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Abstract We study Lagrangian statistics of the magnitudes of velocity and pressure
gradients in isotropic turbulence by quantifying their correlation functions and their
characteristic time scales. In a recent work (Yu and Meneveau, Phys Rev Lett
104:084502, 2010), it has been found that the Lagrangian time-correlations of the
velocity and pressure gradient tensor and vector elements scale with the locally-
defined Kolmogorov time scale, evaluated from the locally-averaged dissipation-rate
(εr) and viscosity (ν) according to τK,r =

√
ν/εr. In this work, we study the Lagrangian

time-correlations of the absolute values of velocity and pressure gradients. It has
long been known that such correlations display longer memories into the inertial-
range as well as possible intermittency effects. We explore the appropriate temporal
scales with the aim to achieve collapse of the correlation functions. The data used in
this study are sampled from the web-services accessible public turbulence database
(http://turbulence.pha.jhu.edu). The database archives a 1024

4 (space+time) pseudo-
spectral direct numerical simulation of forced isotropic turbulence with Taylor-
scale Reynolds number Reλ = 433, and supports spatial differentiation and spa-
tial/temporal interpolation inside the database. The analysis shows that the temporal
auto-correlations of the absolute values extend deep into the inertial range where
they are determined not by the local Kolmogorov time-scale but by the local eddy-
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turnover time scale defined as τe,r = r2/3ε
−1/3

r . However, considerable scatter remains
and appears to be reduced only after a further (intermittency) correction factor of the
form of (r/L)χ is introduced, where L is the turbulence integral scale. The exponent
χ varies for different variables. The collapse of the correlation functions for absolute
values is, however, less satisfactory than the collapse observed for the more rapidly
decaying strain-rate tensor element correlation functions in the viscous range.

Keywords Isotropic turbulence ·Direct numerical simulation ·

Lagrangian statistics ·Turbulence database ·Refined Kolomogorov similarity
hypothesis

1 Introduction

The study of turbulence from a Lagrangian viewpoint has a long history, with
the earliest works of Taylor [2] and Richardson [3] both pre-dating Kolmogorov
[4]. The Kolmogorov 1941 theory used the constancy of the globally-averaged
dissipation-rate 〈ε〉 across scales to deduce, among others, the scaling properties
of the wavenumber spectrum of kinetic energy. The 1941 theory was extended to
account for intermittency by the introduction of the so-called refined Kolmogorov
similarity hypothesis (RKSH) [5, 6] in 1962. In this K62 extension of the theory,
conditional statistics, based on the dissipation rate averaged in some particular
subregion of the flow, acquires a central role. The local dissipation rate, usually
denoted by εr, is defined according to

εr(x) =
1

V

∫

Rr(x)

2ν
[

Sij(x
′)
]2

d3x′, (1)

where V is the volume of the subregion Rr(x) (e.g. a box or a sphere) of size r

centered at x, ν is the kinematic viscosity of the fluid, and Sij is the strain-rate
tensor. One of the main predictions of the RKSH relates to the longitudinal velocity
increment at scale r, defined as δru = [ui(x + r) − ui(x)](ri/r). The RKSH states that
in the inertial range of turbulence the statistics of δru depend on r and εr. Therefore,
from dimensional analysis, various moments of δru conditioned upon a fixed value
of εr will scale as 〈δru

p|εr〉 = Cp(rεr)
p/3, essentially following Kolmogorov’s 1941

postulate, but locally. Anomalous scaling results from the additional global averaging
and anomalous scaling behavior of moments of εr. The existing literature to validate
RKSH has focused mainly on velocity increments [7–12] or acceleration [13] in which
the analysis can be performed on single snapshot measurements of the turbulent
flow, i.e. based on a relatively ‘static’ point of view of the flow.
In order to examine the RKSH in more depth, one would also like to inquire

about its dynamical origin, specifically its role in the time evolution of the local
structure of turbulence. It is well recognized that the dynamics of turbulence is best
understood in a Lagrangian frame of reference, i.e. following fluid particles. Recent
years have witnessed a strong revival of interest in Lagrangian statistics in turbulence.
For reviews, see [14, 15]. The dynamics of turbulence following fluid particles also
plays a central role in the PDF modeling framework developed over the past two
decades by S. Pope, starting with his seminal 1985 paper [16].
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Besides which ‘frame’ to use in the description of the dynamics, it is also important
to select variables of interest that convey rich information about the flow. In recent
years, there has been growing attention placed in the dynamical evolution of the
velocity gradient tensorA (Aij ≡ ∂ui/∂x j). This is due to the fact thatA provides rich
information about the topological and statistical properties of small-scale structure in
turbulence. Pioneering studies of the Lagrangian structure and stochastic modeling
ofA are described in [17] and [18], respectively. The Lagrangian time evolution ofA

can be obtained by taking gradient of the NS equation [19]:

dAij

dt
= −Aik Akj −

∂2 p

∂xi∂x j

+ ν
∂2 Aij

∂xk∂xk

. (2)

