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Lattice Boltzmann method for compressible flows with high Mach numbers

Huidan Yu1,2,3,* and Kaihua Zhao1
1Department of Physics and Center for Nonlinear Sciences, Peking University, Beijing 100871, China

2Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing 100800, China
3Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

~Received 28 September 1999!

In this paper we present a lattice Boltzmann model to simulate compressible flows by introducing an
attractive force. This scheme has two main advantages: one is to soften sound speed effectively, which greatly
raises the Mach number~up to 5!; another is its relative simple procedure. Simulations of the March cone and
the comparison between theoretical expectations and simulations demonstrate that the scheme is effective in
the simulation of compressible flows with high Mach numbers, which would create many new applications.

PACS number~s!: 51.10.1y, 47.40.Nm, 02.70.2c
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I. INTRODUCTION

In 1986, Frisch, Hasslacher, and Pomeau@1# proposed the
first lattice gas model for the two-dimensional incompre
ible Navier-Stokes equation. Since then, much attention
been paid to this relatively new method@2#. Many theoretical
and numerical studies have been concentrated on a varie
physics phenomena from shock formation@3# to flows in
porous media@4#, magnetohydrodynamics@5#, phase separa
tion @6,7#, and turbulence @8#. Recently, the lattice
Boltzmann~LB! method originated from lattice gas automa
has been developed to be an alternative and promising
merical scheme for simulating fluid flow and modeling phy
ics in fluids. The scheme is particularly successful in
applications involving interfacial dynamics and compl
boundaries, especially when the effects of compressib
can be neglected. However, there exist a number of si
tions where such approximation is inappropriate@9,10#. Al-
though several analytical and numerical LB techniques h
been developed to treat compressible flows, no solutions
satisfactory.

In 1992, Alexanderet al. @11# presented a selectab
sound speed model to simulate compressible flow by se
ing the parameters of the equilibrium distribution approp
ately to set the sound speed as low as possible. In t
model, the following single-component LB equation with
Bhatnagar-Gross-Krook~BGK! collision term describes the
evolution of the distribution functionf a(xW ,t) in spacexW and
time t,

f a~xW1eWa ,t11!5 f a~xW ,t !1Va , ~1!
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a51, . . . ,b,

whereVa is the collision operator,

Va52
1

t
@ f a~xW ,t !2 f a

eq~xW ,t !#, ~2!

with t the single relaxation time scale for approach to t
desired equilibrium distribution. The set of vectors$eWa ;a
50, . . . ,b% are the possible velocities a particle can have
order to move from a lattice site to one of theb numbers of
the nearest-neighboring sites at each time step.eWa50(a
50) is associated with the rest~‘‘stopped’’! particles, and
ueWau5c,(a51, . . . ,b) where c is the lattice constant. The
macroscopic number densityr(xW ,t) and velocityuW (xW ,t) of
the fluid are obtained fromf a as r5(af a and ruW

5(a f aeWa . Equations~1! and~2! represent the relation of th
distribution function to its equilibrium value,f a

eq , which is a

function ofr anduW only. The choice off a
eq has to ensure tha

the macroscopic fluid equation obtained from Eq.~1! by the
Chapman-Enskog expansion agrees with the Navier-Sto
equations. The functional form off a

eq depends on the struc
ture of the lattice and is usually not uniquely determined

For an FHP7-bit model~i.e., b56,c51), the form off a
eq

is usually shown as follows:

f a
eq5

r

3 Fcs
21eWa•uW 12~eWa•uW !22

1

2
u2G , ~3a!
2
56
TABLE I. Effective sound speed comparison at differentg whencs50.52,t51, A50.1.

g 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
T 426 450 476 510 550 602 673 777 952 1350
cs* 0.164 0.156 0.147 0.138 0.127 0.116 0.104 0.0901 0.074 0.05
cs8 0.164 0.156 0.147 0.137 0.127 0.120 0.106 0.0964 0.0767 0.05

*Electronic address: yu@jazz.me.psu.edu
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f 0
eq5r@122cs

22u2#. ~3b!

The corresponding macroscopic dynamic equation is

r@] tuW 1~uW •¹!uW #52cs
2¹r1¹2~huW !1¹@¹•~zuW !#, ~4!

where

h5
2t21

8
r, z5

2t21

4
~122cs

2!r ~5!

are the kinetic viscosity and the bulk viscosity, respective
As Alexanderet al. @11,12# demonstrated, the main ad

vantage of their model is that it has a selectable sound sp
In order to simulate compressible flows with high Ma
numbers, sound speed must be selected as small as pos
However, the non-negativeness requirement of the equ
rium distribution functions limits such selection to a ve
narrow range. As a result, they still cannot simulate co
pressible flows with a high Mach number. Another L
model for compressible fluids@13# ~called the Lattice BGK
model! introduced a nonlinear derivation from the Navie
Stokes equation, but unfortunately it also has a limitation
raise the Mach number. There also exist two other mod
@14,15# but they are so complicated that the advantages
the LB method are lost.

We found that it is crucial to avoid the distribution fun
tions being negative when we construct new LB models. O
model below did satisfy this requirement.

II. LB MODEL FOR COMPRESSIBLE FLOWS

In order to soften sound speed, we introduce an attrac
force

TABLE II. Effective sound speed comparison at differentcs

wheng50.91,t51, A50.1, T5450.

cs 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.6
cs* 0.144 0.150 0.156 0.162 0.168 0.174 0.180 0.186 0.
cs8 0.144 0.149 0.156 0.162 0.167 0.171 0.176 0.182 0.

FIG. 1. The Doppler effect.
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2H r~xW1eWa!2r~xW2eWa!

