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Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method
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In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system
to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal
vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and
then normal lattice Boltzmann method works. Since the mass per unit area on the two-dime(&®nal
surface varies with the thickness of the water layer, the 2D flow seems to be “compressible” and our
compressible model is applied. Simulation solutions meet with the experimental observations qualitatively.
Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmo-
spheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex,
the Gulf Stream, and the Kuroshio Current, etc., can be expected.
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INTRODUCTION time approximatiori3]). However, the uniformity of the lat-
tice structure is persistent, which greatly hampers the broad
In recent years, the lattice Boltzmann metHo®M) has application of the LBM because a curvilinear or irregular
developed into an effective numerical scheme for simulatingfid is much more efficient for many practical problems.

fluid flows and modeling physics in fluid—4]. The scheme _During the past few years, several researchers were moti-
is particularly successful in fluid flow applications involving Vated by such considerations to extend the applicability of

- : - : = _the LBM to irregular lattices. Suceit al.[7] first proposed a
interfacial dynamics and complex boundaries. Meanwhile inite-volume formulation of the lattice Boltzmann equation.

the I.‘BM. has dpmonstrated a S|gn|f|ca'nt potential and brqa hen, Chen[8] developed another elegant finite-volume
appl_lcablllty with numerous cor_nputatlonal_ adyqntages, Nscheme theoretically. Quite recently, H. ¥t al. [9] pre-
cludlng_ the parallellsm_ .Of alg_orlthm, the S”.“p"c'ty (_)f Pr0- sented a simple but efficient finite-volume LBM from the
gramming, and the ability to incorporate microscopic inter-yqint of view of modem finite-volume methods, which is
actions. However, compared to the state-of-the-art of thgppjicable to unstructured meshes with arbitrary connectiv-
conventional computational fluid dynamics technique, thety However, the above-mentioned approaches of using ir-
LBM still suffers some limitations. One of them is the uni- reqgular meshes are mostly theoretical research. Their appli-
formity of its mesh grids. Historically, the LBM was devel- cations need to be exploited. A scheme well applicable to
oped from the lattice-gas automata methd@@AM) [5],  long-term unsteady flow simulation, named as the
consequently, the LBM inherits some features from its predinterpolation-supplemented lattice Boltzmann equaiis:
cursor. In the LGAM, the dynamics of particles evolving in a LBE) scheme was presented by X. k¢al. [10]. In the
lattice space consists of two steps: Particles meeting at th6SLBE scheme, which is an LBM on polar coordinate sys-
same site collide according to a set of hard-sphere collisiotem, a flow domain is discretized into an irregular mesh. At
rules that conserve mass, momentum, and engogymulti-  each node sits a regular velocity framework. Besides normal
speed modejsat each lattice site; after colliding, particles steps, relaxation, and streaming, the ISLBE includes an in-
stream to the neighboring sites in the directions of their veterpolation step to reconstruct the distribution function at
locities. The small number of discrete velocities allowed aregrid nodes at the next step. Using the ISLBE scheme to
consistent with the lattice structure. In other words, the dissimulate the two-dimension&2D) vortex shedding phenom-
cretion of physical space is coupled with the discretion ofenon behind a circular cylinder for Reynolds numbers rang-
momentum space. The lattice Boltzmann model was a diredhg from 50—-150, the solutions are consistent with previous
transcription from the lattice-gas automata. The Boolearexperimental observations and numerical simulations.
variables in the LGAM were replaced by real-number single- In this paper, we are going to apply our compressible LB
particle distribution functions that eliminates the intrinsic model[11] to a rotating parabolic coordinate system. In or-
stochastic noise in lattice-gas automata and subsequently eder to simulate Rossby vortices emerging in a layer of shal-
hance the computational efficiency. Two further improve-low water flowing zonally in a rotating paraboloidal vessel,
ments have been made to enhance the computational effire need to treat a nonuniform curvilinear mesh. The crucial
ciency in the LBM already: The linearization of the collision idea is to map the nonuniform curvilinear mesh to flat uni-
operato{2] and the Bhatnagar-Gross-KroBGK) approxi-  form mesh by rescaling all related physical quantities ac-
mation[6] (which is also sometimes called single relaxation-cording to their dimensions using a scaling factor that is
introduced to express a different linear scale at a different
height along the curvilinear surface, and the different com-
*Email address: hOy5840@aero.tamu.edu ponents of the distribution functions streaming between dif-
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is applied. Our simulation of Rossby vortices are consistent

