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We study time evolution of velocity and pressure gradients in isotropic turbulence by quantifying their

autocorrelation functions and decorrelation time scales. The Lagrangian analysis uses data in a public

database generated by direct numerical simulation at a Reynolds number Re� � 433. It is confirmed that

when averaging over the entire domain, correlation functions decay on time scales on the order of the

global Kolmogorov turnover time scale. However, when performing the analysis in different subregions of

the flow, turbulence intermittency leads to large spatial variability in the decay time scales. Remarkably,

excellent collapse of the autocorrelation functions is recovered when using a locally defined Kolmogorov

time scale. This provides new evidence for the validity of Kolmogorov’s refined similarity hypothesis, but

from a Lagrangian viewpoint that provides a natural frame to describe the dynamics of turbulence.
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Understanding the universal features of the dynamics of
turbulence [1,2] continues to be a formidable problem in
classical and statistical physics. The original Kolmogorov
1941 theory relied on the overall averaged dissipation rate
h�i to predict, among others, the scaling properties of the
energy spectrum. It was extended to account for intermit-
tency by the introduction of the refined Kolmogorov simi-
larity hypothesis (RKSH) [3]. In this extension, attention is
placed on conditional statistics based on the locally aver-
aged dissipation rate in some particular subregion of the
flow, such as a sphere or box of size r. This local dissipa-
tion rate, usually denoted by �r, is defined according to
�rðxÞ ¼ V�1

R
RrðxÞ 2�½Sijðx0Þ�2d3x0, where V is the vol-

ume of the subregionRrðxÞ of size r centered at x, � is the
kinematic viscosity of the fluid, and Sij is the strain-rate

tensor defined as Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2 (where ui
is the velocity field). The longitudinal velocity increment at
scale r is defined as �ru ¼ ½uiðxþ rÞ � uiðxÞ�ðri=rÞ, and
the RKSH states that in the inertial range of turbulence the
statistics of �ru depend on r and �r so that from dimen-
sional analysis moments of �ru, conditioned upon a fixed

value of �r will scale as h�ru
pj�ri ¼ Cpðr�rÞp=3 according

to Kolmogorov’s 1941 postulate. Anomalous scaling then
results from the additional global averaging and anomalous
scaling behavior of moments of �r.

Extensive literature to test RKSH has focused mainly on
velocity increments [4–8] or acceleration [9]. In recent
years there has been growing attention placed in the dy-
namical evolution of the velocity-gradient tensor A (Aij �
@ui=@xj) due to the fact that A provides rich information

about the topological and statistical properties of small-
scale structure in turbulence. The Lagrangian time evolu-
tion of A can be obtained by taking the gradient of the
Navier-Stokes equation [10]:

dAij

dt
¼ �AikAkj � @2p

@xi@xj
þ �

@2Aij

@xk@xk
; (1)

where d=dt stands for Lagrangian material derivative and
p is the pressure divided by the density of the fluid. The
first term on the right-hand side of Eq. (1) denotes the
nonlinear self-interaction of A, the second term is the
pressure Hessian, and the third is the viscous term.
Assuming the pressure Hessian is isotropic (i.e., neglecting
@2ijp� @2kkp �ij=3) and neglecting the viscous term lead to

a closed formulation for A, the so-called restricted-Euler
(RE) equation, which has analytical solutions for the full
tensor-level time history. Remarkably this simple system is
already sufficient to explain a number of nontrivial geo-
metrical trends found in real turbulence [10,11].
Nevertheless, the RE system leads to nonphysical finite-
time singularities because the self-stretching is not con-
strained by any energy exchange or loss mechanism in the
system. To develop models for such energy exchanges,
there is a need to better understand the time evolution of
A, as one follows fluid particles across a turbulent flow. As
will be shown in this Letter, the RKSH can play a crucial
role in determining the characteristic time scales of this
evolution in different parts of the flow.
Much effort at regularizing the RE system to avoid