As usual, d/dt stands for Lagrangian material derivative, p is the pressure divided
by the density of the fluid, and the second and third terms on the right-hand-side
of this equation are the pressure Hessian tensor and viscous term respectively.
Neglecting viscous effects and assuming the pressure Hessian isotropic lead to a
closed formulation known as the Restricted-Euler (RE) dynamics [19, 20]. With
analytically treatable solutions for the full tensor-level, the RE system provides
a fruitful starting point for small structure modeling although there exist serious
deficiencies in the RE dynamics, especially since it predicts nonphysical finite-time
singularities [20]. Models have been developed to mimic the regularization features
of the neglected pressure Hessian and viscous terms. Efforts include a stochastic
model in which the nonlinear term is modified to yield log-normal statistics of
the dissipation [18], a linear damping model for viscous term [21], a tetrad model
[22] for pressure Hessian closure, a viscous diffusion closure [23], a new stochastic
dynamic model, so-called Recent Fluid Deformation closure, for both viscous and
pressure Hessian terms [24], and a multi-scale model which includes energy exchange
between scales [25]. The study of the temporal auto-correlation structure of various
quantities associated withA assists in the further developments and improvements of
such models.
It has recently been confirmed [1] that when averaging over the entire domain,

auto-correlation functions of velocity gradient tensor elements decay on timescales
on the order of the mean Kolmogorov turnover time scale. This time scale is
computed from the globally-averaged rate of dissipation. However, when perform-
ing the analysis in different subregions of the flow, turbulence intermittency was
found to lead to large spatial variability in the decay time scales. Remarkably,
excellent collapse of the auto-correlation functions is recovered when using the ‘local
Kolmogorov time-scale’ defined using the locally, rather than the globally, averaged
dissipation-rate (τK,r ≡

√
ν/εr). This is an additional new evidence for the validity of

Kolmogorov’s Refined Similarity Hypothesis, but from a Lagrangian viewpoint that
provides a natural frame to describe the dynamical time evolution of turbulence.
In this paper, we study Lagrangian time-correlations of scalar measures (such as

magnitudes) of velocity and pressure gradients and explore whether there is further
evidence for the Lagrangian RKSH for these variables. Lagrangian correlation
functions of square strain- and rotation-rate have already been studied in prior work
[26, 27]. In examining the scaling of the magnitudes of the velocity gradient tensor
and pressure gradient, the behavior of correlation functions will be shown here to be
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much more complex than for the tensor or vector elements themselves. Nontrivial
dependencies on local-length scale r and local dissipation-rate (εr) are observed, and
these require more detailed study. The present paper is devoted to such a study,
based on analysis of Lagrangian data.
Lagrangian data can be extracted from direct numerical simulation (DNS) of

NS equations with relative ease. The first such effort traces back to Riley and
Patterson [28]. The rapid development in computing power over the past few decades
has spurred vast amount of such numerical investigations at increasing Reynolds
numbers. For relevant reviews, see [14, 15, 29, 30] and references therein. A new
way to exploit large databases in turbulence has been recently proposed [31]. This
approach is based on web-services that allow public access to turbulence DNS
databases that store not only snapshots of 3D distributions but also the entire pre-
computed time history. Using this public turbulence database, here we study the
Lagrangian time evolution of velocity and pressure gradients and their magnitudes
in isotropic turbulence.
The remainder of this paper is organized as follows. Section 2 describes the public

turbulence database and the numerical approach we use to perform the Lagrangian
analysis. Results on the time evolution of auto-correlations of velocity and pressure
gradient magnitudes are presented in Section 3. We conclude in Section 4 with a
short discussion.

