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ABSTRACT

Chen, Nan. M.S.M.E, Purdue University, August 2013. Mechanisms of Axis-switching
and Saddle-back Velocity Profile in Laminar and Turbulent Rectangular Jets. Major
Professor: Huidan (Whitney) Yu.

We numerically investigate the underlying physics of two peculiar phenomena,

which are axis-switching and saddle-back velocity profile, in both laminar and turbu-

lent rectangular jets using lattice Boltzmann method (LBM). Previously developed

computation protocols based on single-relaxation-time (SRT) and multiple-relaxation-

time (MRT) lattice Boltzmann equations are utilized to perform direct numerical

simulation (DNS) and large eddy simulation (LES) respectively.

In the first study, we systematically study the axis-switching behavior in low

aspect-ratio (AR), defined as the ratio of width over height, laminar rectangular jets

with AR = 1 (square jet), 1.5, 2, 2.5, and 3. Focuses are on various flow properties on

transverse planes downstream to investigate the correlation between the streamwise

velocity and secondary flow. Three distinct regions of jet development are identified

in all the five jets. The 45◦ and 90◦ axis-switching occur in characteristic decay (CD)

region consecutively at the early and late stage. The half-width contour (HWC)

reveals that 45◦ axis-switching is mainly contributed by the corner effect, whereas

the aspect-ratio (elliptic) feature affects the shape of the jet when 45◦ axis-switching

occurs. The close examinations of flow pattern and vorticity contour, as well as the

correlation between streamwise velocity and vorticity, indicate that 90◦ axis-switching

results from boundary effect. Specific flow patterns for 45◦ and 90◦ axis-switching

reveal the mechanism of the two types of axis-switching respectively.

In the second study we develop an algorithm to generate a turbulent velocity field

for the boundary condition at jet inlet. The turbulent velocity field satisfies incom-

pressible continuity equation with prescribed energy spectrum in wave space. Appli-
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cation study of the turbulent velocity profile is on two turbulent jets with Re = 25900.

In the jets with AR = 1.5, axis-switching phenomenon driven by the turbulent inlet

velocity is more profound and in better agreement with experimental examination

over the laminar counterpart. Characteristic jet development driven by both laminar

and turbulent inlet velocity profile in square jet (AR = 1) is also examined. Overall

agreement of selected jet features is good, while quantitative match for the turbulence

intensity profiles is yet to be obtained in future study.

In the third study, we analyze the saddle-back velocity profile phenomenon in tur-

bulent rectangular jets with AR ranging from 2 to 6 driven by the developed turbulent

inlet velocity profiles with different turbulence intensity (I). Saddle-back velocity pro-

file is observed in all jets. It has been noted that the saddle-back’s peak velocities

are resulted from the local minimum mixing intensity. Peak-center difference ∆pc and

profound saddle-back (PSB) range are defined to quantify the saddle-back level and

the effects of AR and I on saddle-back profile. It is found that saddle-back is more

profound with larger AR or slimmer rectangular jets, while its relation with I is to

be further determined.
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1. INTRODUCTION

A jet refers to a fluid flow issuing from a slot or nozzle, where a stream of fluid mixes

with the surrounding medium. As a jet penetrates downstream, the entrainment

at the interface between the fluid and surrounding medium leads the jet to expand

radially. Depending on the structures and shapes of the slot, the flow field of the jet

presents a variety of characteristics, which are of importance in engineering design

and innovations.

1.1 Background and Research Motivation

Physical study of different types of jet has resulted in a number of practical ap-

plications. Fig. 1.1 shows a few examples: (a) A jet engine works by means of the

propulsive force produced by the high-speed exhaust jet; the mixing performance be-

tween air jet and injected fuel in the combustion chamber affects how fast the exit

stream can be. (b) The inkjet printer , as told by the name, is an invention utilizing

jet on printing. (c) Hydraulic mining has been a fashion for mining gold and coal

since over a century ago. In the picture, a mining worker is directing a high-pressure

water jet to remove rock material and sediment from the desired composition. (d)

Chemical-laser-weapon is an example of jet’s application to military affairs.