é/ 3 with the experimental observations reported by the Antipov
H R, 5 and Nezlin and Fridmaet al. groups[12,13 qualitatively.
The groups obtained a lot of experimental results about
Rossby vortices, spiral structures, and solitph4] that are
closely related with many natural phenomena in planetary
atmospheres, oceans, and magnetized plasma, such as the
R 2 famous Jovian Giant Red Spot, the Galactic Spiral-vortex,
/0 the Gulf Stream, and the Kuroshio Current, etc.
|. EXPERIMENTAL SETUP AND PARABOLOIDAL
COORDINATES SYSTEM
Figure 1 shows the sketch of the experimental setup. A
revolutionary paraboloidal vessel is rotating with angular ve-
locity wg, a layer of water of uniform thickness is formed in
o y the vessel when gravity is balanced by the centrifugal force.

As the thickness of the water layer is small compared with
the linear dimension of its surface, the simulation can be
treated as a 2D problem. Shearing flow is driven by a pair of
rings with differential rotation speed; and w, at the radii

R; andR,, respectively. It becomes unstable and vortices are

produced when certain critical strength of the differential ro-
tation is attained. The perturbed layer is no longer of uniform
thickness. Density is defined as the mass of water-per-unit

FIG. 1. Experimental configuration for producing Rossby vorti- area projected normally to the curved surface of the vessel, it
ces by zonal flow(1) vessel with parabolic bottont?) liquid sur-  yaries from site to site as well as with tinte
face limited;(3) camera;(4,5 rotating rings to create zonal flows. The band region between radi andR, is covered with
The vessel and the camera rotate at an angular rate. a nonuniform paraboloidal megkee Fig. 2 which divides

the circumstance inthl grids throughout the bandwidth from

ferent levels are modified accordingly. As a result, thethe bottom to the top. The curvilinear mesh so obtained is
scheme still consists of two steps: relaxation and streaminghonuniform and the edge lengdof the grids increases with
Since the mass-per-unit area projected on the 2D surfadée level height.
varies with the thickness of the water layer, the 2D flow In order to match the experimental solutions, we must
seems to be “compressible.” We should regard the soundieal with our simulations on a rotating parabolic coordinate
speedc, as the speed of surface wave in the present case. system(Fig. 3). The relations between the Cartesian coordi-
compressible LBM scheme developed by us previolsly,  nates &,y,z) and the paraboloidal coordinates,{,¢) are

g
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04d. . | g FIG. 2. Nonuniform curvilinear mesh.
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tion of the distribution function is

fa(X+ey, t+1)=Ff5(x,t) + QX (X,1), (6)
where the collision term assumes the form
* 1 * * €eq
Qa:_;(fa_fa ) (7)
e and
g

FA0GH) =060 + Do) + Fa(X,b), 8)
FIG. 3. Paraboloidal coordinate system and its unit vectors. cpa:%éa. gcgﬁp, 9)

X=7{ C0S¢, () 1
Fa==€,F. 10
y=mn{sing, (2) * 3 1o

1 d, is an attractive force introduced in order to reduce the
z= 5(172— 2. (3  wave speed, to c* =\/1—gc, in which g is an adjustable
parameterF is the resultant force exerting on the simulated

Let U be the velocity of the water in the frame of referenceSYStém. the components of which are given in 5q$'a”d
(5) above. The equilibrium distribution functiorig ®%in Eq.

corotating with the vessel. Whan=0, the tangential com- (7) are taken as
ponent of gravity is balanced by tangential part of the cen-
trifugal force. Wheni#0, the resultant forc& exerting on FReO_ )re24 6 [ +2(6, (%) 2— U 2] (113
the water consists of the Coriolis force and the part of the a s 2 ’
centrifugal force with quadratic dependence on the compo-

