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Abstract

In this paper we consider the application of multiple-relaxation-time (MRT) lattice Boltzmann equation (LBE) for large-eddy sim-
ulation (LES) of turbulent flows. The implementation is discussed in the context of 19-velocity (D3Q19) MRT-LBE model in conjunction
with the Smagorinsky subgrid closure model. The MRT-LBE-LES is then tested in the turbulent square jet flow case. We compare MRT-
LBE-LES results with (a) single-relaxation-time (SRT) or BGK LBE results and (b) experimental data. Computed results include the
distribution of centerline mean streamwise velocity, jet spread, and spanwise profiles of mean streamwise velocity in the near-field region.
The phenomenon of axis switching is investigated. The advantages of MRT over SRT are demonstrated. Reasonable agreement between
our numerical results and experimental data demonstrate that the MRT-LBE is a potentially viable tool for LES of turbulence.
! 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann equation (LBE) [1,2] is now well
established as an accurate and efficient method for direct
numerical simulations (DNS) of simple turbulent flows
(cf. reviews [3–5] and references therein). However, the effi-
ciency and accuracy of LBE method have not been thor-
oughly investigated for large eddy simulations (LES) of
turbulence. Although LES based on the LBE with Smago-
rinsky model was proposed early on [6–8], it is only
recently the LBE-LES has been applied to some more real-
istic flows [9–16].

In the literature, the lattice Boltzmann equation with the
single-relaxation-time (SRT) approximation or Bhatnagar–
Gross–Krook (BGK) [17] model is the most popular
scheme [18,19] due to its simplicity. However, the simplicity
of the lattice BGK (LBGK) model comes at the expense of
numerical instability [20] and inaccuracy in implementing
boundary conditions [21,22]. These deficiencies in the

LBGK models can be overcome with the use of multiple-
relaxation-time (MRT) model as described in [20,23–25].
It has been clearly demonstrated that the LBE models with
MRT collision operators have inherent advantages over
their LBGK counterparts [20–25]. The LBE model used
in the present work is a three dimensional (3D) 19-velocity
(D3Q19) model with MRT collision operator [24]. The
implementation of MRT-LBE in the LES context entails
a number of important formulations such as the calcula-
tion of the strain-rate tensor from the non-equilibrium
moments. In the Smagorinsky model, the subgrid stress is
determined from the strain-rate tensor. Hence precise
determination of strain-rate tensor from non-equilibrium
moments is crucial for accurate LES implementation.

The objectives of this paper are to: (a) devise efficient
schemes for numerical implementation of MRT-LBE for
LES with Smagorinsky subgrid closure model; (b) perform
comparative assessment of MRT-LBE and SRT-LBE
methods for a challenging test case; and, (c) compare
MRT-LBE-LES computations against experimental data
for that test case. The turbulent square jet is chosen as
the test case for this study as it exhibits many complex
features such as axis-switching. Turbulent square jet has
been previously studied by means of experiments and
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Navier–Stokes based simulations [26,27] and a reasonably
complete data set is available for comparison and evalua-
tion. The turbulent square jet considered in this study is
of Re = 184,000.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the LES formulation of MRT-LBE with
the Smagorinsky subgrid scale model. In Section 3 we com-
pare the MRT and SRT flow fields and assess the differ-
ences. In Section 4 we evaluate MRT-LBE-LES results
against experimental data. We close with a discussion in
Section 5. Appendix A discusses the implementation of
the MRT-LBE method and calculation of the strain-rate
tensor from nonequilibrium moments.

