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A linear stability analysis of the Rayleigh–Taylor instability sRTId between two ideal inviscid
immiscible compressible fluids in cylindrical geometry is performed. Three-dimensional s3Dd
cylindrical as well as two-dimensional s2Dd axisymmetric and circular unperturbed interfaces are
considered and compared to the Cartesian cases with planar interface. Focuses are on the effects of

compressibility, geometry, and differences between the convergent sgravity acting inwardd and
divergent sgravity acting outwardd cases on the early instability growth. Compressibility can be
characterized by two independent parameters—a static Mach number based on the isothermal sound

speed and the ratio of specific heats. For a steady initial unperturbed state, these have opposite

influence, stabilization and destabilization, on the instability growth, similar to the Cartesian case

fD. Livescu, Phys. Fluids 16, 118 s2004dg. The instability is found to grow faster in the 3D

cylindrical than in the Cartesian case in the convergent configuration but slower in the divergent

configuration. In general, the direction of gravity has a profound influence in the cylindrical cases

but marginal for planar interface. For the 3D cylindrical case, instability grows faster in the

convergent than in the divergent arrangement. Similar results are obtained for the 2D axisymmetric

case. However, as the flow transitions from the 3D cylindrical to the 2D circular case, the results

above can be qualitatively different depending on the Atwood number, interface radius, and

compressibility parameters. Thus, 2D circular calculations of RTI growth do not seem to be a good

model for the fully 3D cylindrical case. © 2008 American Institute of Physics.

fDOI: 10.1063/1.2991431g

I. INTRODUCTION

The Rayleigh–Taylor instability sRTId1,2 occurs at an in-
terface between two fluids having different densities when

the fluids are subjected to accelerations or body forces. In

many cases, such as astrophysical situations, oceans, and at-

mosphere, the acceleration is due to gravity. If the accelera-

tion points from the heavy to the light fluid, the interface

between the two fluids is unstable. In this case any perturba-

tion with a wavelength larger than the cutoff due to surface

tension sfor the immiscible cased or mass diffusion sfor the
miscible cased will grow. As the perturbation grows, smaller
and larger wavenumbers are generated by nonlinear interac-

tions and eventually the flow becomes turbulent. There is a

complex phenomenology associated with the evolution of

RTI including formation, competition, and amalgamation of

spikes and bubbles, entrainment, and, eventually, turbulence.

In general, the fluids can be immiscible or miscible; in the

latter case the material mixing also influences the flow de-

velopment. If the amplitudes of the initial perturbations are

sufficiently small, the early stages of the instability growth

can be described by the linearized governing equations.

For a planar interface sPId in the Cartesian geometry, the
linear growth rate for incompressible immiscible fluids is

well known and has become a classic textbook result.
3
In this

configuration, the role of compressibility on the linearized

RTI development has been studied by a number of research-

ers. While Sharp
2
found a stabilizing effect of compressibil-

ity, other researchers
4–7
reported that compressibility has a

destabilizing effect on RTI. This controversy was settled by

Livescu,
8
who showed that compressibility can be character-

ized by two independent parameters, the isothermal speed of

sound, cT swhich can be changed, for example, by varying
the undisturbed pressure at the interface, p0d, and the ratio of
specific heats, g. For isothermal initial conditions, the pertur-

bation growth rate decreases when p0 decreases smore com-
pressible flowd but increases when g decreases smore com-
pressible fluidd, which clarifies the dual character, stabilizing
and destabilizing, of compressibility reported in the litera-

ture. Incompressible limits are independently obtained when

either M→0 or g→`, where M is the static Mach number

sdefined using the gravity wave speed and the isothermal
speed of soundd. The compressible to incompressible limit
has been studied for the fully nonlinear equations when the

pressure is a function of density only sbarotropic cased in
Ref. 9. In the case of M→0, global weak solutions of the

incompressible Navier–Stokes equations
10
are recovered. On

the other hand, as g→`, the incompressible limit may, in

general, be different, underlying the nonuniqueness of the

compressible to incompressible limit. No such result exists

for the fully snonisentropicd compressible nonlinear case, al-
though the results highlighted above show that the linearized

compressible equations in the Cartesian geometry do not

have a single incompressible limit.

In many applications, RTI occurs in non-Cartesian ge-

ometries. For example, RTI plays an important role in super-

ad
Electronic mail: hyu@lanl.gov.

bd
Electronic mail: livescu@lanl.gov.

PHYSICS OF FLUIDS 20, 104103 s2008d

1070-6631/2008/20~10!/104103/11/$23.00 © 2008 American Institute of Physics20, 104103-1

Downloaded 06 Aug 2010 to 128.220.159.1. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



nova explosions, stellar pulsations,
11
or inertial confinement

fusion sICFd.12,13 Such systems with spherical or cylindrical
geometries can be geometrically divergent sexplosived or
convergent simplosived. In most situations the resulting flows
are compressible. The effects of compressibility and geom-

etry on the instability growth are, thus, of great interest.

