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Lattice Boltzmann method for compressible flows with high Mach numbers
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In this paper we present a lattice Boltzmann model to simulate compressible flows by introducing an
attractive force. This scheme has two main advantages: one is to soften sound speed effectively, which greatly
raises the Mach numbéup to 9; another is its relative simple procedure. Simulations of the March cone and
the comparison between theoretical expectations and simulations demonstrate that the scheme is effective in
the simulation of compressible flows with high Mach numbers, which would create many new applications.

PACS numbeps): 51.10:+y, 47.40.Nm, 02.70-c

I. INTRODUCTION a=1,... b,

In 1986, Frisch, Hasslacher, and PomghLproposed the : o
first lattice gas model for the two-dimensional incompress-WhereQa s the collision operator,
ible Navier-Stokes equation. Since then, much attention has
been paid to this relatively new methf2]. Many theoretical 0.=— E[f (X,1) — F89(x ] )
and numerical studies have been concentrated on a variety of a o & army
physics phenomena from shock formatif8] to flows in
porous medig4], magnetohydrodynamid$], phase separa- yjth 7 the single relaxation time scale for approach to the
tion [6,7], and turbuler_1c_e [8]. Recentl_y, the lattice desired equilibrium distribution. The set of vectqléa;a
Boltzmann(LB) method originated from lattice gas automata:0 bl are the possible velocities a particle can have in
has been developed to be an alternative and promising n%'rdé.r .tc.)’move from a lattice site to one of thenumbers of
merical scheme for simulating fluid flow and modeling phys- ) ) ) ] -
ics in fluids. The scheme is particularly successful in theN€ nearest-neighboring sites at each ”t|me stgp=0(a
applications involving interfacial dynamics and complex =0) is associated with the reststopped”) particles, and
boundaries, especially when the effects of compressibilityes|=c,(@=1, ... b) wherec is the lattice constant. The
can be neglected. However, there exist a number of situanacroscopic number densify(x,t) and velocityu(x,t) of

tions where such app_roximation is ir)approprimelp]. Al- the fluid are obtained fromf, as p=3,f, and pﬁ
though several analytical and numerical LB techniques have:E f.6.. Equations1) and(2) represent the relation of the
been developed to treat compressible flows, no solutions aréz ala®q. EQUal . ) 'ep eq L
satisfactory. Istribution funct|9n to its equilibrium valud ", which is a

In 1992, Alexanderet al. [11] presented a selectable function ofp andu only. The choice of $9has to ensure that
sound speed model to simulate compressible flow by selecthe macroscopic fluid equation obtained from Ep. by the
ing the parameters of the equilibrium distribution appropri-Chapman-Enskog expansion agrees with the Navier-Stokes
ately to set the sound speed as low as possible. In thegquations. The functional form d£ depends on the struc-
model, the following single-component LB equation with ature of the lattice and is usually not uniquely determined.

Bhatnagar-Gross-KrookBGK) collision term describes the For an FHP7-bit modeli.e., b=6,c=1), the form off3¢
evolution of the distribution functior,(x,t) in spacex and is usually shown as follows:

time t,

L ; pea= Pl 24 8 04 2(6, 02— ou2 3

fa(X+ea,t+1)=f,(X,t)+Q,, (1) a 3|’ e @ 27/
TABLE |. Effective sound speed comparison at differgnvhenc,=0.52, 7=1, A=0.1.

g 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
T 426 450 476 510 550 602 673 777 952 1350
cy 0.164 0.156 0.147 0.138 0.127 0.116 0.104 0.0901 0.074 0.052
cs 0.164 0.156 0.147 0.137 0.127 0.120 0.106 0.0964 0.0767 0.0556
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TABLE IlI. Effective sound speed comparison at differemnt
wheng=0.91,7=1, A=0.1, T=450.

cs 048 050 052 054 056 058 060 0.62 0.64
c¥ 0.144 0.150 0.156 0.162 0.168 0.174 0.180 0.186 0.192
c, 0.144 0.149 0.156 0.162 0.167 0.171 0.176 0.182 0.189

fgq:p[l_zcg_uﬁ, (3b) m'=2.16 m'=3.23
The corresponding macroscopic dynamic equation is
ploi+(U-V)u]=—cZVp+V2(pu)+V[V-(L0)], (4)

where

27—1 271 5
n=—g P (=7 (1-2cHp ®)
are the kinetic viscosity and the bulk viscosity, respectively. =43 m=308
As Alexanderet al. [11,17] demonstrated, the main ad-
vantage of their model is that it has a selectable sound speed.
In order to simulate compressible flows with high Mach 4
numbers, sound speed must be selected as small as possible. d,=-gc? p(X+€,)— p(X—€,)
However, the non-negativeness requirement of the equilib- 9
rium distribution functions limits such selection to a very 1
narrow range. As a result, they still cannot simulate com- — —[p(x+2e,) — p(X—2€,)]
pressible flows with a high Mach number. Another LB 8
model for compressible fluidsl3] (called the Lattice BGK 1 R
mode) introduced a nonlinear derivation from the Navier- ~§gc§ea-Vp (6)
Stokes equation, but unfortunately it also has a limitation to
raise the Mach number. There also exist two other models .