2 JHU Public Turbulence Database and Particle-Tracking Approach

The DNS data of a forced isotropic turbulence archived in the JHU public database
system are from a pseudo-spectral parallel computation of the forced NS equations
in a [0, 2π ]3 domain, at a Taylor-microscale Reynolds number of Reλ ' 433 [31].
The database contains of output on 1024

3 spatial points and 1024 time samples
(every tenth DNS time-step is stored) spanning about one large-scale eddy turnover
time. The domain-wide averaged dissipation-rate (< ε >) and the corresponding
Kolmogorov time scale (τK) are 0.092 and 0.045 respectively, in the units of the
simulation. The turbulence integral scale is L = 1.376. Some data processing func-
tionalities such as spatial differentiation, and spatial and temporal interpolations are
provided directly inside the database. This feature not only reduces data download
cost but also allows users to obtain desired quantities at arbitrary locations and times.
The whole database results in a 27 Terabyte storage size. The 1024

4 space+time
history of turbulence is publicly accessible through a web-service interface which
serves as a bridge to connect user requests with the database nodes. Users may write
and execute analysis programs using prevailing languages C, Fortran, or Matlab on
their host computers such as desktops or laptops, while the programs request desired
outputs from the database through GetFunctions (subroutine-like calls) over the
Internet. Currently, eight GetFunctions listed in Table 1 for velocity and pressure
along with their derivatives and force are available. With these call functions, users
can retrieve quantities simultaneously for large amounts of locations and time (within
the stored time frames) without expensive memory and time costs. The details of
the DNS data and JHU turbulence database can be found in a previous publication
[31]. The instructions and sample codes in C, Fortran, and Matlab are available at
http://turbulence.pha.jhu.edu.
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Table 1 Subroutine-like call functions

Function name Spatial diff. Spatial int. Temporal int. Outputs

GetVelocity – NoInt, Lag4,6,8 NoInt, PCHIP ui

GetVelocityAndPressure – NoInt, Lag4,6,8 NoInt, PCHIP ui, p

GetVelocityGradient FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP
∂ui

∂x j

GetPressureGradient FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP
∂p

∂xi

GetVelocityHessian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP
∂2uk

∂xi∂x j

GetPressureHessian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP
∂2 p

∂xi∂x j

GetVelocityLaplacian FD4,6,8 NoInt, Lag4,6,8 NoInt, PCHIP
∂2ui

∂x j∂x j

GetForce – NoInt, Lag4,6,8 NoInt, PCHIP fi

dif f : differetiation; int: interpolation; NoInt: no interpolation; FD4, 6, 8: Centered finite difference,
options for 4th-, 6th-, and 8th-order accuracies; Lag4, 6, 8: Lagrangian polynomial interpolation,
options for 4th-, 6th-, and 8th-order accuracies; PCHIP: Piecewise cubic Hermite interpolation

We employ the particle-tracking algorithm of [32] to extract Lagrangian infor-
mation along many particle trajectories simultaneously. Each particle is tagged and
randomly assigned an initial position. Let x+(y, t) and u+(y, t) denote the position
and velocity at time t of the fluid particle originating from position y at initial time
t0 with the superscript “+” representing Lagrangian quantities following the fluid
particle. Each particle is tracked by numerically integrating

∂x+(y, t)

∂t
= u+(y, t) (3)

where the Lagrangian velocity u+(y, t) is replaced by the Eulerian velocity u(x, t)

where the particle is located, namely u+(y, t) = u(x+(y, t), t).
The particle displacement between two successive time instants tn and tn+1(=

tn + δt) is obtained through an integral of Eq. 3 using a second-order Runge–
Kutta method. At time tn for a particle located at x+(y, tn), the predictor step
yields an estimate x∗ = x+(y, tn) + δt u+(y, t) for the destination position x+(y, tn+1).
The corrector step then gives the particle position at tn+1: x+(y, tn+1) = x+(y, tn) +
δt [u+(y, tn) + u+(x∗, tn+1)]/2. It is proved that the time-stepping error is of order
(δt)3 over one time step [32]. In general, accurate spatial and time interpolations are
crucial to obtain the fluid velocities while tracking particles along their trajectories.
In the JHU turbulence database, these operations have been built in with optional
orders of accuracy in the current work. We use flags FD4Lag4, Lag8, and PHCIP
(explained in the caption of Table 1) for the calls to specify spatial differentiation,
spatial interpolation, and time interpolation.