When the instability occurs at a circular interface sCId in
cylindrical or spherical geometries, there are effects not

present in the Cartesian case. In general, the perturbation

growth can be due to the interface motion, a body force

acting on the fluids, or a combination of both. In the usual

ICF applications, both the ablative front and buoyancy force

contribute to the instability at the interface. However, in

many other applications, the instability can be dominated by

the buoyancy effects se.g., Ref. 14d. Bell15 was the first to
study the perturbation growth due to an arbitrary radial mo-

tion of the interface in a cylindrical domain. The motion can

be produced, for example, by an initial impulse or continu-

ously driven by an external mechanism. In curved geom-

etries, even the uniform motion of the interface leads to in-

stability. Under an assumption that the flow is irrotational

and of amplitude small compared to the wavelength of the

perturbation, Bell derived differential equations for the am-

plitude of the perturbation as functions of time. Later,

Plesset
16
derived the amplitude growth equation in a sphere

based on the same incompressible flow methodology. These

results are now referred to as the Bell–Plesset sBPd
effect.

17,18
Recently, the BP treatment was employed in as-

sessing the instability growth in different flow arrangements

in both cylindrical and spherical geometries.
19–23

Studies

based on the Euler equations assuming self-similar motion of

the interface also exist for cylindrical
24,25

and spherical
26,27

geometries. Epstein
28
examined BP effects for an incom-

pressible perturbation for planar, cylindrical, and spherical

interfaces and demonstrated a clear distinction between the

BP effect and RTI. Nevertheless, there are very few studies

to address the contribution to the instability growth due to a

RT mechanism in convergent geometries. An early work
29

introduced buoyancy to analyze RTI in an ablating plasma. A

specific mathematical method for obtaining the dispersion

relation and unstable mode profiles in spherical geometry

was presented; however, the physical effects on RTI growth

were not explored.

This paper aims to fill a gap in the present knowledge on

the early development of RTI in cylindrical geometry. Fo-

cuses are on the effects of compressibility and geometry sin-
cluding convergence/divergence effectsd on the instability
growth. The remainder of this paper is organized as follows.

Section II introduces the linearized governing equations, in-

cluding the zeroth- and first-order equations, and the incom-

pressible limits. Analytical solutions are given in Sec. III.

Section IV presents numerical results pertaining to three as-

pects: s1d compressibility effects, s2d geometry effects, and
s3d differences between the convergent and divergent con-
figurations. Section V provides a summary and conclusions.

II. LINEARIZED GOVERNING EQUATIONS

The problem considered here is stated as follows: two

ideal inviscid immiscible compressible fluids in a cylindrical

domain with coordinates r, u, z are subject to a steady accel-

eration gW=geWr in the radial direction. The interface between

the two fluids is located at r=r0. The densities of the two

fluids at the interface are rl sfor the light fluidd and rh sfor
the heavy fluidd. There are two unstable RT configurations,
with different arrangements of the fluids and directions of

acceleration. The convergent case corresponds to infinite

outer-layer heavy fluid versus finite confined light fluid with

inward acceleration sg,0d and the divergent case is vice
versa. In both cases, the normalized density difference de-

fines the Atwood number, A= srh−rld / srh+rld.
The governing equations corresponding to mass, mo-

mentum, and energy conservation laws for each fluid are

r,t + srrurd,r/r + sruud,u/r + sruzd,z = 0, s1ad

rsrurd,t + srrur
2d,r + sruruud,u + rsruruzd,z − ruu

2 = − rp,r + rgr ,

s1bd

rsruud,t + srruruud,r + sruu
2d,u + rsruzuud,z + ruuur = − rp,u,

s1cd

rsruzd,t + srruruzd,r + sruzuud,u + rsruz
2d,z = − rp,z, s1dd

rp,t + srpurd,r + spuud,u + rspuzd,z

= − sg − 1dhsrqrd,r + qu,u + rqz,r + p jfsrurd,r + uu,u + ruz,zgj ,

s1ed

with r, uWsur ,uu ,uzd, p, and qWsqr ,qu ,qzd the density, velocity
vector, pressure, and heat flux vector. s¯d,f is used to denote
]s. . .d /]f . The heat flux is expressed as qW=−l¹T with l the

thermal conductivity. The energy equation was written as Eq.

s1ed by assuming ideal gas equation of state p=RrT and

caloric equation of state e=c
v
T= fR / sg−1dgT, where R is the

gas constant, e is the internal energy, c
v
is the specific heat at

constant volume, and g is the ratio of specific heats.

A. Zeroth-order equations

Let rs0d, u
r

s0d
, ps0d, and Ts0d be the variables defining the

equilibrium state. As mentioned in Sec. I, the instability of

the interface can be produced by an acceleration gsrd as well
as interface movement us0d or a combination of both. In this

paper, we focus on the classical RTI by setting us0d=0. Thus,

the fluids are initially at rest, separated by a perfectly cylin-

drical unperturbed interface, and subjected to a constant and

uniform acceleration g.

With these assumptions, the zeroth-order equations for

fluid j, where j= l ,h, reduce to

r j,t
s0d = 0, s2ad

p j,r
s0d = gr j

s0d, p j,u
s0d = p j,z

s0d = 0, s2bd

p j,t
s0d = sg j − 1dsl jT j,r

s0dd,r/g j . s2cd
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We further assume that the equilibrium state is steady

and l j is constant. Then the energy equation becomes T
j,r

s0d

=0. For infinite domain, as the temperature needs to be

bounded, this yields that the outer fluid has constant

temperature. Assuming that the derivatives are continuous

inside each of the fluid domains, we obtain that the tempera-

ture of the inner fluid is also constant. Since the two fluids

are in thermal equilibrium, this yields uniform temperature in

the whole domain. Thus, the equilibrium state of fluid j is

given by

T j
s0d = T0, s3ad

p j
s0d = p0e

gsr−r0d/RjT0, s3bd

r j
s0d =

p0

R jT0
egsr−r0d/RjT0, s3cd

where p0 is the unperturbed pressure at the interface. The

zeroth-order equation of state is p
j

s0d
=r

j

s0d
R jT0.