Compared to traditional round jets, non-circular jets attract special attentions due

to their enhanced entrainment and mixing properties, relative to those of comparable

axisymmetric jets (Ref. [1] and references therein). Circular jets lack the corner vortex

feature of square jets and aspect-ratio feature of elliptic jets, whereas rectangular

jets combine both of these features. Hence we are more interested in the study of

rectangular jet characteristics.
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Figure 1.1. Representative jet applications: (a) jet engine, (b) inkjet
printer, (c) hydraulic mining, (d) chemical laser. Figures are obtained
from Internet.

Two peculiar behaviors of rectangular jets have been observed in experiments

and computations [2–4]. Depending on initial conditions at the jet inlet, the cross-

section of non-circular jets can evolve downstream through shapes similar to that

at the jet inlet with its major and minor axis rotated at angles characteristic of

the jet geometry. This phenomenon is called axis-switching. It has been known

that axis-switching typically occurs in low aspect-ratio jets [4–8]. Another intriguing

behavior is the development of a saddle-back velocity profile along major axis as the

jet goes downstream. Fig. 1.2a shows the axis-switching phenomenon occurring in

a triangular jet study [1], and Fig. 1.2a illustrates the saddle-back velocity profile

observed in a rectangular jet study [4].
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Figure 1.2. Characteristic jet behaviors: (a) jet cross-sections (solid
line: initial shape, dashed line: current shape), representing axis-
switching [1]; (b) saddle-back velocity profile [4].

In this thesis, we numerically investigate the underlying physics of two pecu-

liar phenomenon, which are axis-switching and saddle-back velocity profile, in both

laminar and turbulent rectangular jets using lattice Boltzmann method (LBM). Pre-

viously developed computation protocols solving single-relaxation-time and multiple-

relaxation-time lattice Boltzmann equations are utilized to perform direct numerical

and large eddy simulation for laminar and turbulent jets respectively.

In the first study, we systematically study the axis-switching behavior in low

aspect-ratio (AR), defined as the ratio of width over height, laminar rectangular jets

with AR = 1 (square jet), 1.5, 2, 2.5, and 3. Focuses are on various flow properties on

transverse planes downstream to investigate the correlation between the streamwise

velocity and secondary flow. Three distinct regions of jet development are identified

in all the five jets. The 45◦ and 90◦ axis-switching occur in characteristic decay (CD)

region consecutively at the early and late stage. The half-width contour (HWC)

reveals that 45◦ axis-switching is mainly contributed by the corner effect, whereas

the aspect-ratio (elliptic) feature affects the shape of the jet when 45◦ axis-switching

occurs. The close examinations of flow pattern and vorticity contour, as well as the
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correlation between streamwise velocity and vorticity, indicate that 90◦ axis-switching

results from boundary effect. Specific flow patterns for 45◦ and 90◦ axis-switching

reveal the mechanism of the two types of axis-switching respectively.

In the second study we develop an algorithm to generate a turbulent velocity field

for the boundary condition at jet inlet. The turbulent velocity field satisfies incom-

pressible continuity equation with prescribed energy spectrum in wave space. Appli-

cation study of the turbulent velocity profile is on two turbulent jets with Re = 25900.

In the jets with AR = 1.5, axis-switching phenomenon driven by the turbulent inlet

velocity is more profound and in better agreement with experimental examination

over the laminar counterpart. Characteristic jet development driven by both laminar

and turbulent inlet velocity profile in square jet (AR = 1) is also examined. Overall

agreement of selected jet features is good, while quantitative match for the turbulence

intensity profiles is yet to be obtained in future study.