2. D3Q19 MRT-LBE with Smagorinsky model

For a MRT-LBE model with Q velocities, a set of veloc-
ity distribution functions {faja = 0,1, . . . ,Q!1} is defined
on each lattice node xi. The collision is executed in the
moment space M ¼ RQ, while the advection is performed
in the velocity space V ¼ RQ [24]. The evolution equation
for the MRT-LBE on a D-dimensional lattice dxZD with
discrete time tn 2 dtN0 is

fðxi þ edt; tn þ dtÞ ! fðxi; tnÞ ¼ Xðxi; tnÞ

¼ !M!1 & Ŝ & ½m!mðeqÞ(; ð1Þ

where M is a Q · Q matrix which linearly transforms the
distribution functions f 2 V to the velocity moments
m 2 M:

m ¼ M & f; f ¼ M!1 &m. ð2Þ

We use the bold-face symbols to denote column vectors as
the following:

fðxi þ edt; tn þ dtÞ
:¼ ðf0ðxi; tn þ dtÞ; . . . ; fQðxi þ eQdt; tn þ dtÞÞT;

fðxi; tnÞ :¼ ðf0ðxi; tnÞ; f1ðxi; tnÞ; . . . ; fQðxi; tnÞÞT;
m :¼ ðm0ðxi; tnÞ;m1ðxi; tnÞ; . . . ;mQðxi; tnÞÞT;

mðeqÞ :¼ ðmðeqÞ
0 ðxi; tnÞ;mðeqÞ

1 ðxi; tnÞ; . . . ;mðeqÞ
Q ðxi; tnÞÞT;

where T is the transpose operator.
In the D3Q19 MRT-LBE model [24], the 19 discrete

velocities are

ea ¼
ð0; 0; 0Þ; a ¼ 0;

ð)1; 0; 0Þ; ð0;)1; 0Þ; ð0; 0;)1Þ; a ¼ 1–6;

ð)1;)1; 0Þ; ð)1; 0;)1Þ; ð0;)1;)1Þ; a ¼ 7–18.

8
><

>:

The 19 moments are arranged in the following order:
m0 = dq is the density fluctuation, m1 = e is related to en-
ergy, m2 = e is related to energy square, m3,5,7 = jx,y,z are
components of the momentum j = (jx, jy, jz) = q0u,
m4,6,8 = qx,y,z are related to components of the heat
flux q = (qx,qy,qz), m9 = 3pxx, m11 = pww and m13,14,15 =
pxy,yz,zx are related to the components of the symmetric
and traceless strain-rate tensor, m10 = 3pxx and m12 = pww

are fourth order moments, and m16,17,18 = mx,y,z are third
order moments [24].

The quantity q0 is the mean density in the system, which
is usually set to 1. The relaxation matrix Ŝ is diagonal in the
moment space M:

Ŝ¼ diagð0; s1; s2;0; s4;0; s4;0; s4; s9; s2; s9; s2; s9; s9; s9; s16; s16; s16Þ
¼ diagð0; se; se;0; sq;0; sq;0; sq; sm; sp; sm; sp; sm; sm; sm; sm; sm; smÞ.

ð3Þ

The equilibria of the moments, m(eq), are the functions of
the conserved moments, which are mass density q
(=q0 + dq) and momentum density j for athermal fluids,
i.e., m(eq)(xi, tn) = m(eq)(q(xi, tn), j(xi, tn)). For the D3Q19
model, the equilibria for the non-conserved moments are
given by [24,25]:

mðeqÞ
1 ¼ !11dqþ 19

q0

j & j; mðeqÞ
2 ¼ xedqþ xej

q0

j & j; ð4aÞ

mðeqÞ
4;6;8 ¼ ! 2

3
jx;y;z; ð4bÞ

mðeqÞ
9 ¼ 1

q0

ð3j2x ! j & jÞ; mðeqÞ
11 ¼ 1

q0

ðj2y ! j2z Þ; ð4cÞ

mðeqÞ
10 ¼ xxxm

ðeqÞ
9 ; mðeqÞ

12 ¼ xxxm
ðeqÞ
11 ; ð4dÞ

mðeqÞ
13 ¼ 1

q0

jxjy ; mðeqÞ
14 ¼ 1

q0

jyjz; mðeqÞ
15 ¼ 1

q0

jzjx; ð4eÞ

mðeqÞ
16 ¼ mðeqÞ

17 ¼ mðeqÞ
18 ¼ 0. ð4fÞ

The parameters in the equilibria are chosen as follows to
optimize the linear stability of the model: xe = xxx = 0
and xej = !475/63 [24]. The density fluctuation dq instead
of the total density q is used in m0, m

ðeqÞ
1 and mðeqÞ

2 to reduce
the numerical effects due to the round-off error [28,24].

