomposed at a smaller filtering scale. In

this way, the effects are superposed and accumulated over a

range of spatial scales. Further details and characteristics of

these synthetic velocity fields can be found in Refs. 17 and

18. The present MTLM velocity field was generated in a per-

iodic box, using 5123 collocation points, with M¼ 6 genera-

tions in the hierarchy, and an energy spectrum corresponding

toRk � 250.

The results for the probability current Wp obtained

from the MTLM velocity field (Eq. (15)) are shown in Figs.

1(e) and 1(f). When compared with the DNS results (Figs.

1(a) and 1(b)), we can see a close agreement of both magni-

tude and direction ofWp. In particular, the MTLM velocity

field reproduces, for pressure-related part of the probability

current, the void of probability in the R*> 0 region. We can

conclude that, of the three cases studied, the MTLM velocity

field gives the most realistic synthetic turbulence, as far as

anisotropic pressure Hessian effects are concerned. But some

small difference can be observed in the R*> 0 region, close

to the origin, where the MTLM fields seem to predict a circu-

lar motion that is not present in DNS.

B. Mean pressure Hessian norm conditioned on Q

As previously noticed in Ref. 8, current closures for the

pressure Hessian5,7,14 are proportional to the invariant Q. This

is in particular the case for the closure provided in Ref. 7,

namely

P ¼ �
C�1

sg

trðC�1
sg
Þ

trðA2Þ; (16)

where Csg is the statistically stationary Cauchy-Green tensor

at the Kolmogorov time scale sg (Refs. 7 and 8) and

tr(A2)¼�2Q. Indeed, it is tempting to close the anisotropic

part of P as a symmetric tensor proportional to Q since the

isotropic part is itself proportional to Q as seen on the Pois-

son equation Dp¼ 2Q. It would imply in particular that the

probability current Wp vanishes on the Q¼ 0 line. This is

not observed on DNS (see Figs. 1(a) and 1(b)). To quantify

more precisely the behavior of P in the neighborhood of van-

ishing Q, we proposed in Ref. 8 to estimate the average pres-

sure Hessian (square) norm jPj2¼ tr(P2) conditioned on the

invariant Q. The corresponding conditional average

tr P2
� �
jQ

� �
was shown for fields obtained by DNS as well as

by applying the closure (Eq. (16)). It was observed that for

the DNS case, such conditional average at Q¼ 0 does not

vanish and, furthermore, it behaves nearly linearly with Q,

whereas the closure Eq. (16) predicts a vanishing conditional

average for Q¼ 0 and a quadratic behavior with Q.

We display in Fig. 2 the conditional average tr P2
� �
jQ

� �
as a function of Q for the four different velocity fields: the

DNS, Gaussian (Eq. (12)), multifractal (Eq. (13)), and

MTLM (Eq. (15)) velocity fields. As previously observed,

for the DNS case (solid line), the conditional average does

not vanish at Q¼ 0 and behaves linearly with Q in the neigh-

borhood around Q¼ 0. For all the three remaining synthetic

velocity fields, the conditional average does not vanish at

Q¼ 0 and, hence, they perform better than the deterministic
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closure (Eq. (16)) on this issue. For the Gaussian case, how-

ever (dash-dotted line), the tails of the conditional average

are not realistic, being far below the curves corresponding to

the DNS case. Numerical simulations of the Gaussian fields

at lower resolutions, i.e., N¼ 2563 or N¼ 5123 (data not

shown), showed no difference with the N¼ 10243 case.

Interestingly, in this regard, the multifractal field (dashed

line) performed much better, exhibiting conditional average

tails very close to the DNS result. Some discrepancy is found

for negative Q s, where the tail in the DNS case has a steeper

slope. The MTLM velocity field (dotted line) also performs

well against DNS data, although its tails are found to be quite

symmetric, at odds with DNS.

Overall, the behavior of the pressure Hessian obtained

from the three synthetic velocity fields is reasonably satisfac-

tory when compared against DNS data. The probability cur-

rent is well reproduced in the R< 0 region and the

conditional average shown in Fig. 2 does not vanish for van-

ishing Q. Only the MTLM velocity field can reproduce addi-

tionally the void in probability observed in DNS over the

R*> 0 region (explaining, or at least giving an interpretation

of the lack of action of the pressure Hessian in the dissipa-

tion production dominated region R*> 0 remains, however,

an open problem). Furthermore, we have shown that syn-

thetic velocity fields do predict the pressure Hessian square

norm as being closer to linearly proportional to the invariant

Q, rather than proportional to Q2 as is the case in existing

closures, in particular Eq. (16).

