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Abstract

We investigate the axis-switching and instability onset characteristics of a rectangular jet with aspect ratio (AR) of 1.5.
Jet flow simulations of four different Reynolds numbers, 10; 100; 150, and 200, are performed. Half-width of streamwise
velocity along with velocity vector and streamwise vorticity on transverse planes at different downstream locations are
examined. The simulation results show the following instability characteristics: (i) At relatively low Reynolds numbers (10
and 100), the jet flow is laminar and stable; (ii) At Re ¼ 150, the flow is still laminar and stable but axis-switching occurs
with downstream distance; and (iii) At Re ¼ 200, the jet flow becomes unstable but the axis-switching is still seen roughly.
Instability first originates near the jet orifice and then propagates down the stream.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by jet-engine design and flow control needs, extensive investigations of turbulent jet flows have
been undertaken experimentally, theoretically, and numerically in the past few decades. Special efforts have
been made to study of non-circular jet physics owing to their enhanced entrainment and mixing properties
relative to those of comparable circular jets (cf. review [1] and references therein). Rectangular jet (RJ)
combines non-unity aspect ratio (AR) feature of elliptic jets with the corner (vertex) feature of square jets. This
combination yields features which are of importance in practical applications. Laboratory experiments [2–4]
and numerical simulations [5–8] of RJs indicate a peculiar phenomenon called axis-switching. Axis-switching
is characterized by the jet cross-section shape axes rotation. As was recognized by many investigators, large-
scale coherent structures play a dominant role in the evolution of free mixing layers especially in flows at low
Reynolds number (Re) [9–11]. Axis-switching is believed to result from faster growth rate of the jet’s shear
layers along minor axis plane than those along the major axis plane [1]. This also leads to destabilization of the
jet flow. However, the underlying fluid dynamical mechanisms of axis-switching and instability onset are far
from clear. It is crucial to understand the dynamics and topology of the large-scale coherent structures
governing the entrainment and mixing.
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Lattice Boltzmann equation (LBE) method [12,13] is an attractive numerical tool for direct numerical
simulation (DNS) of turbulent flows because of its physical simplicity and computational efficiency [14–16].
Although the single-relaxation-time (SRT) LBE [17,18] based on BGK approximation [19] has been the most
popular model in the literature, it has been recently demonstrated that multiple-relaxation-time (MRT) LBE
model [20] has better numerical stability [21–23].

In this paper, we study the large-scale flow dynamics of laminar and transitional RJs ðAR ¼ 1:5Þ using
MRT–LBE. The main objective of this work is to investigate in detail the jet breakdown at relatively low Res
at which DNS is feasible. While there have been other experimental and computational studies of RJs, this
specific aspect has not been addressed in literature. Therefore, we can only qualitatively assess if our results are
consistent with previous studies. Our previous work [8] performs large-eddy simulation (LES) of rectangular
turbulent jets at sufficiently high Re using MRT–LBE and captured mixing features of rectangular turbulent
jet including axis-switching. The computations are in quantitative and qualitative agreements with
experimental data. The remainder of this paper is organized as follows. Section 2 briefly formulates the
numerical scheme—MRT–LBE. Computation results are presented in Section 3. Finally, we conclude with a
brief discussion in Section 4.

2. Numerical formulation—Lattice Boltzmann method

We use D3Q19 MRT–LBE model. The formulation details of this model can be found in [21]. Here, we only
give a brief introduction. In D3Q19 model, the discrete phase space is defined by a cubic lattice together with a
set of discrete velocities f~eaja ¼ 0; 1; . . . ; 18g. The 19 discrete velocities are ð0; 0; 0Þ for a ¼ 0;
ð$1; 0; 0Þ; ð0;$1; 0Þ; ð0; 0;$1Þ for a ¼ 126, and ð$1;$1; 0Þ; ð$1; 0;$1Þ; ð0;$1;$1Þ for a ¼ 7218. A set of
velocity distribution functions ff aja ¼ 0; 1; . . . ; 18g is defined at each node ~x of the lattice. The MRT–LBE is

jf ð~xþ~eadt; tþ dtÞi & jf ð~x; tÞi ¼ &M&1Ŝ½jmð~x; tÞi & jmðeqÞð~x; tÞi(. (1)

The Dirac notation of ket j)i represents column vector, e.g. jf i * ½f 0; f 1; . . . ; f 18(
T. The collision is executed in

a moment space. The moment space M spanned by the moments jmi and velocity space V spanned by the
distribution functions jf i transfer with each other through a linear mapping M: jmi ¼ Mjf i or jf i ¼ M&1jmi.
Ŝ is the diagonal collision matrix which determines the MRT and jmðeqÞi are the corresponding equilibria of
jmi. The interested macroscopic quantities are obtained by r ¼

P
a f a and r~u ¼

P
a~eaf a.