The speed of sound in the model is cs ¼ 1=
ffiffiffi
3

p
in the lat-

tice units of dx = dt = 1. And the viscosity is

m ¼ 1

3

1

sm
! 1

2

" #
c2dt; c :¼ dx

dt
. ð5Þ

For LES, m = m0 + mt, where m0 and mt are the molecular vis-
cosity and turbulent viscosity (or eddy viscosity), respec-
tively. In the Smagorinsky model [29,30], the eddy
viscosity mt is determined from the filtered strain rate tensor
Sab = (oaub + obua)/2, a filter length scale Dx and the
Smagorinsky constant CS:

mt ¼ ðCSDxÞ2!S; !S :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2S : S

p
. ð6Þ

In the LBE-LES with a uniform mesh, we set Dx = dx = 1
and CS = 0.1 [16]. It should be noted that in the LBE-
LES, all the quantities involved, i.e., q, u and other mo-
ments of f, are filtered quantities. Since we are only con-
cerned with LBE-LES, we do not use different symbols to
distinguish filtered quantities from the unfiltered ones. In
MRT-LBE model, Sab can be computed directly from
non-equilibrium moments. The formulation of Sab is given
in Appendix A.

The no-slip boundary conditions in the LBE is realized
by the bounce-back boundary conditions [31,32,22]:
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f!aðxb; tn þ dtÞ ¼ ~f aðxb; tnÞ ! 6wajb & ea
¼ ~f aðxb; tnÞ ! 6waqbub & ea; ð7Þ

where f!a is the distribution function corresponding to
e!a :¼ !ea, ~f a denotes the post-collision value of fa,
w0 = 1/3, w1–6 = 1/18 and w7–18 = 1/36 correspond to the
three speed values 0, 1, and

ffiffiffi
2

p
, respectively; and qb and

ub are respectively the density and velocity at the boundary
where the bounce-back collision occurs. In what follows,
we assume qb = q0.

In our simulations, the values for the relaxation rates
other than sm are chosen as the following: s1 = 1.19,
s2 = s10 = 1.4, s4 = 1.2 and s16 = 1.98. These values of sa
are obtained by optimizing the linear stability of the model
[24].

3. Test case and SRT–MRT comparison study

The test case chosen for the present study is turbulent
square jet which exhibits unique features such as axis-
switching. In this Section, we perform a qualitative com-
parison of the MRT and SRT flow fields. Validation
against experimental data will be performed in the next
section.

The coordinate system of the simulation is as follows.
The x, y and z axes are the streamwise, spanwise, and lat-
eral directions, as depicted in Fig. 1. The jet exit slot is sit-
uated at the center of plane x = 0. In this study, we use a
uniform mesh of Nx · Ny · Nz = 200 · 1002 for the jet
chamber, with the jet exit slot area of h2 = 202. The equiv-
alent diameter De (De :¼ 2h=

ffiffiffi
p

p
) of the jet exit is about

22.57. Periodic boundary conditions are applied in both y
and z directions. It is found the periodic boundary condi-
tions and fluid at rest boundary conditions yield very sim-
ilar results [33]. It is demonstrated in [33] that the
assumption of periodicity does not affect the jet structure
or statistics in the near-field under the given conditions.
We impose a uniform velocity and density (pressure) pro-
file for the jet at the exit: u0 = 0.1 and q0 = 1.0. The no-slip
boundary conditions are applied at the wall with the jet exit
slot, located at the upstream end of the jet chamber, and
fully-developed flow boundary conditions are applied at
the downstream exit of the jet chamber. The molecular

viscosity m0 is set so that the desired Reynolds number
(184,000), is achieved with u0 = 0.1 and h = 20 in lattice
units. Initially, the system is set at a quiescent state with
q = q0 = 1.0 and u = 0 except at the jet exit area where
u ¼ u0x̂.