At this stage, one could reach the conclusion that some

approximate surrogates of an actual turbulent field, even

when obtained with the simplest Gaussian approximation,

contain a better prediction of the behavior of the pressure

Hessian, in connection with its dependence on Q, than the

deterministic closure given by Eq. (16). We will see in the

following that the anisotropic part of the pressure Hessian

can, in fact, be accurately closed by the local spatial varia-

tions of the invariant Q.

III. LOCALITY OF THE PRESSURE HESSIAN

We have seen in the first part of this work that a simple

Gaussian approximation, given by Eq. (12), or more sophisti-

cated synthetic velocity fields, such as Eqs. (13) and (15), can

reproduce the motion of the probability currentWp associated

with the pressure Hessian in the R*< 0 region. Additionally,

taking into account the spatial distribution of the velocity field

also leads to a non-vanishing conditional mean pressure Hes-

sian norm for Q¼ 0. In this section, we study to what degree

spatial locality is important in determining these properties of

the anisotropic part of the pressure Hessian.

The exact expression (2) for the pressure Hessian is very

useful since it allows interpreting its isotropic part as being

local, whereas the anisotropic part is governed by tr(A2), or

equivalently Q at different locations, i.e., it contains non-local

contributions from the spatial variations of Q. In this section,

we will work with an equivalent form of Eq. (2) that under-

lines the role played by the Hessian Q of the invariant Q.

Indeed, taking two spatial derivatives of the Poisson equation

that commute with the Laplacian, one obtains DP¼ 2Q,

where Qij ¼ @2Q
@xi@xj

. It is then easily seen that a similar relation

exists between the deviatoric parts of P and Q, namely

DPd¼ 2Qd, where the superscript d denotes the deviatoric

part, i.e., for example, Pd ¼ P� 1
3
trðPÞI, with I being the

identity matrix. We finally reach a relation, equivalent to Eq.

(2), between Pd and Qd

PdðxÞ ¼ � 1

2p

ð
1

jx� yj Q
dðyÞdy: (17)

Relation (17) is exact. In the following, we will truncate the

integral present in Eq. (17) over a ball, centered at x, and of

radius g, namely

PdðxÞ � � 1

2p

ð
jx � yj�g

1

jx� yjQ
dðyÞdy: (18)

It is easily seen that from Eq. (18), we recover Eq. (17) by

taking g! þ1. We now make the strong assumption that g
is of order of the Kolmogorov length scale gK. In this case,

we can Taylor-expand the Hessian of Q at the position y

around its value at the location x, take out Q
d(x) from the in-

tegral, and perform the remaining integration in spherical

coordinates. We get an expression for the deviatoric part of

the pressure Hessian,

@2p

@xi@xj

� �d

� �g2 @2Q

@xi@xj

� �d

: (19)

This now expresses the anisotropic part of the pressure Hes-

sian in terms of local properties of the invariant Q, although

the latter’s spatial derivatives are needed. These derivatives

are unknown in the closure and Lagrangian models of, e.g.,

Ref. 7, and so this does not constitute a practical closure yet.

To ensure that this expression yields the same norm as the

true pressure Hessian, we define the ball’s radius according to

g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htrðP2Þi
htrðQ2Þi

s
: (20)

The expression (19) and the choice of the length scale g by

Eq. (20) are consistent only if (1) eigenvalues and

FIG. 2. Conditional expectation tr P2
� �
jQ�

� �
of pressure Hessian norm on

Q*: DNS (solid line), Gaussian (dotted-dashed line), multifractal (dashed

line), and MTLM (dotted line) velocity fields.
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eigenvectors of Pd and Qd are well correlated and (2) g is

indeed of the order of the Kolmogorov length scale gK since

we assume that in the neighborhood of x, Q
d(y) � Q

d(x).