In the third study, we analyze the saddle-back velocity profile phenomenon in tur-

bulent rectangular jets with AR ranging from 2 to 6 driven by the developed turbulent

inlet velocity profiles with different turbulence intensity (I). Saddle-back velocity pro-

file is observed in all jets. It has been noted that the saddle-back’s peak velocities

are resulted from the local minimum mixing intensity. Peak-center difference ∆pc and

profound saddle-back (PSB) range are defined to quantify the saddle-back level and

the effects of AR and I on saddle-back profile. It is found that saddle-back is more

profound with larger AR or slimmer rectangular jets, while its relation with I is to

be further determined.

1.2 Lattice Boltzmann Method for Rectangular Jets

Lattice Boltzmann method (LBM) has emerged as an alternative model to simu-

late complex flows [5,9]. Conventionally, computational fluid dynamics (CFD) solves

Navier-Stokes equations on macroscopic level, whereas LBM solves Boltzmann equa-

tion on mesoscopic level [10]. The idea of LBM is that the collective behavior of many
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microscopic particles result in the macroscopic dynamics of the flow. Thus, it has been

well-known that LBM has physical and computational advantages over macroscopic

CFD approaches due to its kinetic nature. Two of the most profound advantages

are easy implementation of complex boundary conditions and parallelization of algo-

rithm. LBM is also regarded as an ideal tool for GPU parallel computation. These

advantages make LBM a rather promising alternative CFD method in the future.

Figure 1.3. Lattice gas automata (LGA): triangular lattice with
hexagonal symmetry and hexagonal lattice rules. Particles at time t
and t+1 are marked by single and double arrows, respectively. Figure
is obtained from [11].

LBM originated from lattice gas automata (LGA) [11] (Fig. 1.3), a model focusing

on molecular kinetics in a discrete lattice and discrete time. LGA describes the status

of each molecule on the nodes. The evolution equation of LGA, which conveys the

basic concept of LBM, is as follows:

ni(r + ei, t+ 1) = ni(r, t) + Ωi(n(r, t)), i = 0, 1, ...,Mn − 1 (1.1)
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where ni denotes Boolean variables, describing the particle occupation on the grids,

ei are the molecular velocities and Mn stands for the number of directions for particle

velocities; r and t are used to represent the current location and time step the particle

is at. Two sub-steps are involved in the evolution of the status of each particle for

each time step: (a) collision that is reflected by Ωi, in which a particle getting to a

node and change its velocities according to certain rules, and (b) streaming, when the

particle moves to the adjacent grid directed by its velocity. The macroscopic variables

at each grid are recovered by the collective information of the molecule:

ρ =
∑
i

ni, ρu =
∑
i

niei. (1.2)

However, LGA suffers from statistical noise due to the non-linearity of the governing

equations and unphysical hydrodynamical quantities resulted from velocity-dependent

pressure [12].

LBM scheme was developed to overcome the aforementioned drawbacks. Instead

of dealing with Boolean variables in LGA model, LBM manipulates distribution func-

tions fi, a set of variables that measure the possibilities of a particle migrating along

finite discretized directions. A typical lattice Boltzmann equation looks like [12]

fi(r + eiδt, t+ δt) = fi(r, t)−
1

τ
[fi(r, t)− f (eq)

i (r, t)], i = 0, 1, ...,Mf − 1 (1.3)

where fi and f
(eq)
i represent the Mf distribution functions and their equilibria, re-

spectively; δt is the discrete time-step; τ is the relaxation time. The equilibrium

distribution function f
(eq)
i is expressed as

f
(eq)
i = ωiρ

[
1 +

3ei · u
c2

+
9(ei · u)2

2c4
− 3u2

2c2

]
, i = 0, 1, ...,Mf − 1 (1.4)

where ωi denotes the weighting factors of the lattice, ρ, u and u are the density,

velocity and its magnitude of the fluid, and c ≡ δx/δt, δx being lattice length. Density

and momentum are obtained from the distribution functions as

δρ =
∑
i

fi, ρ0u =
∑
i

eifi. (1.5)
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The fluid property and particle’s collective behavior have the following relation:

ν =
1

3

(
τ − 1

2

)
cδx. (1.6)

Figure 1.4. LBM lattice models: (a) D2Q9, (b) D3Q15, (c) D3Q19,
(c) D3Q27. D: dimension, Q: number of discrete directions.