3 Lagrangian Time Correlations of Gradient Magnitudes

As mentioned above, the velocity gradient tensor A has received considerable
attention in recent years. It provides a rich characterization of the topological and
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statistical properties of the small-scale structure in turbulence in the viscous range.
The antisymmetric part of the velocity gradient tensor, i.e., Äij ≡ (Aij − A ji)/2, is
the rate of rotation describing the vortex structure and dynamics. Whereas the
symmetric part ofA, the strain-rate tensor, defined as Sij ≡ (Aij + A ji)/2, represents
the strength and directions of fluid deformation rates. The dynamic evolution ofA is
given by Eq. 2. Here we study Lagrangian auto-correlations for the absolute values
of the strain-rate tensor S and rotation-rate tensor Ä. The magnitudes are defined
here using the square invariant according to |S| ≡

√

SijSij and |Ä| ≡
√

ÄijÄij (we
apply Einstein notation for repeating indexes unless indicated otherwise). We also
study the magnitude of pressure gradient (approximately similar to the acceleration
magnitude), defined as | 5 p| ≡

√
∇ p · ∇ p.

The Lagrangian time correlation of these scalar quantities is defined as usual:

ρ f (τ ) ≡
〈 f (t0) f (t0 + τ)〉

√

〈 f (t0)2〉 · 〈 f (t0 + τ)2〉
, (4)

where τ is the time-lag along Lagrangian trajectories, f can be f = |S|, f = |Ä|, or
f = | 5 p| as the case may be, and 〈· · ·〉 may represent ensemble or global volume
averaging for homogeneous turbulence.
We first present auto-correlation functions for (a) tensor elements S,Ä and vector

elements ∇ p and (b) their corresponding scalar magnitudes (right plot) in Fig. 1.
On the components level, pressure gradient decays the fastest dropping to zero at
around 2τK. Strain-rate tensor also decays quickly, dropping to nearly zero at around
6τK. The rotation-rate shows a significantly longer time correlation, although as
shown in [1], the decay still scales with the Kolmogorov scale. There is much less
difference in the rates of decay for the magnitudes, and the correlations persist for
much longer times. Clearly they extend into the inertial range.
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Fig. 1 Global time correlations of (a) tensors S, Ä, and vector ∇ p (left) and (b) magnitudes |S|, |Ä|,
and |∇ p|
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In order to study effects of intermittency, which in turbulence is characterized
by local regions displaying different levels of turbulence activity, as in [1] we also
compute conditional correlation functions based on fluid particles that originate from
various subregions of the flow domain. The subregions are characterized by the local
dissipation-rate εr defined in Eq. 1 and the length-scale r. In this context, the global
average in Eq. 4 is replaced by the conditional average, i.e

ρ f (τ ) ≡
〈 f (t0) f (t0 + τ)|εr〉

√

〈 f (t0)2|εr〉 · 〈 f (t0 + τ)2|εr〉
, (5)

In the conditional average, the initial positions of particles contributing to the
average at time t0 are sampled from several local boxes of size r that have a prescribed
locally averaged dissipation-rate εr. For practical reasons, instead of a precise value
of εr, we must consider sampling in “bins” of εr values. Typically four different
bins will be used. For any given “bin”, we select a number of local cubes that
have the property that their εr falls in the prescribed range of the desired bin.
Besides varying the bin characteristic value εr, we also consider four length scales,
r = 34ηK, 68ηK, 136ηK, 272ηK. They correspond to 16-, 32-, 64-, and 128 grid-point
cubes, respectively. At each scale there are four associated εr bins. That is to say, at
each scale, we consider four different ranges of values of εr for conditional averaging.
Once the local cubes are determined, sample particles are randomly selected in each
cube. The number of cubes in each bin and the number of particles in each cube
vary with the cube sizes, i.e. the local length scales. An additional set of 64-cube case

Table 2 Different cases for calculation of conditional correlation functions listed by local subregion
(cube) length size, bin index, number of particles in each cube, number of cubes in each bin, and
range and nominal of local dissipation for each bin