The fully-developed boundary conditions are used at the
computational outflow boundary:

fðNx; tnÞ ¼ fðNx ! 1; tnÞ. ð8Þ

This condition enforces vanishing spatial derivatives along
streamwise direction (x) on all quantities of interest. The
use of fully-developed boundary outflow conditions
deserves further explanation. As LES is an inherently un-
steady computation, the outflow will certainly be time-
dependent and spatially varying. However, it is difficult,
if not impossible, to specify time and space dependent out-
flow conditions in a spatially developing turbulent flow.
The use of this unrealistic outflow condition renders the
computed solution non-physical in a region immediately
preceding the outflow boundary. This region which is influ-
enced by the fully-developed flow conditions is called the
buffer zone. The sole purpose of this zone is to insulate
the physically accurate computational zone from the
fully-developed outflow conditions. It has been found from
experience that the length of buffer region should be a few
integral length scales of the flow. In the present case, the
buffer region accounts for about the last third (1/3) of
the entire computational domain.

Starting from the prescribed initial conditions, the
results are computed for a long enough time to allow for
the establishment of statistically stationary turbulent field.
Then instantaneous fields of the MRT and SRT simula-
tions are examined. Fig. 2 shows contours of the instanta-
neous MRT flow fields (left) vs. the corresponding SRT
(LBGK) fields at a mid-field jet cross-section (yz plane).
Recall that SRT and MRT simulations are performed with
identical initial and boundary conditions. Clearly, the
MRT instantaneous flow fields differ significantly from
their SRT counterparts. The difference is most evident in
the pressure fluctuation field dp. Significant differences
are also seen in the spanwise and lateral velocities uy and
uz. It is very clear that significant small-scale (of the order
of grid size) oscillations are present in the SRT flow fields.

Fig. 1. Computational domain and geometry of the jet chamber.
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This computational noise is not evident in the MRT flow
fields. We expect that the oscillations seen in the SRT are
predominantly due to the spurious conserved quantities
in the system [34]. To show that the spurious conserved
quantities are indeed responsible for the small-scale oscilla-

tions observed in the SRT flow fields, we average the flow
fields over two consecutive time steps and the results are
shown in Fig. 3. Clearly, the noise is much reduced in the
averaged SRT flow fields. This is especially noticeable for
uy and uz, as shown in Fig. 3. Similar averaging over two

Fig. 2. Contours of instantaneous flow fields on y–z plane, MRT (left) vs. SRT (right). From top to bottom: the pressure fluctuation dp at x/h = 8; the
streamwise velocity ux, the spanwise velocity uy and the lateral velocity uz at x/h = 2.
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consecutive steps of MRT results yields very little change
(figure not shown). Thus, the observed SRT oscillation
has the symmetry of (!1)t and checker-board spatial pat-
tern, which is characteristic of the spurious conserved
quantities [34]. Even when the oscillation is smoothed out
by averaging, there is substantial difference between
MRT and SRT results. It will be shown in the next section
that MRT results are consistent with experimental data.
Evidently, the spurious conserved quantities affect the
hydrodynamic variables resulting in a physical degradation
of the results. The evidence is most apparent in the aver-
aged SRT pressure figure (top-left of Fig. 3) in which the
field is clearly non-physical even after the grid-level oscilla-
tions are removed.

The spurious conserved quantities in the LBE are
directly coupled to density fluctuations. Depending upon
the boundary conditions and number of grid points, the
spurious conserved quantities can persist in the computa-
tional domain if the dissipation by means of the bulk vis-
cosity is insufficient. There are two easy ways to suppress
the oscillations due to the spurious conserved quantities.
One is to use appropriate boundary conditions, such as
interpolations, to destroy the symmetry of the spurious
conserved quantities. The other is to introduce an appro-
priate amount of the bulk viscosity to dissipate the oscilla-
tions. In the MRT-LBE, sufficient bulk viscosity is
introduced by design to quickly dissipate any non-physical
oscillations due to spurious conserved quantities. It is for
this very same reason that MRT models are more stable
than their LBGK counterparts. As shown in Fig. 2, the

spurious oscillations degrade the pressure field and ulti-
mately the velocity field in a typical SRT computation.