2
1

8
@r~xW12eWa!2r~xW22eWa!#J

'
1

3
gcs

2eWa•¹r ~6!

with (a50
b Fa50. g is a parameter to adjust the intensity

attraction. In Eq.~6! the terms of the density difference be
tween next nearest neighbors have been included as we
those between nearest neighbors in order to eliminate
wave-number dependence of the sound speed. Then the
responding nonequilibrium distribution function becomes

f a* ~xW ,t !5 f a~xW ,t !1Fa . ~7!

Define

r* [ (
a50

b

f a* 5 (
a50

b

f a1 (
a50

b

Fa5r, ~8!

r* uW * [ (
a51

b

eWaf a* 5 (
a51

b

eWaf a1 (
a51

b

eWaFa'ruW 1gcs
2¹r.

~9!

Similar to the multiple phase and component model of
LB method presented by Xiaowen Shan and Hudong C
@16,17# with the attractive force, the collision does not co
serve the net momentum at each site. However, it can
shown directly that the total momentum of the system o

2
9

TABLE III. Mach number comparison at differentu0 whencs

50.52,g50.99,t51, A50.1, T51350,cs850.0556.

u0 0.08 0.12 0.16 0.20 0.22 0.24 0.26 0.28
M 85u0 /cs8 1.44 2.16 2.88 3.60 3.96 4.32 4.68 5.03
M* 51/sin u 1.42 2.20 2.89 3.63 4.10 4.35 4.65 5.0

FIG. 2. Mach cone simulation at different Mach numbers.
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TABLE IV. Effective sound speed comparison at differentT when g50.99, t51, A50.1, cs50.52,
cs* 50.0556.

T 1750 1650 1550 1450 1350 1250 1150 1050 950
cs8 0.0554 0.0540 0.0555 0.0545 0.0556 0.0568 0.0565 0.0576 0.05
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tained by summing over the net momentum at every sit
still exactly conserved, provided no net momentum excha
has occurred at the boundary.

Having the attractive force defined, the new equilibriu
function becomes

f a*
eq5

r

3 Fcs
21eWa•uW * 12~eWa•uW * !22

1

2
~u* !2G , ~10a!

f 0*
eq5r@122cs

22~u* !2#, ~10b!

and the kinetic equation becomes

f a~xW1eWa ,t11!5 f a~xW ,t !1Fa1Va* , ~11!

where

Va* 52
1

t
@ f a* ~xW ,t !2 f a*

eq~xW ,t !#. ~12!

It is obvious that(aVa* 50, (aeWaVa* 50, which meansVa*
satisfies the conservation of total mass and total momen
at each lattice site with the attractive force.

Multiplying Eq. ~11! by 1 andeWa and summing overa,
after substituting Eqs.~6! and~10! and some straightforward
algebra, we obtain

]r

]t
1¹•~ruW !50, ~13a!

r@] tuW 1~uW •¹!uW #52cs*
2¹r1¹2~huW !1¹@¹•~zuW !#

~13b!

at low-frequency and long-wavelength limit and the effect
sound speedcs* is softened,

cs* 5A12gcs ~14!

By Eq. ~14! the critical value ofg is 1, beyond which the
system becomes unstable.

III. SIMULATIONS AND RESULTS

If we chooset51, the kinetic equation~11! simply be-
comes

f a~xW1eWa ,t11!5 f a*
eq. ~15!

The advantage of Eq.~15! is that the possibility of negative
distribution functions is reduced greatly.

In a rectangle field fluid flows from left to right at a un
form horizontal speedu0. At the timet50 each site has the
same densityr0(51) and velocityu0. Then we introduce a
density vibrationr5r01A sin(2pt/T) at a single fixed site
near the middle of the field. The density and speed at f
is
e

m

r

boundaries remain unchanged atr0(51) and u0, respec-
tively. The simulated sound speedcs8 is measured by the
propagation speed of vibration atu050. The comparison of
cs8 and the theoretical softened sound speedcs* , which sat-
isfies Eq.~14! is shown in Tables I and II. In those tables th
value ofT is preselected to agree with the low-frequency a
long-wavelength limit. Whenu05” 0, the simulated Mach
number is defined asM 85u0 /cs8 . The Doppler effect as
M 8,1 and the Mach cone asM 8.1 are shown at differen
u0; we defined the Mach number asM 85u0 /cs8 in Figs. 1
and 2, respectively. The theoretical value of the Mach nu
ber is calculated by the formulaM* 51/sinu, whoseu is
measured in Fig. 2. The comparison ofM 8 andM* is shown
in Table III. Table IV shows here that the sound wave o
tained is nondispersive as in reality.

IV. CONCLUSION

In this paper, we have presented a LB model that has
capability of simulating compressible flows by introducin
an attractive force. The fundamental feature of this mode
the introduction of the attractive force, which effective
softens the sound speed and the Mach number is raise
markably. Being a simple and easy-going procedure is
other advantage of this scheme. Our simulation results d
onstrate that this scheme can simulate compressible
flows with high Mach numbers up to 5. The present mode
isothermal; its application is limited. However, based on t
model, an extension to nonisothermal situations is expec
for general applications, which is being included in our fu
ther research.

Moreover, sound speed reduction reminds us of
liquid-gas phase transition problem which should be trea
by LB models with full thermodynamics. Preliminary wor
on a LB simulation of a van der Waals phase transition w
done by us@18# with the concept of a chemical potentia
introduced into the model from outside. We have notic
that McNamaraet al. have presented a fully correct therm
LB model; however, the numerical stability leaves much
be desired@19#. We think that the study of the phenomeno
of sound speed reduction itself is of interest in connect
with the problem of phase transition.
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