Cube size r Bin index # Particles/cube # Cubes/bin εr range in bin Nominal εr

34ηK 1 50 120 0.0056v 0.0093 0.0076

2 50 120 0.017v 0.020 0.019

3 50 120 0.089v 0.096 0.092

4 50 120 0.14v 0.16 0.15

68ηK 1 100 60 0.0074v 0.011 0.0096

2 100 60 0.0241v 0.028 0.019

3 100 60 0.089v 0.096 0.093

4 100 60 0.14v 0.16 0.15

136ηK-I 1 500 12 0.017v 0.020 0.018

2 500 12 0.024v 0.028 0.026

3 500 12 0.089v 0.096 0.093

4 500 12 0.10v 0.12 0.11

136ηK-II 1 4,000 2 0.033v 0.041 0.037

2 4,000 3 0.045v 0.046 0.046

3 4,000 2 0.065v 0.066 0.066

4 4,000 2 0.083v 0.088 0.086

5 4,000 3 0.12v 0.16 0.14

276ηK 1 1,000 6 0.030v 0.037 0.034

2 1,000 6 0.048v 0.060 0.052

3 1,000 6 0.081v 0.10 0.094

4 1,000 6 0.11v 0.15 0.12
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(r = 136ηK) with five bins has been studied. This approach was also used in [1] for
the tensor element-based correlations. The detailed specifications of scale and bin
values are listed in Table 2.
In Fig. 2 we show PDFs of εr for the four length scales considered (left plot) and 12

representative 64-cubes placed inside the 1024
3 domain, with 50 sample fluid particle

trajectories emanating from each and progressing during a time equal to 27τK (right
plot). The required averages are taken over all the trajectories as well as over several
cubes for which εr is in a bin’s prescribed range.
Lagrangian and conditional Lagrangian auto-correlation functions for tensors

A, S, Ä, or vector 5p have been studied in our previous work [1]. These
tensor and vector time correlation functions are computed through expres-
sions like 〈Cij(t0)Cij(t0 + τ)〉 and 〈Cij(t0)Cij(t0 + τ)|εr〉 or 〈Gi(t0)Gi(t0 + τ)〉 and
〈Gi(t0)Gi(t0 + τ)|εr〉 on tensor or vector element level for global and conditional
correlation functions, respectively. Here we present these measurements in Fig. 3
for three variables including all the cases listed in Table 2 (in [1] only results for S

were shown for the same cases). The evolution time is scaled by τK and τK,r where

τK =
√

ν

〈ε〉
, τK,r =

√

ν

εr

. (6)

The main observations can be summarized as follows. First, the rotation-rate displays
significantly longer time memory than the strain-rate. After about 6τK,r, the strain-
rate’s correlation is essentially zero, whereas it is still near 0.5 for the rotation-
rate. We found that this trend holds true even if coherent vortex structures are
excluded from the analysis. Second, the temporal auto-correlation functions scatter
significantly when the time lag is scaled by τK (left column) but collapse well when
scaled by τK,r (right column). This behavior demonstrates that the dynamics of flow

Fig. 2 Left plot: PDFs of locally-averaged dissipation-rates εr with four different local length scales;
Right plot: Sample particle trajectories starting from 12 randomly selected 64-cubes characterized by
local dissipation-rate εr at the initial time corresponding to case 136ηK-II in Table 2. The length of
the trajectories corresponds to a tracking duration of 27τK
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Fig. 3 Lagrangian time correlations of strain- and rotation-rate tensors and pressure gradient vector
for all the cases in Table 2. Open squares are for global average over randomly located particles
in the whole domain, whereas dif ferent lines correspond to subregions of the flow characterized by
different εrs. Time-lag is normalized using the global Kolmogorov time scale τK (left column) and
the local time-scale τK,r (right column)

variables such as velocity and pressure gradients following fluid particles depends
upon the local dissipation-rate (εr) rather than the global one (〈ε〉) which, as argued
in [1], provides new evidence for the validity of RKSH form a Lagrangian viewpoint.
In what follows, we study conditional Lagrangian time correlations for the ab-

solute values of these tensors and vector.
Figure 4 shows the similar plots to Fig. 3 but for the the absolute values of tensors S

(top row) andÄ (middle row) and vector∇ p (bottom row). It is quite clear that for all
variables, especially for the strain-rate and pressure gradient, the correlations decay
much more slowly for the magnitudes as compared to the tensor or vector elements.
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Fig. 4 Auto-correlations of |S| (top row), |Ä| (middle row), and |∇ p| (bottom row) vs. τ/τK (left
column), τ/τK,r (right column) for the cases listed in Table 2. Open square symbols correspond to
global (unconditional) averaging over entire data volume