3. Simulations and results

The coordinate system of the simulation field is as follows. The x, y, and z axes are parallel to streamwise,
lateral, and spanwise directions. The whole domain is a W +H + L channel. The flow issues with a uniform
velocity u0 from a w+ h orifice slot located at the center of the plane (x ¼ 0, &w=2pzpw=2, and
&h=2pyph=2). The Re is based on the lateral dimension h of the slot, jet exit velocity u0, and viscosity
n ¼ 151:5e& 05 ðcm2=sÞ. The jet orifice is simplified as a plane. We apply bounce-back boundary [24] at jet
orifice plane (x ¼ 0), fully developed boundary at outflow (x ¼ L), and periodic boundary conditions in both
spanwise and lateral directions. The parameter details are listed in Table 1. In this work, we focus on the
development of the half-width streamwise velocity contour (HWSVC) down the stream at different Res and
track the breakdown of the jet due to the flow instability.
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Table 1
Details of the simulation cases

Re u0 w+ h W +H + L Jet exit grid size Whole domain grid size

10 1.5 1.5,1.0 15,10,20 12+ 8 120+ 80+ 160
100 15 1.5,1.0 11,75,20 24+ 16 180+ 120+ 320
150 22.5 1.5,1.0 11,75,20 24+ 16 180+ 120+ 320
200 30 1.5,1.0 11,75,20 24+ 16 180+ 120+ 320

Units: length—(cm), time—(s).
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The HWSVC evolutions for Res ¼ 10 and 100 are shown in Fig. 1. At these relatively low Res, the flows are
laminar and stable. Both jets spread from the initial rectangular shape outwards circles with monotonically
increasing radius. Fig. 2 shows the HWSVC evolution at different downstream locations at Re ¼ 150. It can
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Fig. 1. Half-width streamwise velocity contours at different locations down the stream: (a) Re ¼ 10; (b) Re ¼ 100. Dashed line is the
orifice shape.
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Fig. 2. Half-width contours at Re ¼ 150 at different locations down the stream. The jet orifice shape is in dashed line.
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be clearly seen that the flow is still laminar and stable but a peculiar phenomenon occurs. The jet spreads from
the rectangular shape with the major axis on spanwise direction near the jet orifice (at x ¼ h and 3h) through
an elliptical shape with the major axis on lateral direction in the mediate area (at x ¼ 8h, 11h, and 17h) to an
oval further down the stream (at x ¼ 20h) where the major axis returns back to the spanwise direction. This is
the pronounced axis-switching behavior. The Re ¼ 150 case is particularly interesting as the axis-switching
phenomenon can be studied without the complicating influences of transition or turbulence.

Fig. 3 plots the velocity vector fields (uy and uz) at the same planes as the half-width shown in Fig. 2. At the
jet orifice area (at x ¼ h and x ¼ 3h), fluid swarms to the center from four directions, stronger along spanwise
than lateral direction. Four streams meet and interact near the corners. As a result, flow is stretched along
lateral direction slightly. A little further downstream at x ¼ 8h and 11h, four vortices lead the flow spouting
along both sides of lateral direction such that the flow is stretched greatly along the lateral direction, which
makes the major axis switch from spanwise to lateral direction. Further downstream, the fluid gushes along
spanwise direction at x ¼ 17h and opposite vortices generate at x ¼ 20h. The flow is squashed along the lateral
direction so that the major axis returns from lateral to spanwise direction.

It is believed that the underlying mechanism of axis-switching behavior results from self-induced Bio-Savart
deformation of vortex rings due to non-uniform azimuthal curvature and interaction between azimuthal and
streamwise vorticity [1]. From the streamwise vorticity contours at the same planes as in above two plots, see
Fig. 4, we can see how axis-switching occurs from a vortex dynamics perspective. At the jet orifice area (at
x ¼ 3h), vortices are intensive but local. Each quadrant has a pair of vortices both equally strong. At x ¼ 8h
where axis-switching occurs, all vortices are still intensive but change the directions. Vortices are still paired in
each quadrant but with one strong and one weak. Then the vorticity intensity decreases (at x ¼ 11h and 17h).
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Fig. 3. Velocity vector planes at different downstream locations at Re ¼ 150.
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Fig. 4. Streamwise vorticity contour planes at Re ¼ 150 on transverse planes at different downstream locations.
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Fig. 5. Late time half-width contour at Re ¼ 200 at different locations down the stream. The jet exit shape is in dashed line.
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Further down (at x ¼ 20h) the vortices change back the direction which brings the major axis back to the
spanwise direction.

At higher Re ð¼ 200Þ, the jet becomes unstable. At early times, the jet spreads in a similar way to the jet with
Re ¼ 150 but turns unsteady at later times. It is found that instability first sets in near the jet orifice and then
propagates downstream. Fig. 5 shows the evolution of jet HWSVC at a late time. In spite of the instability, the
axis-switching is still seen roughly.

4. Concluding remarks

We simulate the flow structure of a RJ of AR ¼ 1:5. At relatively low Re, the jet is laminar and stable. At
Re ¼ 150, the jet is still laminar and stable but axis-switching occurs. The interactions between spanwise and
lateral flow streams clearly show the dynamics of the axis-switching. This phenomenon is also closely related
to the vortex dynamics. It is found that jet flow at Re ¼ 200 is unstable, even in the absence of density
variation and thermal effects. The results of the present simulation are expected to lead to the development of
quantitative jet models for axis-switching.
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