S f3e9=p(1—2c2—u*?), 11b
nents ofu, i.e., o =l s ) (1o
_ (sinB)uyu, here,p* andu* are defined as
Fy=2(sinO)u,wo— ————, (4) 6
p*=2 fi=p, (12
. (sin@)uf a=0
F,=—2(sinf)ugwe+ ——, (5) ]
. *U* =, e,ff=pu+gciVp+F, 13
with p glaap gcVp (13
p with
sing= .
Jr2+p? 6
. _ p=2 fa, (143
where p is the focus length of the parabolaig,= g/, the ao °
angular speed of the rotating parabolic systém/,=p? is
the equation of the paraboloidal vessel surface. - -
pu= 2 €f,, (14b)
a=1
Il. LATTICE BOLTZMANN METHOD
FOR “COMPRESSIBLE” 2D FLOWS and
Since the mass-per-unit area projected on the 2D surface
varies with the thickness of the water layer, the 2D flow 2 O,= 2 F,=0,
seems to be “compressible.” We should regard the sound a=0 a=0
speedc, as the speed of surface wave in the present case. 6 .
The LBM for compressible flow developed by us|[itl] - 22 - -
is applied at first to a uniform hexagonal grid on a rectangu- zo €aPa=9CsVp, ;::o €aFa=F.
lar domain with N cells horizontally connected by cyclic
bOUndary condition. We_)take the FHP seven-bit momt By the Chapmann_Enskog expansion for &AS zeroth
=1 fora=1,...,6, andey|=0. The equation of the evolu- and first moments of Eq6), we obtain
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z Re —1 level to thej level. The same treatment must be done for
Vp in Eq. (13) which is discretized as (4/8%2{p(X+€,)
— p(X—&,) — (U/8) p(x+2e,) — p(x—2€,) ]} *V.

The effect wave speect = c¢\/1—g should be scaled as

r 2=2pz+p 2

J

. a, Csi &
sl ] 0
z v ;/ C:o a;

We accomplish this by scaling of g instead @f

z L PR 1- Jo

:1— ,
/ B gJ a12
i whereg, is g at levelj=0.

Appropriate go<1 is chosen to get the effective}
needed in simulations. In this paper, we chogge 0.99.
o - - _ Now the_ iteration procedures describe_d in Sec. Il are car-
E+V.(pu):0, (15) ried on as if we are working on a flat uniform mesh.

(19

FIG. 4. Recursive relation of scaling factor.

p[&tJ-F(L_J)-V))J]: —C; 2€p+v*2( 7]6)4‘6[6(56)]4‘ lf, IV. RESULTS OF SIMULATION

(16) All our simulations are conducted according to the experi-
Lk . . _mental setup shown in Fig. 1. The vessel's dimensions are:
}/;ch c; = V1—gc; effective sound speed for compressible R,=0.05 m, R,=0.15 m, p=0.0817 m. The vessel and
ows. camera rotate at a fixed angular ratg= 10.99 rad/<clock-
wise). Both the angular speed and sense of rotation of zonal
I1l. MAPPING THE NONUNIFORM CURVILINEAR MESH flows (w;,w,) are adjustable.
ONTO A UNIFORM FLAT MESH BY RESCALING Our simulations are carried on in a corotating frame with

In order to use the normal LBM to simulate the Rossbythe vessel. ) i
vortices in a zonal band on a paraboloidal surface with a S€tNx=498 sites along circumstance of the vessel. From

nonuniform mesh, we cut the band along thelirection and ~ the recursion formuldl?7), Ny=153 is generated along the
map it onto a rectangle with uniform mesh. Since the edgec,un‘ace of the vessel. The speed of §urface wave is assumed
length of grids in the uniform mesh corresponds to differen0-> M/S ands=0.52 so that the relation between lattice unit
scales at different heights in the curvilinear mesh, all the2nd real physical unit is established

physical quantities, such as density, velocity, etc., should be

. 27R
rescaled accordingly. _ N o= 2 —0.001907 m, (20)
Let a; be the edge length of the nonuniform curvilinear Nx
meshes in thegth horizontal line counted from bottofrig.
4). We can derive a recursion formula for the scaling ratio [

from the configuration of treated mesh.

aj+1=1+ 27pB
a; NV1+(r;/p)?’

with 3 the height-to-edge ratio, which i&3/2 for hexagonal
grid. Taking the lower boundary,=R;, ag=2pR;/N as
datum, we can calculag, ,a,, ..., one by one by Eq17) [ ]
up to the upper bounday .
All macrophysical quantities such as density, momentum,
and wave speed in our simulation should be multiplied by a
scaling factor according to their length dimension, eqg.,
—>pjaj2,csj—>csj/aj , etc., wherej=0,1,2,3.. ., refers to
the numbering of the horizontal levels. Besides, distribution
functions should be rescaled at certain stages. Namely, when
streaming, distribution functions from level-1 to level | FIG. 5. A schematic illustration of cyclon@) and anticyclone
are multiplied by factora’/a’,, and af/a’ , from thej  (B).