Both Hessian tensors, for the pressure and for Q, are com-

puted in Fourier space, for the periodic DNS flows. The

expression (19) requires the computation of the second deriva-

tive of Q, which is already the square of a first spatial deriva-

tive. This is a reason for our use of the highly resolved DNS

under study, in which dx=gK � 1 (see Sec. II A 2). Using

gK ¼ ð�3= �h iÞ1=4 ¼ 0:0123, we find that for the current DNS,

our choice of the length scale g as Eq. (20) implies that

g¼ 1.83 gK. Hence, g is of the order of gK, as required. Let us

stress that a well resolved DNS is necessary since some noise

can be introduced by the computation of third order deriva-

tives, leading to a bad estimation of the parameter g. More

work is needed to clarify this point and to assess the depend-

ence of g on resolution effects and Reynolds numbers. This

could be done, for example, performing specifically designed

DNS aimed at quantifying accurately high-order velocity

derivatives, as was proposed in Refs. 24 and 25.

We display in Fig. 3 the joint probability densities of the

three eigenvalues of the deviatoric part of the true pressure

Hessian (denoted by kp) and the corresponding eigenvalues

of the expression �g2
Q

d (denoted by kq). The smallest (Fig.

3(a)) and largest eigenvalues (Fig. 3(c)) are found to be well

correlated with joint density contours that are elongated

along the perfect correlation line (i.e., kp¼ kq) and correla-

tion coefficients of q¼ 0.714 and q¼ 0.703, respectively.

As far as the intermediate eigenvalue is concerned,

weaker correlation is found (q¼ 0.275), with isolines being

close to circles. We can conclude that the smallest and larg-

est eigenvalues are well correlated. In Fig. 3(d), we display

the probability of the cosine of the angle between the eigen-

vectors of the left and right terms of Eq. (19). It is found that

in all the cases, corresponding to the three different eigenval-

ues, the maximum of probability is reached when the eigen-

vectors of P
d and �g2

Q
d are aligned. These results show

then that Pd and �g2Qd are correlated both in amplitude and

eigendirections. We have seen that, in tensorial structure, the

true pressure Hessian P
d and the local expression in terms of

velocity gradients �g2Qd are quite similar. We may now

wonder if the local expression is able to reproduce the proba-

bility current associated to pressure effects as seen in Figs.

1(a) and 1(b). To this purpose, we show in Figs. 4(a) and

4(b) the probability current Wp obtained from DNS when

the true pressure Hessian is replaced by the local expression

(19). We see in Fig. 1(a) that, indeed, the local expression

reproduces the counteractive action of the pressure along the

right tail of the Vieillefosse line. Furthermore, a void in

probability is found in dissipation production dominated

regions (i.e., R*> 0), as can be clearly seen in Fig. 1(b).

Finally, the local expression also reproduces some of the

probability redistribution in the enstrophy production domi-

nated region (R*< 0), as observed in DNS (Figs. 1(a) and

1(b)), although the direction of the probability flux stream-

lines for R*< 0 is seen to be more vertical than the left-

wards directions seen in the DNS. Also, the streamlines are

found more curved for the local expression than for P, and

the probability current amplitude jWpj is found to decrease

faster at high values of R and Q than in the DNS case. This

could be due to limitations of the localized expression in

reproducing very high turbulent fluctuations.

The overall behavior of the local expression in the RQ-

plane is on the whole quite satisfactory when compared

against DNS. Some differences appear: (1) the streamlines

of the probability current are found more curved for the local

closure than for P, very much in opposition to the stream-

lines imposed by the RE approximation (see Ref. 8) and (2)

the probability current amplitude jWpj is found to decrease

faster at high values of R and Q than in the DNS case. This

could be due to limitations of the localized expression in

reproducing very high turbulent fluctuations. On the whole,

however, the trends provided by the local expression Eq.

(19) agree quite well compared to the DNS results in terms

of the probability fluxes in the RQ plane.

We also show in Fig. 4(c) the conditional expectation of

the pressure Hessian square norm, based on Q. For the sake

of clarity, we show again the conditional average as obtained

in DNS (solid line) (it was already shown in Fig. 2). We use

open symbols (*) to show the conditional expectation

obtained from DNS using the local approximation (19). It

can be seen that the conditional expectation obtained from

the local approximation is in very good agreement with the

DNS, with some discrepancies appearing for negative Q*.