[14,15 but they are so complicated that the advantages o‘fv'th E?:Oq)a_o' g Is a parameter to adju_st th? intensity of
the LB method are lost. attraction. In Eq(6) the terms of the density difference be-

We found that it is crucial to avoid the distribution func- IWEeN next nearest ne|ghbc_Jrs have-been mclude_d as well as
tions being negative when we construct new LB models. OuFhose between nearest neighbors in order to eliminate the
model below did satisfy this requirement wave-number dependence of the sound speed. Then the cor-

' responding nonequilibrium distribution function becomes

FIG. 2. Mach cone simulation at different Mach numbers.

Il. LB MODEL FOR COMPRESSIBLE FLOWS £ (X,0) = Fo(X, 1) + Dy @
In order to soften sound speed, we introduce an attractive
force Define
b b b
P*EZ f§=2 fa"'E ®,=p, 8
a=0 a=0 a=0
b b b
p* u*= 2 éaf; = E é)afa_" 2 éaq)a%PJ"'gCgVP-
a=1 a=1 a=1
9
Similar to the multiple phase and component model of the
=0 I =0.29 LB method presented by Xiaowen Shan and Hudong Chen

[16,17 with the attractive force, the collision does not con-
serve the net momentum at each site. However, it can be
shown directly that the total momentum of the system ob-

TABLE Ill. Mach number comparison at differenty when cg
=0.52,g=0.99,7=1, A=0.1, T=1350,c.,=0.0556.

Ug 0.08 0.12 0.16 0.20 0.22 0.24 0.26 0.28
W' =0. 49 N =0.68 M’'=ug/c, 1.44 216 2.88 3.60 3.96 4.32 4.68 5.03
M*=1/sing 1.42 2.20 2.89 3.63 4.10 435 465 5.0

FIG. 1. The Doppler effect.
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TABLE IV. Effective sound speed comparison at differdhwhen g=0.99, =1, A=0.1, c,=0.52,

¢t =0.0556.
T 1750 1650 1550 1450 1350 1250 1150 1050 950
c, 00554 00540 0.0555 0.0545 0.0556 0.0568 0.0565  0.0576  0.0558

tained by summing over the net momentum at every site iboundaries remain unchanged @j(=1) and u,, respec-
still exactly conserved, provided no net momentum exchangeévely. The simulated sound speeq is measured by the

has occurred at the boundary. propagation speed of vibration ag=0. The comparison of
Having the attractive force defined, the new equilibriumc/ and the theoretical softened sound spegd which sat-
function becomes isfies Eq.(14) is shown in Tables | and Il. In those tables the

p o o 1 value of T is preselected to agree with the low-frequency and
f;eq:§ c§+ea~u*+2(eaou*)2—E(u*)2 , (108  long-wavelength limit. Wheruy#0, the simulated Mach
number is defined ad1’=uy/c,. The Doppler effect as

fgeq:p[l_ZCg_(u*)Z], (10b) M’<1 and the Mach cone dd’'>1 are shown at different
o _ Uo; we defined the Mach number &' =ugy/c{ in Figs. 1
and the kinetic equation becomes and 2, respectively. The theoretical value of the Mach num-
o N . 1 /i :
Fo(Rt 60t - 1) = Fo(R,) + Dot QF | (11) ber is calculated by the formul™ =1/sing, whose 6 is

measured in Fig. 2. The comparisondf andM* is shown
where in Table Ill. Table IV shows here that the sound wave ob-
tained is nondispersive as in reality.

1. .
*_ _ T rx __f*xeq
Qz=—Z[fa () = 5] (12 IV. CONCLUSION

It is obvious thatS,0* =0, Eaéaﬂz =0, which meand€)* In this paper, we have presented a LB model that has the

satisfies the conservation of total mass and total momentu/f2Pability of simulating compressible flows by introducing
at each lattice site with the attractive force. an attractive force. The fundamental feature of this model is

L - . the introduction of the attractive force, which effectively
Multlplyl_ng_Eq. (1) by 1 ande, and summing oves, softens the sound speed and the Mach number is raised re-
after substituting .Eqs(ﬁ) and(10) and some straightforward markably. Being a simple and easy-going procedure is an-
algebra, we obtain other advantage of this scheme. Our simulation results dem-

ap - onstrate that this scheme can simulate compressible fluid

5t TV (pu)=0, (133 flows with high Mach numbers up to 5. The present model is

isothermal; its application is limited. However, based on this
p[atﬁ+(J-V)G]= —c* 2Vp+V2(nG)+V[V~(gJ)] model, an extension to nonisothermal situations is expected

(13p  for general applications, which is being included in our fur-
ther research.
at low-frequency and long-wavelength limit and the effective  Moreover, sound speed reduction reminds us of the
sound speed? is softened, liquid-gas phase transition problem which should be treated
x_ A by LB models with full thermodynamics. Preliminary work
Cs=Vv1-0G (14 on a LB simulation of a van der Waals phase transition was
done by us[18] with the concept of a chemical potential
introduced into the model from outside. We have noticed
that McNamaraet al. have presented a fully correct thermal
LB model; however, the numerical stability leaves much to
be desired19]. We think that the study of the phenomenon
If we chooser=1, the kinetic equatioril1) simply be-  of sound speed reduction itself is of interest in connection
comes with the problem of phase transition.

By EQ. (14) the critical value ofg is 1, beyond which the
system becomes unstable.

[ll. SIMULATIONS AND RESULTS
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