nonphysical singularities has been made [12–17] in the
past two decades. Despite progress, the inability to fully
account for the anisotropic pressure Hessian and viscous
effects continues to limit the accuracy of the existing
models for the evolution of velocity-gradient tensor [18].
In various models of the Lagrangian dynamics
[12,15,16,18], the characteristic correlation times along
Lagrangian trajectories and their scaling with Reynolds
number play a central role. For instance in the model based
on the ‘‘recent fluid deformation closure’’ [16] the
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Lagrangian pressure Hessian tensor is assumed isotropic,
based on the idea that any causal relationship between
initial and present orientations will be lost after a charac-
teristic Lagrangian correlation time scale of the tensor A.
The usual expectation is that the characteristic correlation

time scale of A is the Kolmogorov time scale �K ¼
ð�=h�iÞ1=2.

Since the dynamical equation for the velocity-gradient
tensor A [Eq. (1)] and the existing models [12–17] are
written for the full tensor, it is of interest to quantify the
temporal correlation function of each tensor element but to
do so in a fashion that is coordinate system invariant. We
thus use the tensor-based Lagrangian time-correlation
function of a second-rank tensor C, defined as

�Cð�Þ �
hCijðt0ÞCijðt0 þ �Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðCmnðt0ÞÞ2ihðCpqðt0 þ �ÞÞ2i
q ; (2)

where � is the time-lag along Lagrangian trajectories and
h. . .i represents volume averaging for homogeneous turbu-
lence and where summation over repeated indices is under-
stood. Here tensor elements are assumed to have zero mean
for isotropic turbulence. For a statistically steady-state
process, when �Cð�Þ does not depend upon t0, averaging
can also be done over t0. The correlation function �Cð�Þ
provides a frame-invariant description of the autocorrela-
tion structure of tensor elements, appropriately summed
over all directions.

The fluid acceleration is another variable of great inter-
est. The Lagrangian velocity and acceleration statistics
have been investigated both experimentally [19] and nu-
merically [20,21]. The acceleration is associated more
closely with inertial-range and small-scale structures. It
has been established that the acceleration is dominated
by the pressure gradient rp and viscous forces are negli-
gible away from boundaries [22,23]. Therefore, we study
the time correlations of pressure gradient. Specifically,
similar to the tensor correlation function defined in
Eq. (2), for the pressure gradient correlation �rpð�Þ we
use the inner product of the vector at t0 and t0 þ �.

We measure �Cð�Þ for C ¼ A, S, or � [�ij ¼ ðAij �
AijÞ=2] and �rpð�Þ using data from pseudospectral direct

numerical simulation of forced isotropic turbulence on a
10243-node periodic domain, with Re� � 433. The 27
terabytes of data are stored in a public database format
[24] and can be accessed using web-service tools. We track
fluid particles and extract Lagrangian information, such as
velocity and pressure gradients, along the fluid particle
trajectories through the second-order Runge-Kutta
particle-tracking algorithm [25]. The interpolation of re-
quired velocities uses 8th-order Lagrange polynomials in
space and piecewise cubic Hermite polynomial interpola-
tion in time, as implemented in the predefined functions in
the database [26]. Data volumes are stored in the database
every �tdb ¼ 0:002 (in units of the simulation, in which

u0 ¼ 0:681, the box size is L ¼ 2�, � ¼ 0:000 185 and
�K ¼ 0:0446). Our particle tracking uses �t ¼ 0:009�K,
allowing highly accurate tracking with a root-mean-square
CFL number of �tu0=�x ¼ 0:044.
The Lagrangian time correlations for S and� are shown

as open squares in Fig. 1(a) (the meaning of the other lines
are explained below). As can be seen, the strain-rate auto-
correlation decays fairly rapidly and reaches almost zero
near 5–6 Kolmogorov time scales, much faster than that of
the rotation rate, see also [12].
It is known [2] that turbulence is highly intermittent,