B. First-order equations

The interface between the two fluids is perturbed with a

small amplitude perturbation so that the primary variables

can be decomposed as the sum between the equilibrium val-

ues and some small perturbations, r8, ur8, uu8, uz8, p8, and T8.

The decomposition is plugged into the governing equations

and, after all quadratic or higher order terms in the perturba-

tions are neglected, the first-order equations are obtained as

r,t8 + rs0ds¹ · uW8d + ur8r,r
s0d = 0, s4ad

rs0dur,t8 = − p,r8 + gr8, s4bd

rrs0duu,t8 = − p,u8 , s4cd

rs0duz,t8 = − p,z8 , s4dd

p,t8 + ur8p,r
s0d = − gps0ds¹ · uW8d , s4ed

with ¹ ·uW= srur8d,r /r+uu,u8 /r+uz,z8 . Thermal conduction is ne-

glected in the first-order equations as the effects are small

when the zeroth-order state is in thermal equilibrium. Equa-

tions s4ad–s4ed are written formally for the entire domain so
that the variables are generalized functions as the density is

discontinuous across the interface. However, the equations

are solved separately for each fluid and integrated over the

interface to get a jump conditions. This method avoids deal-

ing directly with delta functions. Besides the jump condition,

the other boundary conditions needed are at r=0 and r→`

that are discussed below.

From the energy equation fEq. s4edg, it can be seen that
gps0d

→` leads to ¹ ·uW=0 which defines the incompressible

limit. Thus, there exist two types of incompressible limits: as

ps0d
→` with finite g and as g→` with finite ps0d, similar to

the fully compressible linear Cartesian case
8
and consistent

with the barotropic nonlinear equations.
9
For both limits, cs

→` for finite rs0d, where cs=Îgps0d
/rs0d is the sound speed.

Nevertheless, the two limits may be different, so that cs

→` is not unique. Thus, in general, compressibility can be

characterized by two independent parameters, one related to

the flow sp0d and the other a property of the fluid sgd. Since
for the problem considered here the density is fixed, the limit

ps0d
→` also leads to Ts0d

→`, resulting in spatial uniform

density, as can be seen from Eq. s3bd, whereas g→` allows

spatially varying density, rs0d=rs0dsrd. Similar limiting cases
are obtained for a PI in the Cartesian system.

8
For the sake of

brevity, in the rest of the paper we use the abbreviations

UDIL for uniform density incompressible limit and VDIL for

varying density incompressible limit.

It is known that for ideal gases g does not exceed 5 /3.

However, there are two situations that allow, formally, to

consider larger values for g. First, in the absence of viscous
effects and heat sources, the flow is isentropic. For ideal gas,

the energy equation s1ed reduces to

dsp8 + ps0dd

p8 + ps0d = g
dsr8 + rs0dd

r8 + rs0d , s5d

which is the so called g-law. More generally, Eq. s5d can
describe a polytropic transformation if g is replaced by the
polytropic exponent b. In this case, Eq. s5d can still replace
the energy equation after a consistent source or sink of en-

ergy is added in fsee Ref. 30g. Thus, the exponent can have
any real value if a polytropic process is considered. Second,

many liquids can be treated as g-law gases with large value
of g in certain thermodynamic conditions, again with Eq. s5d
replacing the energy equation.

31

III. ANALYTICAL SOLUTIONS

Following the standard procedure,
3
we seek solutions for

the perturbations r8, p8, ur8, uu8, and uz8 whose dependence on

u, z, and t has the form eismu+kzzd+nt. Here n is the growth rate

of the perturbation, m is an integer representing the number

of waves in the u direction, and kz is the wavenumber in the

z direction. The wavenumber in the u direction is ku=m /r0
and depends on the position of the interface.

After substituting f8sr ,u ,z , td= fsrdeismu+kzzd+nt with f

representing r, p, ur, uu, and uz into the first-order equations

s4ad–s4ed, one obtains

nr + brs0dur + rs0dD = 0,

rs0dnur = − Dp + gr ,

rrs0dnuu = − imp ,

rs0dnuzu = − ikzp ,

np + ars0dur = − cs
2rs0dD ,

104103-3 Rayleigh–Taylor instability in cylindrical geometry Phys. Fluids 20, 104103 ~2008!

Downloaded 06 Aug 2010 to 128.220.159.1. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



where b=g /RTs0d and the divergence of velocity fluctuations

is given by D=Dur+ur /r+ imuu /r+ ikzuu with D;d /dr.

After eliminating r, p, uu, and uz, one obtains an equation

for ur:

rs0dur −
grs0dfsm2 + r2kz

2dsg/cs
2d − rn2/cs

2g

n2fr2sn2/cs
2 + kz

2d + m2g
ur

− DS rs0dr2Dur

r2sn2/cs
2 + kz

2d + m2D
− urDS grs0dsr2/cs

2d

r2sn2/cs
2 + kz

2d + m2D
− DS rrs0dur

r2sn2/cs
2 + kz

2d + m2D + g

n2
urDrs0d = 0. s6d

As mentioned above, Eq. s6d is valid in the entire do-
main so that, in this form, the variables are generalized func-

tions. The jump condition can be obtained by integrating Eq.

s6d over an infinitesimal element across the interface located
at r=r0:

− dS rs0dr2Dur

r2sn2/cs
2 + kz

2d + m2D − ur0
dS grs0dsr2/cs

2d

r2sn2/cs
2 + kz

2d + m2D
− dS rrs0dur

r2sn2/cs
2 + kz

2d + m2D + g

n2
ur0

drs0d = 0, s7d

where df ;uf ur0+0− uf ur0−0 is the jump of a quantity f across

the interface. The radial velocity is continuous at the inter-

face since the interface is a material surface. Thus, uulrur0
= uuhrur0=ur0

. However, cs
2, rs0d, and Dur in Eq. s7d have a

jump discontinuity at the interface.