Similarly slow decay had been observed for the square of these variables in [26, 27].
Moreover, and unlike the tensor- or vector-based Lagrangian auto-correlations, poor
collapse is seen when the time lag τ is scaled by the local Kolmogorov time τK,r. Such
scaling appears to work only for the viscous time-scale range near the origin of the
curves (τ < τK,r). For the inertial range, the curves scatter significantly even when
scaled by the local τK,r, suggesting the need for a more complicated intermittency
correction in the inertial range.
Since there remains significant scatter we explore the use of other time-scales

to express time. The characteristic time-scale that is believed to be relevant in the
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inertial range is the eddy-turnover scale appropriate for eddies of size r. Its global
and local values are defined according to

τe = r2/3〈ε〉−1/3, τe,r = r2/3ε−1/3

r . (7)

Figure 5 shows the conditional Lagrangian time correlations of absolute values
of S (top row), Ä (middle row), and 5p (bottom row) with time normalized by
τe (left column) and τe,r (right column). These results are for a single length-scale
corresponding to the case of r = 136ηK (case II) in Table 2. When the time lag τ

is scaled by τe, there are noticeable differences in the results depending on εr. For
the three variables, larger values of εr (i.e. in regions of more intense turbulence
activity corresponding to smaller local eddy turn-over time) are associated with
faster correlation decay. When the time lag is scaled by the local time-scale τe,r, the
curves collapse better than with the global value. This provides some evidence for a
Lagrangian RKSH also at inertial-range ‘eddy-turnover’ scales.
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Fig. 5 Auto-correlations of |S| (top row), |Ä| (middle row), and |∇ p| (bottom row) vs. τ/τe (left
column) and τ/τe,r (right column) for the case of 136ηK-II in Table 2
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The next question is whether good collapse also occurs for different length
scales. Figure 6 plots the conditional auto-correlations of |S|, |Ä|, and |∇ p| with
approximately the same εr corresponding to bin No. 3 (see Table 2), but at different
length scales. In the left column, the time lag is scaled by the local eddy time τe,r.
It is seen clearly that the correlation functions decay differently at different length
scales, which implies that the normalization of time with τe,r does not account for the
differences.
Intermittency in turbulence is often known to connect the inertial range dynamics

with the ratio of length-scale to the integral scale, i.e. the level of intermittency is
related to “how far” the scale is from its original starting point at the large scales
during the cascade. Often such effects are parameterized by factors of the form
(r/L)χ , where χ is an appropriate intermittency exponent for the correction. We
determine the exponents χ empirically (see below) to obtain improved collapse. The
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Fig. 6 Time correlations of |S|, |Ä|, and |∇ p| for the εr value in bin No. 3 (see Table 2) vs. τ/τe,r (left
column) and τ/τe,r ·

(

r
L

)χ
(right column, (b) χ ≈ −1/4 , (d) χ ≈ −1/2, and (f) χ ≈ −1/2). All are for

the cases in bin No. 3 with εr ≈ 0.092, which also close to value of global-averaged dissipation-rate
<ε> = 0.092
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right column in Fig. 6 shows the correlation functions with time now normalized
by the intermittency corrected time scale τe,r(r/L)χ . As can be observed, improved
collapse can thus be obtained by using an intermittency correction.
In order to determine the exponents empirically, we set a threshold on the

correlation function value. A value ρ f (τ1/3) = 1/3 is used, which defines the time-
scale τ1/3. For each case, the value of τ1/3 corresponds to ρ f = 1/3. A log-log plot
of τ1/3/τe,r versus r/L should have slope χ , if a power-law intermittency correction
is appropriate. In Fig. 7 such plots are presented for each variable |S|, |Ä|, |∇ p|,
from top to bottom. Exponents are obtained by fitting straight lines through the data
as shown by the dashed lines in the plots. The corresponding exponents of χ are
χ|S| = −0.24, χ|Ä| = −0.46, and χ|∇ p| = −0.5. These are the values used to scale the
results shown in the right column of Fig. 6. We have not yet succeeded in relating
the values of χ to the multifractal theory of turbulence. Note that these values are
significantly larger than what is typically obtained from multifractal corrections.
All the cases are plotted jointly in Fig. 8. With global time scaling of τe (left

column), the curves scatter significantly reflecting clear intermittency in the flow.
When both τe,r and (r/L)χ are considered in the scaling of time lag (right column),
the curves collapse better. Some scatter remains, however.