with regions displaying strong fluctuations, interspersed
with less turbulent regions. In order to study intermittency
from the viewpoint of the Lagrangian time evolution, we
compute the correlation functions based on fluid particles
that originate from various subregions of the flow. The
subregions are characterized by the local dissipation rate
�r. We thus define the conditional time-correlation func-
tions based on �r. In Eq. (2), the three global averages are
replaced by conditional averages, e.g., hCijðt0ÞCijðt0 þ
�Þi ! hCijðt0ÞCijðt0 þ �Þj�ri. In these averages the initial

position of particles contributing to the average at time t0
are sampled from several local boxes of size r that have a
prescribed locally averaged dissipation rate �r (in practice
a range of values in a prescribed ‘‘bin’’ is used). We
consider four scales r in the inertial range of turbulence
corresponding to 16, 32, 64, and 128 grid points of the
DNS or r ¼ 34�K, 68�K, 136�K, and 272�K, respec-
tively, where �K is the Kolmogorov length scale. Four
bins of �r=h�i values are chosen, centered at �r=h�i ¼
0:08, 0.2, 1.0, and 1.6 for 16 cubes, 0.1, 0.2, 1.0, and 1.6
for 32 cubes, and 0.4, 0.6, 1.0, and 1.2 for 128 cubes. For
scale r ¼ 136�K (64 cube), we have an extra set of five
bins which are centered at �r=h�i ¼ 0:4, 0.5, 0.7, 0.9, and
1.5. The overall mean dissipation rate over the entire data
set is h�i ¼ 0:093 [26].
To illustrate the situation, in Fig. 2(a) we show 12

representative 64 cubes placed inside the 10243 domain,
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FIG. 1. Lagrangian autocorrelations of strain- and rotation-rate
tensors computed from Eq. (2). Open squares are for global
average over randomly located particles, whereas different lines
correspond to subregions of the flow characterized by certain �r.
Time lag is normalized using (a) the global Kolmogorov time
scale �K and (b) the local time scale �K;r.

PRL 104, 084502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 FEBRUARY 2010

084502-2



with 50 sample fluid particle trajectories emanating from
each and progressing during a time equal to 27�K. The
required averages are taken over all these trajectories as
well as over several cubes for which �r is in a bin’s
prescribed range. The probability density function (PDF)
of the dissipation rate is shown in Fig. 2(b) together with
the bins of �r values used for the conditional averaging.

For the case of r ¼ 136�K (64 cube), the various lines in
Fig. 1(a) show the conditional autocorrelation functions so
computed, plotted as function of time delay scaled by
global Kolmogorov time scale �K. Averages are evaluated
over 6� 103 particles in each bin. Tests varying the num-
ber of particles show that the autocorrelation functions are
well converged with this number of particles. There are
noticeable differences in the results depending on �r, for
both the S and � autocorrelation functions. For larger
values of �r, i.e., in regions of more intense turbulence
activity, the decay rate of the autocorrelation functions is
faster. This shows that the global Kolmogorov time scale

�K ¼ ð�=h�iÞ1=2 does not determine the local evolution of
patches of turbulence, even in a statistical sense when
conditional averaging is used that segregates different
types of fluid regions.

As a next step, consistent with the RKSH, we define a
‘‘local Kolmogorov time scale’’ based on the local dissi-
pation rate according to

�K;r ¼ ð�=�rÞ1=2: (3)

A Lagrangian version of the RKSH would state that the
temporal autocorrelation functions should be a universal
function of a time-delay � normalized by a local
Kolmogorov time scale �K;r. Results shown in Fig. 1(b)

thus scaled by the local time scale for each tensor show
excellent collapse. In this plot we also show the autocorre-
lation for the velocity-gradient tensor A which falls be-
tween the results of its symmetric and antisymmetric parts.
Again, the autocorrelation of the rotation-rate tensor de-
cays much more slowly than that of the strain-rate tensor.
Figure 3 shows results for the pressure gradient. Also here,
the collapse is much more improved when using the local
time scale that corresponds to the local dissipation rate,
showing that the Lagrangian RKSH works for both the
velocity and pressure gradients, the latter corresponding
closely to the fluid acceleration [22,23]. In order to quan-
tify the relevance of the initial value of �r in each cube, we
evaluate the time-correlation function between �r and the
subsequent dissipation rate averaged over all the fluid
particles from each cube. The decay is quite slow, as is
seen in Fig. 2(c).
We point out that in a recent work [27] the Lagrangian