The implementation of LBM involves space and time discretization on the prede-

fined lattice. Since the first validated hexagonal lattice, a variety of lattice models

have been analyzed. Fig. 1.4 shows four prevailing lattice models in 2D (a) and



8

3D ((b)-(d)). The corresponding particle velocities and weighting factors are written

below. D2Q9:

ei =


(0, 0), i = 0

(±1, 0), (0,±1), i = 1 ∼ 4

(±1,±1), i = 5 ∼ 8,

(1.7)

and

ωi =


4
9
, i = 0

1
9
, i = 1 ∼ 4

1
36
, i = 5 ∼ 8.

(1.8)

D3Q15:

ei =


(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 ∼ 6

(±1,±1,±1), i = 7 ∼ 14,

(1.9)

and

ωi =


2
9
, i = 0

1
9
, i = 1 ∼ 6

1
72
, i = 7 ∼ 14.

(1.10)

D3Q19:

ei =


(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 ∼ 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7 ∼ 18,

(1.11)

and

ωi =


1
3
, i = 0

1
18
, i = 1 ∼ 6

1
36
, i = 7 ∼ 18.

(1.12)
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D3Q27:

ei =



(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 ∼ 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7 ∼ 18,

(±1,±1,±1), i = 19 ∼ 26,

(1.13)

and

ωi =



8
27
, i = 0

2
27
, i = 1 ∼ 6

1
54
, i = 7 ∼ 18,

1
216
, i = 19 ∼ 26.

(1.14)

1.2.1 Single-relaxation-time Model

There are two prevailing lattice Boltzmann models. The single-relaxation-time

model was directly developed from LGA [11], where a single relaxation time τ connects

the collective behavior of molecules to kinematic viscosity of the fluid, as seen in Eq.

1.18. Here we express these models with an improved format [10]:

f
(eq)
i = ωi

{
δρ+ ρ0

[3ei · u
c2

+
9(ei · u)2

2c4
− 3u2

2c2

]}
(1.15)

where δρ is the density fluctuation and ρ0 is the constant mean density of the system.

In LBM the values of ρ0, δx, and δt are all typically set to unity. The sound speed in

this model is cs = c/
√

3. The total density is ρ = ρ0 + δρ. The mass and momentum

conservations are strictly enforced:

δρ =
∑
i

fi =
∑
i

f
(eq)
i (1.16)

ρ0u =
∑
i

eifi =
∑
i

eif
(eq)
i (1.17)

The fluid kinematic viscosity ν has the following relation with the relaxation time τ :

ν =
1

3

(
τ − 1

2

)
cδx, τ =

3ν

cδx
+

1

2
(1.18)
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1.2.2 Multiple-relaxation-time Model

The multiple-relaxation-time (MRT) model is more sophisticated [5]. Instead of

one single relaxation time, MRT has a number of relaxation times to fluid properties.

It also consists of collision and streaming for tackling particle’s relaxation and advec-

tion respectively. The major advantage of MRT over SRT includes the possibility to

rapidly dissipate non-hydrodynamic moments and suppress non-physical small-scale

oscillations quickly [5], when appropriate relaxation times are selected. Meanwhile,

MRT model achieves better numerical stability [13] and higher accuracy of boundary

implementation [14].