In order to emphasize the role of the parameters consid-

ered, more specifically, geometry effects and the role of the

two compressibility parameters, we nondimensionalize the

system as follows: G=ku /kt, k̃z=kz /kt=Î1−G2, r̃=rkt, r̃0
=r0kt, m=Gr̃0, ũr=Îkt / ugu ur, ñ2=n2 /ktugu, a j=r j / srl+rhd,

and M2= ugusrl+rhd /ktp0, where kt=Îkz
2+m2

/r0
2.

The normalized equation for ũr̃ becomes, on each side of

the interface,

D2ũr̃j
+ f jsr̃dDũr̃j

+ h jsr̃dũr̃j
= 0, s8d

with

f jsr̃d = 6 a jM
2 +
1

r̃
+

2G2r̃0
2

r̃fsñ2b j + 1 − G2dr̃2 + G2r̃0
2g
, s9ad

h jsr̃d =
fG2r̃0

2 + r̃2s1 − G2dgb j − fsñ2b j + 1 − G2dr̃2 + G2r̃0
2gsa jM

2 + ñ2d

ñ2r̃2
+

G2r̃0
2 6 2G2r̃0

2b jr̃ − sñ2b j + 1 − G2dr̃2

r̃2fsñ2b j + 1 − G2dr̃2 + G2r̃0
2g

+ a jM
2b j 6

a jM
2

r̃
7

b j

r̃
. s9bd

The stacked signs in the equations such as 6 or 7 distin-

guish between the divergent stopd and convergent sbottomd
configurations and b j=a jM

2
/g j.

From Eq. s7d, one obtains the normalized jump condition
at the interface:

F6A

ñ2
−

s6bhr̃0 + 1dah

sñ2bh + 1dr̃0
+

s6blr̃0 + 1dal

sñ2bl + 1dr̃0
Gũr̃0

−
ah

ñ2bh + 1
Dũhr̃ +

al

ñ2bl + 1
Dũlr̃ = 0. s10d

The other boundary conditions become

uũrj
ur̃=0 = 0, uũrj

ur̃→` = 0, s11d

uũrl
ur̃=r̃0

= uũrh
ur̃=r̃0

= ũr0
. s12d

It should be pointed out that M is the static Mach num-

ber based on the isothermal sound speed swhich does not
depend on gd. M=0 and g→` recover UDIL and VDIL,

respectively. G is a parameter characterizing the geometry,

i.e., the dimension of the perturbation wavenumber space

which is also the dimension of the flow space. From the

definition of G, it is easily seen that 0,G,1 represents the

three-dimensional s3Dd case, and G=0 sm=0d and G=1

skz=0d are two-dimensional s2Dd cases, with the former cor-
responding to a 2D axisymmetric flow sr-z systemd and the
latter to a 2D circular flow sr-u systemd. Thus, as G increases

from 0 to 1, the flow changes from 2D axisymmetric to 3D

cylindrical and to 2D circular.

Full analytical solutions for the growth rate have been

found for several cases and are presented below.

A. Uniform density incompressible limit

In this case, cs
2
→` due to p0→`, which corresponds to

M=0. Thus,

f jsr̃d =
1

r̃
+

2G2r̃0
2

r̃fs1 − G2dr̃2 + G2r̃0
2g
, s13ad
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h jsr̃d =
G2r̃0

2 − s1 − G2dr̃2

r̃2fs1 − G2dr̃2 + G2r̃0
2g
−

s1 − G2dr̃2 + G2r̃0
2

r̃2
. s13bd

The corresponding normalized jump condition is

Dũrh
ah − Dũrl

al + S 1
r̃0

7
1

ñ2
DAũr0

= 0. s14d

On each side of the interface, Eq. s8d has the solution

ũr̃j
= c j1

2m+1Gs2 + mdfmImsr8d + r8I1+msr8dgr̃m−1

r8m

+ c j2

Km−1sr8dr8 + mKmsr8d

r̃
, s15d

with r8=Îs1−G2dr̃ and c j1 and c j2 integral constants deter-

mined by the boundary conditions s7d, s11d, and s12d.
After imposing the boundary conditions and eliminating

the integral constants, one obtains an expression for the

growth rate:

ñ2 =
2A

s17 AdKmsr08d

Km−1sr08dÎ1 − G2 + GKmsr08d
+

s16 AdImsr08d

GImsr08d + Î1 − G2Im+1sr08d

, s16d

with r08=
Î1−G2r̃0 and Kpsr08d and Ipsr08d the modified Bessel

functions of the first and second kinds of order p. Note that

m=Gr̃0 must be an integer.