17

056703-4



ROSSBY VORTEX SIMULATION ON A PARABOLOIDAL . .. PHYSICAL REVIEW E 64 056703

0.15

01

005- 47/

-0.05+

011

L o L
-01 -0.05 0 0.05 0.1 0.15

FIG. 6. Four anticyclonic Rosshy vortices generated by the an-
ticyclonic shear flow thatv,=10.99 rad/gcounterclockwisgand
w1=4.82 rad/s(clockwise, 50000 time steps, thew; is in-
creased to 17.28 rad(slockwise, 15 000 time steps more, totally
65 000 time steps.

FIG. 8. Single anticyclonic Rossby vortex generated by the an-
ticyclonic shear floww,=5.24 rad/s(counterclockwisg and w;
=17.28 rad/dqclockwise.

—wy), respectively. The periodic boundary condition is taken

at the left-side and right-side boundarigs=pg=1 andu
2mC Ry (1— . . N
o= N2 (17 90) =0.000198 o, (21)  =Uo=0 are put at all the inner sites initially.
XUs The Rossby vortices emerge in the flow driven by the

. shearing velocities of the upper and lower boundaries.
where ml and st mean meters per lattice and seconds per gy gefinition[14] (see schematic illustration in Fig),5f
time step, respectively. . the vorticity of zonal flows is parallel to the local component

Al simulations solutions shown below are projection uf the angular velocity, the vorticityA) is cyclonic; other-
drawings from upper to down and correspond to statlonarywise, the vorticity(B) is anticyclonic.

The time steps in them can be transfered to be real physical e following phenomena were reported by the Nezlin

units via Eq.(21). , _and Snezhkin group in their experimeitst].
At the lower boundaryj=0 and the upper boundary
=Ny, we force the density fixed tp=po=1 and the ve- (1) If the zonal flow is anticycolonic, the vortices pro-

locities fixed to u;=27Ri(w;—we) and U=27Ry(w2  yced are accordingly anticyclones:
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FIG. 7. Two anticyclonic Rossby vortices generated by the an-
ticyclonic shear floww,=10.99 rad/s(counterclockwisgand w, FIG. 9. No vortex generated by the cyclonic shear flaw
=17.28 rad/qclockwise, 650 000 time steps. =7.33 rad/gclockwise andw;=21.99 rad/gcounterclockwisg
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(2) If the zonal flow is cyclonic, no large-scale vortex is  (2) When the shear flow is cyclonic, no vortex emerges
generated. (Fig. 9), which agrees with the experimental solutions from

. . . the Antipov and Nezlin group.
In our simulations we found the following phenomena: P group

Four anticyclonic Rossbhy vortices are produced by two anti-
cyclonic shear flows after 65 000 time steps, in which 50 000
steps were run witkv,=10.99 rad/gcounterclockwisgand
w,=4.82 rad/s(clockwise, followed by 15000 steps with By introducing scaling factors, we generalize the LBM
wq increased to 17.28 radfslockwise (Fig. 6); however, from uniform flat mesh to nonuniform curvilinear mesh. Us-
two anticyclonic Rosshy vortices are produced after 65000ng the LBM for compressible flows developed by us, we
time steps ifw,=17.28 rad/gclockwise from the begining have simulated the Rossby vortices on a rotating parabolic
(Fig. 7. That is to say, the final state of vortical flow is Coordinate frame and the results are consistent with existing
history dependent. experimental observations qualitatively, which encourages
In another case, single anticyclonic Rossby vortex arais to explore more quantitative solutions relating to Rossby
produced by a shear flow,=5.24 rad/s(counterclock- vortices and simulate more complicated experimental phe-
wise) and w,=17.28 rad/gclockwise (Fig. 8). nomena, such as drift vortices and solitons both in nature and
No vortex produced by a cyclonic shear flow, in magnetized plasma, galactic spiral structures, etc.
=7.33 rad/s (clockwise and w;=21.99 rad/s(counter-
clockwise (Fig. 9).
The results of our simulation are as follows. ACKNOWLEDGMENTS
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