4. Comparison of MRT-LBE-LES against
experimental data

The turbulent square jet has been studied experimen-
tally and numerically [26]. In the experimental study of
square jet by Quinn and Militzer [26], the jet is generated
in a 762 · 123 (cm3) settling chamber with a curved con-
traction connected to a square jet exit slot of area 4 · 4
(mm2), from which the jet issues into a 2442 · 366 (cm3)
chamber. The mean streamwise velocity at the center of
the slot exit u0 is 60 (m/s). The Reynolds number is about
184,000, based on the slot side dimension h (4 (mm)), u0
and the viscosity of air. We will use this data from the
experiment in the validation study. We will restrict our-
selves to MRT-LBE-LES in this investigation. In this pre-
liminary study we first seek to establish the viability of
MRT-LBE for LES. More detailed comparisons between
LES and experimental data for square and rectangular
jets will be undertaken in [33].

The computational set-up is exactly same as in the pre-
vious case except that the domain size is increased to
Nx · Ny · Nz = 500 · 1002 to capture the near-field jet
decay. We caution that an exact comparison is not possible
as the precise turbulent unsteady inflow data is unavailable.
We use a simple laminar top-hat inflow profile. We will
restrict our comparison to those quantities which are not
sensitive to the exact details of the inflow.

Fig. 3. Contours of flow fields averaged over two consecutive time steps, corresponding to the SRT (LBGK) results in Fig. 2. Clockwise from top-left: the
pressure fluctuation dp at x/h = 8, the streamwise velocity ux, the lateral velocity uz and the spanwise velocity uy at x/h = 2.
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To ensure stationarity of the statistics of time-averaged
flow field, we have conducted a series of tests to quantita-
tively measure the influence of initial run time and the aver-
aging time with a given domain size and for each case
computed. With the specific domain size of
Nx · Ny · Nz = 500 · 1002, we observe that an initial run
time of 25T0 (T0 :¼ De/u0) and an averaging time of 35T0

are sufficient for the square jet flow, and that a longer ini-
tial run time and/or a longer averaging time make negligi-
ble difference in the averaged flow field. Thus, the data
presented in this section are obtained with an initial run
time of 25T0 and an averaging time of 35T0.

First, we investigate the phenomenon of axis-switching
which is unique to non-circular jets. Fig. 4 shows the con-
tours of the mean streamwise velocity ux(x,y,z) normalized
by the mean centerline velocity ucl(x), i.e., ux(x,y,z)/
ucl(x) = 1/2, on several cross sections along the streamwise
direction (x). These contour lines qualitatively represent
the jet shape and our primary interest is the manner in
which this shape changes along the downstream direction.
Very close to the exit at x = 0.0625h, the jet shape is dic-
tated by the jet exit geometry and is clearly a square with
sharp corners and its edges parallel to the jet exit slot (solid
line in Fig. 4). Further away from the jet exist at x = 0.5h,
the shape is significantly deformed and becomes more
round (dash line in Fig. 4). Finally, further down stream
at x = 2.0h, the contour shape becomes a square approxi-
mately, but with a 45" rotation with respect to the jet exit
slot. In other words, the contour shape has ‘‘switched’’
its principle axes by 45" as the jet evolves along streamwise
direction. The contour surface of ux(x,y,z)/ucl(x) = 1/2
depicted in Fig. 5 clearly shows the axis-switching. Thus,
the LBE-LES simulation captures the same phenomenon

which has been observed previously by experiment and
NS-based simulations [27].

In any jet study, three quantities are of primary interest:
(a) the extent of jet penetration into the ambient; (b) the
degree of jet spread or entrainment and (c) the evolution
of the velocity profile of the jet. We now compare the
simulation results with experimental data in these three
categories.