For the 2D axisymmetric case sG=0d, the growth rate
reduces to

ñ2 =
2AK1sr̃0dI1sr̃0d

s17 AdK0sr̃0dI1sr̃0d + s16 AdK1sr̃0dI0sr̃0d
, s17d

and for 2D circular sG=1d:

ñ2 = A . s18d

Equation s18d, for the incompressible, uniform density,

2D circular case, was also obtained by Epstein.
28

B. Varying density incompressible limit

In this case, cs
2
→` due to g→`. The coefficients in the

velocity perturbation equation s8d are

f jsr̃d = 6 a jM
2 +
1

r̃
+

2G2r̃0
2

r̃fs1 − G2dr̃2 + G2r̃0
2g
, s19ad

h jsr̃d =
G2r̃0

2 − s1 − G2dr̃2

r̃2fs1 − G2dr̃2 + G2r̃0
2g

6
a jM

2

r̃

−
fs1 − G2dr̃2 + G2r̃0

2gsa jM
2 + ñ2d

ñ2r̃2
. s19bd

The jump condition is the same as Eq. s14d. Analytical solu-
tions are obtained for the two 2D cases, corresponding to

G=0 and G=1.

G=0 (2D axisymmetric). The solution for the radial ve-

locity is

ũr̃j
= Fc j1Mjj,1

Sc jr̃

r̃0
D + c j2Wjj,1

Sc jr̃

r̃0
DG e7ajM

2r̃/2

Îr̃
. s20d

The corresponding dispersion relation is obtained as

6
sM2ñ2 + 2dAr̃0

2ñ2
+

ahWjh+1,1
schd

Wjh,1
schd

+
s3 + 2jldalMjl+1,1

scld

2Mjl,1
scld

+
s1 + cl − 2jldal + s1 + ch − 2jhdah

2
= 0, s21d

with

j j =
6 uñua jM

2

Îfsa jM
2d2 + 4gñ2 + 4a jM

2

and

c j =
Îfsa jM

2d2 + 4gñ2 + 4a jM
2r̃0

uñu
.

W j,msxd and M j,msxd are the Whittaker functions.
G=1 (2D circular). The solution for the radial velocity

is

ũrj
=

e7sjr̃

Îr̃
Hc j1FI−1/2+Aj

Ss jr̃

r̃0
D + I1/2+Aj

Ss jr̃

r̃0
DG

+ c j2FK−1/2+Aj
Ss jr̃

r̃0
D + K1/2+Aj

Ss jr̃

r̃0
DGJ . s22d

The corresponding dispersion relation is
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Ah − 1 − sh

sh

K−1/2+Ah
sshd −

Ah

sh

K1/2+Ah
sshd + K3/2+Ah

sshd 6
2AsG2r̃0 7 ñ2d

ah
2
M2ñ2r̃0

fK−1/2+Ah
sshd − K1/2+Ah

sshdg

−
al
2

a2
2

K−1/2+Ah
sshd − K1/2+Ah

sshd

I−1/2+Al
ssld − I1/2+Al

ssld
FI3/2+Al

ss1d +
Al − 1 − sl

sl

I−1/2+Al
ssld +

Al

sl

I1/2+Al
ssldG = 0, s23d

with A j= r̃0Îa jM
2+ ñ2 / ñ and s j=6a jM

2r̃0 /2.

C. Fully compressible flow

We have found analytical solutions to Eq. s8d for the fully compressible case only when G=0 s2D axisymmetric cased. In
this case, the radial velocity variation is obtained as

ũr̃j
= Fc j1Mhj,1

S z jr̃

r̃0
D + c j2Whj,1

S z jr̃

r̃0
DG e7ajM

2r̃/2

Îr̃
. s24d

The corresponding dispersion relation is

6Ar̃0F ñ2bh + 1

ñ2
+

M2

2sñ2bl + 1d
G + ahWhh+1,1

szhd

Whh,1
szhd

−
szh − 2hh 6 2bhr̃0 + 1dah

2

6
M2r̃0ñ

2sah
2bl − a1

2bhd

2sñ2bl + 1d

szh − 2hh 6 2bhr̃0 + 1dah

2

ñ2bh + 1

ñ2bl + 1
+ S3
2
+ hlDalMhl+1,1

szld

Mhl,1
szld

ñ2bh + 1

ñ2bl + 1
= 0, s25d

with

h j =
6 uñusa jM

2 − b jd

Î4ñ4b j + fsa jM
2d2 + 4gñ2 + 4sa jM

2 − b jd

and

z j =
Î4ñ4b j + fsa jM

2d2 + 4gñ2 + 4sa jM
2 − b jdr̃0

uñu
.

IV. RESULTS AND DISCUSSIONS

In this section, the growth rate dependences on various

parameters are examined. The results are grouped into three

categories: s1d compressibility effects as characterized by the
static Mach number M and the ratio of specific heats, g, s2d
geometry effects due to the nature of the cylindrical geom-

etry, and s3d differences between the convergent and diver-
gent configurations. To obtain the growth rate, Eq. s8d, to-
gether with the boundary and jump conditions, was

integrated using a fourth-order Runge–Kutta scheme. The

cases where analytical solutions were found are used to

verify the numerical scheme.

A. Compressibility effects

ñcc
2 , ñcu

2 , and ñcv

2 are used to denote the normalized rates

of growth sby ktugud corresponding to the fully compressible
flow, UDIL, and VDIL. As explained above, compressibility

effects are characterized by the fluid property g and flow

property M, with large M corresponding to more compress-

ible flow and small g to more compressible fluid.
In general, if r̃0 is not very small, the compressible

growth rate is bounded by the growth rates obtained for

UDIL and VDIL, similar to the PI case in the Cartesian

geometry
8 sFig. 1d. Thus, the growth rate decreases for more

compressible flows scharacterized by smaller 1 /Md and in-
creases for more compressible fluids scharacterized by lower
gd. In all cases, the UDIL growth rate is recovered as

1 /M→`.