Fig. 7 Plots of characteristic
decay time τ1/3 (measured as
the 1/3 point in the correlation
function) versus length-scale.
The scale r is normalized by
the integral length L = 1.367.
Different symbols are for
different εr bins: ◦ bin1;
4 bin2; 2 bin3; ¦ bin4. The
dashed lines are power-law fits
yielding, in (a) for |S|,
χ = −0.24; in (b) for |Ä|,
χ = −0.46; and in (c) for |∇ p|,
χ = −0.5. Note that these
values are very close to −1/4,
−1/2 and −1/2 respectively
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Fig. 8 Time correlations of |S| (top row), |Ä| (middle row), and |∇ p| (bottom row) vs. τ/τe (left
column) and τ/τe,r ·

(

r
L

)χ
(with (b) χ = −0.24, (d) χ = −0.46, and (f) χ = −0.5) for all the cases in

Table 2. The lines are: solid lines 16-cube; −− 32-cube; − − · 64-cube; − − ·· 128-cube

4 Conclusions and Discussions

Using the JHU public turbulence database, we have performed Lagrangian analysis
of temporal time correlations for the absolute values of velocity and pressure
gradients. Consistent with earlier results for the square strain and rotation rates
[26, 27], we find significantly longer decay times for the magnitudes as compared
to the tensor or vector elements, especially for strain-rate and pressure gradients. It
is demonstrated that Lagrangian dynamics of velocity gradient and pressure gradient
(almost equivalent to acceleration since viscous effects are negligible) is determined
mainly by scales provided by the locally averaged rate of dissipation, as predicated
in the Kolmogorov Refined Similarity Hypothesis. We also observe that the local
Kolmogorov scale collapses the absolute value correlation functions for very short
times in the viscous range, but at longer times in the inertial range, inertial quantities
need to be invoked. Clearly, such lack of single scale is a hall-mark of turbulence
across the inertial range. We point out that a Lagrangian RKSH has also been shown
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to hold in the context of moments of two-time velocity increments [33]. That analysis
is based on a fully Lagrangian rate of dissipation ετ averaged over temporal domains
of duration τ along the particle trajectory. By its nature, ετ averages dissipation at
various times. The present analysis is instead based on the more often used spatial
average of dissipation at a single (initial-condition) time. Present results show that
even after using local time-scales corrected for intermittency, there was remaining
scatter observed in the correlation functions for absolute value variables. A better
understanding of the origin of these deviations, as well as relating the relatively large
intermittency corrections to various phenomenological models of turbulence, would
be desirable developments. The fact that the intermittency correction exponents are
close to 1/4 and

1/2 further suggests that a meaningful explanation may be possible.
The present findings have implications on the formulation of new-generation

Lagrangian dynamic evolution models for the velocity gradients in turbulence
[18, 22–24]. First of all, such models can be used to predict temporal correlation
functions of tensor elements and tensor magnitudes. The present results provide
data against which such predictions can be compared and the models evaluated.
Furthermore, as mentioned in the introduction, these Lagrangian models require
closures for the anisotropic pressure Hessian and viscous effects. The Lagrangian
correlation times and their scalings along fluid particle trajectories at different stages
during the energy cascade play central roles in the various models that have been
proposed in the literature [18, 23, 24] and future ones likely to be further devel-
oped. Specifically, the newly developed closure, called Recent Fluid Deformation
approximation [24] requires the specification of a decorrelation timescale of the
velocity gradient along the Lagrangian evolution. This approach is based on the
idea that any causal relationship between initial and present orientations will be lost
after a characteristic Lagrangian correlation time-scale of the tensor A. The usual
expectation is that the characteristic correlation time-scale of A is the Kolmogorov
time-scale τK =

√
ν/ < ε >. However, for very high Reynolds numbers, this model

(and many others proposed in the literature) still leads to nonphysical predictions.
In our previous work [1], it has been demonstrated that the Lagrangian time corre-
lations of small-scale variables, such as velocity gradient related tensors, are scaled
not by the global, but by the local-averaged Kolmogorov time scale τK,r =

√
ν/εr. In

the current work we show that absolute values, i.e. the magnitudes of the velocity-
gradient related tensors, display much slower decorrelation and that inertial-range
variables need to be used for proper scaling. Hence, the dynamical models need to
incorporate a mixture of short-term memory for the individual components while
producing long-term memory for the associated magnitudes. It is not yet clear how
this knowledge can be directly incorporated into the models, however.
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