The extent of penetration is best quantified by the rate of
decrease of the centerline velocity ucl of the jet. Slow
decrease of the centerline velocity would indicate deeper
penetration of the jet into the ambiance. The computed
mean streamwise velocity evolution on the jet centerline
is shown in Fig. 6 along with the experimental result of
Quinn and Militzer [26]. The centerline velocity ucl is nor-
malized with umax which is the maximum mean streamwise
velocity along the jet centerline. The maximum centerline
velocity umax is not at the jet exit but at Vena Contracta
located approximately at x/De * 1.5. The Vena Contracta
effect is more pronounced in the experiment [26] than in
the simulations. This is due to the difference in the jet exit
velocity profile in the two cases. In the experiment the jet
exit profile is not uniform due to the curvature in the

Fig. 4. Contours of the normalized mean streamwise velocity ux(x,y,z)/
ucl(x) = 1/2 at different locations along the streamwite direction. Solid,
dash and long-dash lines correspond to x = 0.0625h, 0.5h and 2.0h,
respectively.

Fig. 5. 3D contour surface of the normalized mean streamwise velocity
ux(x,y,z)/ucl(x) = 1/2, 0 6 x 6 5.0h.

Fig. 6. Decay of the mean centerline streamwise velocity ucl(x) normalized
by the maximum velocity umax. The experimental data (s) are taken from
Fig. 3 in [26].
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streamlines as they emerge from the plenum chamber [26].
This profile strongly depends on the plenum chamber
geometry and jet-exit details. Thus, the profile can change
significantly from one experiment to the other. Here, we
do not attempt to address this issue and use a simple plug
(uniform) jet-exit velocity profile. We focus on the agree-
ment between the simulations and experiment in the region
2 6 x/De 6 15. The results show that beyond the Vena
Contracta, the mean streamwise velocity decreases mono-
tonically. Although the Vena Contracta effect is not cap-
tured precisely, the LBE results agree adequately well
with the experimental data in the region of interest. To pro-
duce better agreement in the jet exit region x/De < 2, a bet-
ter physical description of the plenum chamber and finer
grid resolution are required.

Fig. 7 shows the near field spanwise profiles of the mean
streamwise velocity on the xy plane at different streamwise
locations x/De = 0.28, 2.688, 4.484 and 7.088. In Fig. 7, the
velocity half-width y1

2
of the jet in the spanwise direction is

the distance between the jet centerline and the location
where the mean streamwise velocity is half that of the cen-
terline. The values of y1

2
are directly measured from velocity

profiles shown in Fig. 7. Very good agreement at all loca-
tions along streamwise direction between the experimental
and LBE-LES results is seen. It is somewhat surprising that
the simulations capture the experimental profile in the pre-
Vena Contracta region (e.g., x/De = 0.28) reasonably well.
However, it should be noted that in these comparisons
the streamwise velocity is normalized by the centerline
velocity ucl(x), as opposed to the maximum velocity umax.

The next quantity of interest is the jet spread rate. One
quantitative measure of the spread rate is the jet half-width
y1
2
. Clearly, this will be a strong function of downstream

location. Rapid increase of the jet half-width with down-
stream distance would indicate rapid mixing or spreading.
The computed variation of the half-width with down-
stream distance along jet centerline is shown in Fig. 8. Also
shown in the figure for comparison are the experimental
data and Reynolds-averaged Navier–Stokes numerical
data (k–e model) of Quinn and Militzer [26]. Again, the
agreement between experimental data and numerical data
from LBE simulation and Navier–Stokes computation is
adequate except the very near region (x/De < 4). In this
region, the experiment exhibits a spread-contract-spread
behavior which is not well captured by either LBE or
RANS calculations. It is not clear whether the observed
experimental behavior is due to the Vena Contracta effect
or a simpler consequence of the jet exit slot geometry. In
either case, accurate simulation of this feature again
requires a better representation of the plenum chamber
flow including the details of jet exit geometry.