The growth rate variation due to compressibility can be
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FIG. 1. Compressible to UDIL growth rate ratio as a function of 1 /M for the

convergent sleft columnd and divergent sright columnd configurations for
different gl and gh combinations at G=0.5, r̃0=2.0. The pure solid line

corresponds to ñcv

2
/ ñcu
2 . fsad and sddg A=0.2, fsbd and sedg A=0.5, and fscd

and sfdg A=0.8.
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explained intuitively by calculating the changes in the local

A due to nonuniform equilibrium densities on the two sides

of the interface. As the flow compressibility increases, the

change in the equilibrium density variation leads to a de-

crease in the local A for points on the interface situated

above the initial position and an increase in the local A for

points on the interface situated below the initial position.

However, the change in the local A is larger above the initial

position of the interface so that the overall effect is a de-

crease in the average A. This suggests a stabilizing effect of

compressibility when this is characterized by changes in the

flow conditions srepresented here by Md. On the other hand,
as g decreases, the equilibrium density and pressure remain

unchanged. As the heavy fluid falls towards regions with

higher pressures, its volume decreases progressively more at

higher g, so that the tips of the spikes fall less for more

compressible fluids. Similarly, the tips of the bubbles rise

more for fluids with higher g. The change is larger for the

bubbles, so that the overall effect is an increase in the rate of

growth due to compressibility when this is characterized by

changes in the fluid properties srepresented here by gd. The
arguments imply not only opposite influence of the two com-

pressibility parameters on the growth rate but also on the

spike and bubble sides, leading to an asymmetry of the layer

in the compressible case larger than the overall effect on the

growth rate. This effect is being verified with direct numeri-

cal simulations of the fully nonlinear case and will be re-

ported elsewhere.

Figure 1 also shows that the compressible growth rate is

more sensitive to changes in g for the light fluid scompare
the results obtained for gl=10, gh=1 and gl=1, gh=10 with

the perfectly compressible case gl=1, gh=1d which is con-
sistent with the arguments above that the changes to the tips

of the bubbles position influence more the overall growth

rate. The results are also sensitive to the A values. At large A,

the growth rate shows little sensitivity to changes in the ra-

tios of specific heats and takes values close to the VDIL

growth rate.

Overshooting sncc
2 exceeds ncu

2 d occurs in both conver-
gent and divergent configurations when r̃0 is small sFig. 2d.
In this case, the arguments above with regard to changes in

the local A due to compressibility are no longer valid. They

were based on small amplitude expansions in the equilibrium

density profile which can no longer be made in the interior

domain. Small values of r̃0 can be obtained only in the 2D

axisymmetric sG=0d and some 3D swith small Gd cases.
Overshooting is also observed in the Cartesian geometry

when the domain size of the heavy fluid is much smaller than

the wavelength of the perturbation and gl<1.
8
Here, the con-

dition g<1 is required only for the convergent configura-
tion; for the divergent arrangement it can occur at all values

of g. The effect is more distinctive than obtained in the Car-

tesian geometry and becomes more pronounced at low A for

the convergent and of high A for the divergent cases. Under-

shooting sncc
2 drops below ncv

2 d may occur at large g, small A,

and small 1 /M shighly compressible flowd but is much less
pronounced than overshooting and not discussed here.

B. Geometry effects

To characterize the geometry effects, the influences of

different parameters on the ratio ncc
2

/npc
2 of the growth rates

obtained for CI and PI are now discussed. For meaningful

comparisons, the PI configuration corresponds to a finite do-

main with size r̃0 occupied by the heavy fluid in the diver-

gent configuration and by the light fluid in the convergent

case and an infinite domain occupied by the other fluid. Cor-

responding dispersion relations obtained for the PI as special

half-infinite cases are given in the Appendix.

For UDIL, the growth rate ratio being discussed has an

analytical formula:

ñcc
2

ñpc
2
=

2BIBK

s17 AdKmsr08dBI + s16 AdImsr08dBK

er̃0 6 Ae−r̃0

er̃0 − e−r̃0
,

s26d

with BI=GImsr08d+Î1−G2Im+1sr08d and BK=GKmsr08d
+Î1−G2Km−1sr08d.

For 2D axisymmetric sG=0d Eq. s26d reduces to

ñcc
2

ñpc
2
=

2K1sr̃0dI1sr̃0d

s17 AdK0sr̃0dI1sr̃0d + s16 AdK1sr̃0dI0sr̃0d

3
er̃0 6 Ae−r̃0

er̃0 − e−r̃0
s27d

and for 2D circular sG=1d to

ñcc
2

ñpc
2
=

er̃0 6 Ae−r̃0

er̃0 − e−r̃0
. s28d

Figure 3 shows the importance of the compressibility

effects on the ratio ncc
2

/npc
2 for a representative 3D case sG

=0.5d and r̃0=2. The CI growth rate is larger for the conver-
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FIG. 2. Compressible to UDIL growth rate ratio for the convergent sleft
columnd and divergent sright columnd cases as a function of 1 /M for differ-

ent g values at G=0, r̃0=0.1. fsad and sddg A=0.2, fsbd and sedg A=0.5, and

fscd and sfdg A=0.8.
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gent configuration than the PI growth rate but slower for the

divergent case. At moderate values of g, it seems that there is
a critical value of M sM <2 for g=1d at which the difference
between the CI and PI growth rates is largest. This difference

also increases with A. The ratio of the CI versus PI growth

rates depends sensibly on the values of g only for highly

compressible flows. For M ,1, g influence is less important.
Similar behavior is observed in the 2D axisymmetric case.