RKSH has also been shown to hold in the context of
moments of two-time velocity increments. In their analy-
sis, the authors use a rate of dissipation �r averaged over
temporal domains of duration � along the particle trajec-
tory. The ‘‘fully Lagrangian’’ quantity �� averages, and
thus connects, dissipation at various times. From a differ-
ent, perhaps complementary point of view, the present
analysis based on the more traditional spatial average of
dissipation at a single (initial-condition) time facilitates
interpreting the results in terms of ‘‘causality’’ based on
a fixed initial condition.
Next, we explore the validity of the Lagrangian KRSH

for different box sizes r. Figure 4 shows the autocorrela-
tions of strain-rate tensor �S for the four box sizes r and �r
described above. Now the scatter is even more pronounced
in (a) where time lag is normalized by the global averaged
Kolmogorov time scale �K, mainly due to the fact that the
range of values of �r for smaller values of r is larger due to
intermittency. Once again, excellent collapse can be ob-

FIG. 2 (color). (a) Sample particle trajectories starting from 12
randomly selected 64 cubes (5 bins) characterized by local
dissipation rate �r at the initial time. Contours on the background
planes show local dissipation rate (at the initial time) in loga-
rithmic units, showing its intermittent but structured distribution
at the smallest scales of the flow. (b) PDF of the dissipation rate
together with the bins or �r values used for the conditional
averaging. (c) Lagrangian time-correlation function between
dissipation rate averaged over all fluid particles that start in a
cube, for four different values of r.
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FIG. 3. Lagrangian autocorrelations of pressure gradient. The
time lag is normalized using (a) global time scale �K (the arrow
is for increasing �r), and (b) local time scale �K;r.
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served in (b) where the time lag is normalized by the local
Kolmogorov time-scales �K;r, even though the curves cor-

respond to different r and �r values. This is confirmed
further by comparing the results with similar local �r
values but different r: e.g., the first two curves from the
right to left shown in Fig. 4(a) correspond to �r=h�i ¼ 0:08
for a 16 cube and 0.1 for a 32 cube and they collapse quite
well. The strain-rate correlation time scale obtained from
integrating the area under the curve in Fig. 4(b) is T S;r ¼
2:07�K;r. Good collapse (not shown) is obtained for

rotation-rate tensor also.
Present results provide a new and more dynamical in-

terpretation of the Kolmogorov similarity hypothesis:
when focusing on particular subregions of turbulence, the
dynamics proceed according to time scales dictated by the
locally averaged rate of dissipation. The classical view of
the RKSH focused on the moments of velocity increments
in turbulent fields that had already developed due to past
dynamics. Here we have shown that the dynamical time
evolution of turbulence, its rate of change, and associated
decorrelation time scale, depends on the local rate of
dissipation, averaged over a volume comparable to the
volume containing the sample of initial particle locations.
Results also suggest that Lagrangian models (e.g., for the
velocity-gradient tensor [16] or the acceleration [28]) that
require specification of a characteristic time scale should
not use the global, but the local time scale.
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FIG. 4. Lagrangian autocorrelations of S computed from
Eq. (2) for four box sizes r in the inertial range, and for different
�r. Solid lines: 16 cube; dash-dotted lines: 32 cube; dash-dashed
lines: 64 cube; dash-dot-dotted lines: 128 cube; open squares:
global average. In (a) time is scaled using �K , in (b) using the
local time scale �K;r.
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