We do not present any results of turbulent quantities
such as turbulence intensities and shear stresses, as
they—unlike the mean quantities—are strongly influenced
by inflow unsteadiness and boundary conditions. We do
not include the intermediate/far-field in our current simula-
tions due to exorbitant computational costs such a simula-
tion will incur. In this preliminary investigation, many
factors that can significantly improve the agreement
between simulations and the experiment have not been

Fig. 7. Mean streamwise velocity profiles in the central xy plane (z = 0) at different locations. (a) x/De = 0.28, (b) x/De = 2.658, (c) x/De = 4.484 and
(d) x/De = 7.088. Experimental data (s) are taken from Fig. 5 in [26].
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optimized. Further studies of turbulent jets of different
configurations that represent the experiments more accu-
rately are currently underway [33].

5. Conclusions

In this work, we devise an efficient strategy for imple-
menting the D3Q19 MRT-LBE model with the Smagorin-
sky sub-grid closure for large eddy simulation of turbulent
flows. Numerical evaluation of MRT-LBE-LES is per-
formed in a 3D turbulent square jet flow at
Re = 184,000. A comparative study of MRT and SRT
methods shows that the latter model is prone to numerical
oscillations that can degrade the quality of the results. In
the MRT-LBE-LES, such oscillations are preempted by
suitably specifying the bulk viscosity. The MRT LBE-
LES results are next compared with experimental data
for the following quantities: the mean streamwise velocity,
the spanwise profiles of mean streamwise velocity at differ-
ent down-stream locations and the jet spread. Simulation
results are in reasonable agreement with available data.
This investigation demonstrates that MRT-LBE is poten-
tially a viable method for LES of turbulent jet flows.
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Appendix A. Implementation of MRT-LBE for LBE-LES1

In this Appendix we wish to address some issues con-
cerning the application of the MRT-LBE models to

large-eddy simulations (LES). In implementing the MRT-
LBE, it is crucial to understand and utilize the orthogonal
property of the transform matrix M so that the program-
ming can be simplified and optimized for numerical
efficiency.

The transform matrix M is so constructed that the row
vectors fuy

ag are orthogonal to each other, i.e., uy
a & ub ¼

kuak
2dab thus M &MT is a diagonal matrix U with diagonal

elements kuak2. Because M &MT & "!1 ¼ I, therefore M!1 in
the collision term of Eq. (1) can be replaced by MT & "!1.
The MRT collision term in Eq. (1) can be rewritten as

X ¼ !MT & # &mðneqÞ; ðA:1Þ

where m(neq) :¼ m ! m(eq) and # :¼ "!1 & Ŝ is a diagonal
matrix with diagonal elements sakuak!2. In effect, the relax-
ation rates {sa} are rescaled to {sakuak!2} to account for
the normalization of the transformation matrix M.

Thus, with M given, the main steps in the MRT-LBE
simulations can be summarized as the following:

• Compute moments {mi} from distribution functions
{fi};

• Compute the equilibria fmðeqÞ
i g in the moment space;

• Compute collision term X according to Eq. (A.1) and
~f ¼ f þX;

• Advect ~f in the velocity space.

Careful coding by hand can reduce repeated calculations
thus enhancing computational efficiency [24]. This can be
done easily because all the elements in M are integers.
For the D3Q19 model, the transformation matrix is

M¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

!30 !11 !11 !11 !11 !11 !11 8 8 8 8 8 8 8 8 8 8 8 8

12 !4 !4 !4 !4 !4 !4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 !1 0 0 0 0 1 !1 1 !1 1 !1 1 !1 0 0 0 0