However, in the 2D circular case, the behavior is more com-

plicated: ncc
2 can be either larger or smaller than npc

2 depend-

ing on the combinations among parameters ssee also belowd.
As the normalized radius r̃0→`, the growth rate should

recover the PI growth rate. For finite values of r̃0, the CI

growth rate is always larger for the convergent and smaller

for the divergent configuration than the corresponding PI

growth rate sFig. 4d. Again, the difference between the CI
and PI growth rates increases with A. At large A, however,

this difference depends less sensibly on the ratios of specific

heats. The results remain qualitatively the same for the axi-

symmetric case but may change for the 2D circular case.

The dimensionality parameter G increases from 0 to 1 as

the flow changes from 2D axisymmetric sG=0d to 3D cylin-
drical s0,G,1d and to 2D circular sG=1d. Figure 5 shows
that the CI to PI growth rate ratio behaves qualitatively the

same at small and moderate values of G as a function of g
but becomes different when G is close to 1. At low A, the

divergent/convergent results described above also change

qualitatively at large values of G. Thus, 2D circular or 3D

with small kz calculations do not represent a useful model for

the fully 3D cylindrical case. Nevertheless, the results ob-

tained for the 2D axisymmetric case are qualitatively the

same as those obtained for the 3D cylindrical domain.

C. Convergence versus divergence effects

As pointed out above, the growth rates obtained for the

convergent and divergent configurations change qualitatively

when compared to the PI case. Below, the growth rates ob-

tained for the two unstable configurations are compared di-

rectly to the CI case. The fluid arrangements for the two

cases are explained again for clarity—convergence corre-

sponds to infinite heavy fluid domain pressing a finite light

fluid domain due to inward acceleration, while divergence

corresponds to a finite heavy fluid domain expelling an infi-
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nite light fluid domain due to an outward acceleration. The

ratio ñdv
2

/ ñcv
2 is used to quantitatively express the difference

between the divergent and convergent configuration growth

rates for a CI setup.

For UDIL, ñdv
2

/ ñcv
2 is given analytically by

ñdv
2

ñcv
2
=

ahKmsr08dBI + alImsr08dBK

alKmsr08dBI + ahImsr08dBK

, s29d

which for the 2D axisymmetric case sG=0d, reduces to

ñdv
2

ñcv
2
=

ahK0sr̃0dI1sr̃0d + alI0sr̃0dK1sr̃0d

alK0sr̃0dI1sr̃0d + ahI0sr̃0dK1sr̃0d
s30d

and for the 2D circular case sG=1d to

ñdv
2

/ñcv
2 = 1. s31d

For all 3D cylindrical cases, the growth rate obtained for

the divergent arrangement is smaller than that obtained for

the convergent arrangement and the difference increases with

A sFig. 6d. Again, at small values of g, there seems to be a
critical M at which the difference between the divergent and

convergent configuration growth rates is largest. This critical

M changes little with A and takes values close to 2. As be-

fore, the g influence is sensibly felt for highly compressible
flows sM .1d.

For large values of r̃0 the curvature effects become small

sFig. 7d and the ratio ñdv
2

/ ñcv
2 is close to the PI interface

result. For PI, the divergent and convergent arrangement

growth rates, while having the same qualitative behavior, are

close to 1. Thus, the differences between the two growth

rates are the largest for small r̃0. g influence on ñdv
2

/ ñcv
2 is

also largest at small r̃0; however, it is significant only at

small A. Again, the results change qualitatively at large G

sG.0.8d when the flow becomes close to the 2D circular

case: it is seen that ñdv
2 can exceed ñcv

2 and the influences of

g and A become the opposite of those obtained at low to

moderate G. This further emphasizes that the 2D circular

limit does not represent a useful model for the fully 3D cy-

lindrical case.

V. SUMMARY AND CONCLUSION

A linear stability analysis of the RTI in cylindrical ge-

ometry with CI is performed to study s1d the effects of com-
pressibility, s2d the geometry as related to the difference be-
tween PI and CI configurations and also to the difference

between the 2D and 3D cases, and s3d the distinction be-
tween the convergent sgravity acting inwardd and divergent
sgravity acting outwardd unstable arrangements. The flow is
considered inviscid and compressible. Full analytical solu-

tions are found in several limiting cases. For the fully com-

pressible case analytical results are obtained for the 2D axi-

symmetric configuration. For the rest of the cases, the

linearized equations are solved numerically to obtain the

growth rates.

The main findings are as follows:

• Compressibility can be characterized by two param-

eters, a static Mach number M sa flow featured and the
ratio of specific heats, g sa fluid featured. The limiting
incompressible flows sdefined by zero divergence of
velocityd can be obtained as either M→0 or as g
→` and can be different in the two cases. Thus, as

M→0 the density becomes uniform while as g→`

density variations are allowed. For equilibrium initial

conditions sboth hydrodynamic and thermald the com-
pressible growth rate was found to be bounded, in gen-

eral, by the growth rates obtained for the UDIL from

above and for the VDIL from below. Similar to the PI

case,
8
the growth rate decreases as M increases smore

compressible flowd but increases as g decreases smore
compressible fluidd. Overshooting scompressible
growth rate larger than UDIL growth rated can occur
when the normalized radius of the interface is very

small, which is possible only in the 2D axisymmetric

and 3D cylindrical with small tangential wavenumber

configurations. This effect is more pronounced than

for the PI case. Undershooting scompressible growth
rate smaller than VDIL growth rated can also occur but
is less significant.