Interestingly, we see that the conditional expectation does

not vanish for Q¼ 0. This is consistent with former remarks

made about the requirement that a realistic model of P can-

not be simply proportional to Q.

Finally, to quantify the agreement between individual

tensor elements, we show in Fig. 4(d) the joint Probability

FIG. 3. In (a,b,c), we show the joint PDF of eigenvalues kp of the pressure

Hessian and eigenvalues kq of the proposed local expression (Eq. (19)). Iso-

probability lines correspond to e�4, e�3, e�2, e�1, 1. In (d) is shown the PDF

of the cosine of the angle between the eigenvectors of P and those of the

local closure (Eq. (19)): eigenvectors associated to the smallest (dashed), in-

termediate (solid), and biggest (dot-dashed) eigenvalues.
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Density Function (PDF) of the component P12 and the com-

ponent �g2Q12. This plot demonstrates the good level of cor-

relation between these two tensors since the joint PDF is

clearly elongated along the perfect correlation line (i.e.,

P12¼�g2Q12). The corresponding correlation coefficient is

q¼ 0.55. Thus, also this statistical test confirms the good

agreement between the local approximation and the true

pressure Hessian.

IV. CONCLUSIONS AND PERSPECTIVES

This article focuses on the statistical nature of the pres-

sure Hessian that governs much of the Lagrangian dynamics

of the velocity gradient tensor in turbulence. In the first part,

we have seen that synthetic velocity fields reproduce many

properties of the pressure Hessian as they are seen in DNS

flows, such as the non-trivial behavior of the probability cur-

rent, and the conditional expectation of the pressure Hessian

norm on the invariant Q. Even the simplest Gaussian approx-

imation for the velocity field (Eq. (12)) can represent some

non-trivial behaviors of the pressure that could not be pre-

dicted by the closures in terms of A.5,7,14 Based on this ob-

servation and on an exact field description of the pressure

Hessian by means of nonlocal integrals (Eqs. (2) and (17)),

we formulate the hypothesis that considering only the inte-

gration over a ball of radius gK and neglecting other contri-

butions, the deviatoric part of P could be expressed in terms

of local properties of the velocity gradient tensor, but in

terms of higher-order derivatives. Specifically, the spatially

local approximation is not expressed in terms of A, but in

terms of second-order derivatives of Q. This approximation

was found to be highly correlated with the true pressure Hes-

sian P when compared in DNS computations. These findings

show that the main contribution to P(x) is contained in the

local neighborhood around position x, in a ball centered at x,

and of radius of the order of gK. This raises the hope that

local closures involving a finite set of ordinary differential

equations may still be possible for studying the Lagrangian

dynamics of the velocity gradient tensor. To that end, it is

still necessary to express the Hessian of Q in terms of the

local values of A. Only then would we have a full closure.

Let us finally remark that if a tractable transport equa-

tion for the pressure Hessian is difficult to get, the Lagran-

gian derivatives of p and P can be related. We get the

following transport equation for the pressure Hessian:

dOP

dt
¼ � @p

@xk
rruk þrr

dp

dt
; (21)

where dO=dt stands for the upper convected time derivative

or Oldroyd derivative that relates the rate of change written

in the coordinate system rotating and stretching with the fluid

(see, for example, Ref. 26), i.e.,

dOP

dt
¼ dP

dt
þ A>Pþ PA: (22)

Then, if we neglect the right-hand side of Eq. (21) in the rate

of change of the pressure Hessian, i.e., if we assume that the

Oldroyd derivative (22) vanishes, and we apply the recent

fluid deformation (RFD) approximation (assuming A inde-

pendent on time), we get that for an early time

PðsÞ ¼ e�sA>Pð0Þe�sA: (23)

This remark justifies the use of matrix exponentials as clo-

sures of the pressure Hessian,7 as it was also noted for the

subgrid-scale stress tensor.27 If in addition we start from an

initial isotropic pressure Hessian, and include the Poisson

equation, we recover exactly the closure (16) proposed in Ref.

7. This represents useful perspectives for future investigations

on the Lagrangian dynamics of the velocity gradient tensor.
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