0 !4 4 0 0 0 0 1 !1 1 !1 1 !1 1 !1 0 0 0 0

0 0 0 1 !1 0 0 1 1 !1 !1 0 0 0 0 1 !1 1 !1

0 0 0 !4 4 0 0 1 1 !1 !1 0 0 0 0 1 !1 1 !1

0 0 0 0 0 1 !1 0 0 0 0 1 1 !1 !1 1 1 !1 !1

0 0 0 0 0 !4 4 0 0 0 0 1 1 !1 !1 1 1 !1 !1

0 2 2 !1 !1 !1 !1 1 1 1 1 1 1 1 1 !2 !2 !2 !2

0 !4 !4 2 2 2 2 1 1 1 1 1 1 1 1 !2 !2 !2 !2

0 0 0 1 1 !1 !1 1 1 1 1 !1 !1 !1 !1 0 0 0 0

0 0 0 !2 !2 2 2 1 1 1 1 !1 !1 !1 !1 0 0 0 0

0 0 0 0 0 0 0 1 !1 !1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 !1 !1 1

0 0 0 0 0 0 0 0 0 0 0 1 !1 !1 1 0 0 0 0

0 0 0 0 0 0 0 1 !1 1 !1 !1 1 !1 1 0 0 0 0

0 0 0 0 0 0 0 !1 !1 1 1 0 0 0 0 1 !1 1 !1

0 0 0 0 0 0 0 0 0 0 0 1 1 !1 !1 !1 !1 1 1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

ðA:2Þ

For the LBE-LES, the strain-rate tensor can be computed
from the non-equilibrium moments. By approximating the
left-hand side of Eq. (1) by its lowest order Taylor expan-
sion in dt, we have

mð1Þ ¼ !dtŜ
!1

&M & Dt &M!1 &mðeqÞ; ðA:3Þ

where Dt :¼ diag(ot,ot + e1 Æ $, . . . ,ot + e18 Æ $), and the
term Dtm

(neq) is neglected according to the Chapman–En-
skog analysis. Consequently, we have:1 This appendix is prepared by Luo.

Fig. 8. Development of the jet half-width y1
2
along the jet centerline.

Experimental (s) and Navier–Stokes (h) data are taken from Fig. 6 in
[26].
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mð1Þ
1 * 38dt

3s1
$ & j; mð1Þ

2 * ð3xe þ 2Þdt
3s2

$ & j; ðA:4Þ

qð1Þ :¼ ðmð1Þ
4 ;mð1Þ

6 ;mð1Þ
8 Þ * 42dt

63s4
otj þ

2ð22! 5xeÞdt
63s4

$q; ðA:5Þ

mð1Þ
9 * ! 2dt

3s9
3oxjx ! $ & jð Þ; mð1Þ

10 * ! dt
3s10

3oxjx ! $ & jð Þ;

ðA:6Þ

mð1Þ
11 * ! 2dt

3s9
oyjy ! 2ozjz
$ %

; mð1Þ
12 * ! dt

3s10
oyjy ! 2ozjz
$ %

;

ðA:7Þ

mð1Þ
13 * ! dt

3s9
oxjy þ oyjx
$ %

; mð1Þ
14 * ! dt

3s9
oyjz þ ozjy
$ %

;

mð1Þ
15 * ! dt

3s9
ozjx þ oxjzð Þ. ðA:8Þ

Therefore, mð1Þ
1 , mð1Þ

9 and mð1Þ
11 yield the diagonal elements of

the strain-rate tensor, while mð1Þ
13 , m

ð1Þ
14 and mð1Þ

15 yield the off-
diagonal ones:

Sxx * ! 1

38q0dt
s1m

ð1Þ
1 þ 19s9m

ð1Þ
9

& '
; ðA:9Þ

Syy;zz * ! 1

76q0dt
2s1m

ð1Þ
1 ! 19s9 mð1Þ

9 + 3mð1Þ
11

& 'h i
; ðA:10Þ

Sxy;yz;zx * ! 3s9
2q0dt

mð1Þ
13;14;15. ðA:11Þ

We note that while the off-diagonal elements of S are iden-
tical to those obtained from the LBGK counterpart, the
diagonal elements are not. Because in the MRT calcula-
tion, $ Æ j is accounted for, whereas in the LBGK, it is often
assumed that $ Æ j = 0 and thus the terms related to $ Æ j are
ignored.
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