• Compressibility effects, as characterized by g, are
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mostly felt at low A. In this case, the growth rate is

more sensible to changes in g values of the lighter

fluid. At high A, the g influence becomes small.
• For the 3D case, instability grows faster for the con-

vergent than for the divergent arrangement. The

differences between the two unstable configuration

growth rates are small for PI but become significant

for CI. They are also amplified at high A and small

values of g.
• For low values of g there seems to be a critical value
of M at which the difference between the divergent

and convergent configuration growth rates as well as

the growth rates obtained for the CI and PI cases is the

largest.

• The wavenumbers of the perturbations in tangential

and axial directions have different influences on the

growth rate. The differences can be captured by a di-

mensionality parameter G, which varies between 0

when ku=0 to 1 when kz=0. Thus, as G increases from

0 to 1, the flow changes from 2D axisymmetric sG
=0d to 3D cylindrical s0,G,1d and to 2D circular
sG=1d. All the 3D cylindrical results remain qualita-
tively the same in the 2D axisymmetric case but

change qualitatively as the flow becomes close to the

2D circular configuration sku@kzd. In this case, the
influences of A and g are opposite than for the 3D

cylindrical case and the growth rate for the divergent

configuration exceeds that obtained for the convergent

arrangement. Thus, 2D circular case calculations do

not represent a useful model for the fully 3D cylindri-

cal case, while the influences of the parameters con-

sidered remain qualitatively the same as the flow

changes from 3D cylindrical to 2D axisymmetric.

The findings above are currently being examined in the

fully nonlinear case and the results will be published

elsewhere.

APPENDIX: DISPERSION RELATIONS
FOR PLANAR INTERFACE

Analytical dispersion relations for the RTI growth rate in

the Cartesian geometry with PI are obtained from Eq. s26d in
Ref. 8 and given here for completeness. Two special cases,

schematically shown in Fig. 8, are considered by analogy to

the two cylindrical unstable arrangements: the convergent

configuration, corresponding to infinite heavy fluid domain

versus finite light fluid domain, and the divergent configura-

tion, corresponding to infinite light fluid domain versus finite

heavy fluid domain. The normalized dispersion relations are

as follows.

Fully compressible flow. We define A7=0.5s17AdM2,

au= fs1+Adghsgl+A−ñp
2d− s1−Adglsgh+A+ñp

2dg, bdl= s1
−Adglsgh+A+ñ

2d, bdh= s1+Adghsgl+A−ñ
2d, and

ll
6 =

A−

2
6Î1 +

ñp
2
A−

g1
+

g1 − 1

g1

A−

ñp
2
+

A−
2

4
, sA1ad

lh
6 =

A+

2
6Î1 +

ñp
2
A+

gh

+
gh − 1

gh

A+

ñp
2
+

A+
2

4
, sA1bd

• Infinite light fluid domain fFig. 8sadg corresponding to
the divergent CI case:

ñpc
2 =

se−lh
+

r̃0 − e−lh
−

r̃0dau

bdlll
+se−lh

+
r̃0 − e−lh

−
r̃0d − bdhslh

+
e−lh

+
r̃0 − lh

−
e−lh

−
r̃0d
.

sA2d

• Infinite heavy fluid domain fFig. 8sbdg corresponding
to the convergent CI case:

ñpc
2 =

se−ll
+

r̃0 − e−ll
−

r̃0dau

bdlsll
+
ell
+

r̃0 − ll
−
ell
−

r̃0d − bdhlh
−se−ll

+
r̃0 − e−ll

−
r̃0d
.

sA3d

VDIL. In the VDIL, Eqs. sA1ad, sA1bd, sA3d, sA4ad, and
sA4bd reduce to

ll
6 =

A−

2
6Î1 +

A−

ñp
2
+

A−
2

4
, sA4ad

lh
6 =

A+

2
6Î1 +

A+

ñp
2
+

A+
2

4
, sA4bd

• Infinite light fluid domain fFig. 8sadg corresponding to
the divergent CI case:

ñpc
2 =

Ase−lh
+

r̃0 − e−lh
−

r̃0d

alll
+se−lh

+
r̃0 − e−lh

−
r̃0d − ahslh

+
e−lh

+
r̃0 − lh

−
e−lh

−
r̃0d
.

sA5d

• Infinite heavy fluid domain fFig. 8sbdg corresponding
to the convergent CI case:

ñpc
2 =

Ase−ll
+

r̃0 − e−ll
−

r̃0d

alsll
+
ell
+

r̃0 − ll
−
ell
−

r̃0d − ahlh
−se−ll

+
r̃0 − e−ll

−
r̃0d
.

sA6d

UDIL. In this case, the dispersion relations simply re-

duce to the following.

• Infinite light fluid domain:

ñpu
2 =

Aser̃0 − e−r̃0d

er̃0 + Ae−r̃0
. sA7d

g

g

h
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h
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l
ρ
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FIG. 8. Schematic PI cases corresponding to sad divergent and sbd conver-
gent CI cases.
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