The MRT lattice Boltzmann equation reads

|f(r + eiδt, t+ δt)〉 − |f(r, t)〉 = −M−1Ŝ[|m(r, t)〉 − |m(eq) × (r, t)〉], (1.19)

where |〉 represents the Dirac notation for vectors, i.e., |f(r + eiδt, t+ δt)〉 ≡ [f0(r +

eiδt, t + δt), f1(r + eiδt, t + δt), ..., f18(r + eiδt, t + δt)]
T . And we use |m〉 and |m(eq)〉

to represent the moment components of |f〉 and their equilibria. Ŝ, called diagonal

collision matrix, is defined as

Ŝ ≡ diag(0, s1, s2, 0, s4, 0, s4, s4, s9, s2, s9, s2, s9, s9, s9, s16, s16, s16), (1.20)

where si (i = 1, 2, 4, 9, 16) are parameters related to the different relaxation time

scales applied. In MRT model, distribution functions and corresponding momenta

are related by a transformation matrix M in the following fashion: |m〉 = M |f〉 or

|f〉 = M−1|m〉. How to calculate |m(eq)〉 can be found in [15], as well as the values

of M and Ŝ for our D3Q19 lattice model. There is slight variation in calculating

kinematic viscosity ν compared to the SRT model (Eq. 1.18):

ν =
1

3
(

1

s9

− 1

2
)cδX (1.21)

and

s9 =
2cδX

6ν + cδX
. (1.22)
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With MRT’s another advantage, one can calculate the strain-rate from the non-

equilibrium moments directly using the formula give below:

Sαβ = − 1

2ρs9c2
s

∑
i

eiαeiβ(fi − f (eq)
i ), α, β = 1, 2, 3, (1.23)

where s9 is computed in Eq. 1.22, and both α and β mean the corresponding com-

ponent of ei.

1.2.3 Computation Set-up and Characteristic Regions of A Rectangular

Jet

Figure 1.5. Schematic of the computation set-up.

The computation set-up for a rectangular jet is shown in Fig. 1.5. The x, y, and

z axes are parallel to streamwise, lateral and spanwise directions respectively. The

whole domain is a B × H × L channel. The flow issues with a uniform streamwise

velocity u = u0 (v = w = 0) from a b × h orifice slot located at the centre of the
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plane (x = 0, −b/2 ≤ z ≤ b/2, and −h/2 ≤ y ≤ h/2). The jet orifice is simplified as

a plane. We apply bounce-back boundary [16]

f ∗i = fi − 6ωiρ0u0 · ei (1.24)

at jet orifice plane (x = 0) where f ∗i is the distribution function of e∗i = −ei, fully

developed boundary at outflow (x = L), and periodic boundary conditions in both

spanwise and lateral directions. The detail description of the jet slot and correspond-

ing flow field is show in Fig. 1.6.

Figure 1.6. Illustrations of coordinate system, jet slot dimension,
flow field and characteristic regions, copied from [5].
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In Fig. 1.6. u, v and w represent streamwise, lateral and spanwise velocities

respectively. Centerline velocity ucl = u(x, 0, 0) and lateral and spanwise half-widths

(yh, zh) are determined by equations

u(x, yh, 0) = u(x, 0, zh) =
1

2
ucl. (1.25)

Aspect ratio (AR) of the jet is defined as the ratio of the width b over height h of the

jet slot, while the Reynolds number (Re) is based on the lateral dimension h of the

inlet, exit velocity u0, and kinematic viscosity ν of the fluid.

Early experimental and analytical investigations [17–19] have revealed that fully

developed flow field (in green, Fig. 1.6) of a rectangular jet is characterized by three

distinct regions: (i) PC (potential core) region into which the mixing initiated at the

jet boundaries has not penetrated; (ii) CD (characteristic decay) region where velocity

decay and mixing depend on the jet aspect ratio and shape; (iii) AD (axisymmetric

decay) region extending to infinity where the velocity field is axisymmetric indepen-

dent of the jet inlet shape. These region divisions are roughly sketched out by the

side of flow contour in Fig. 1.6.
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2. MECHANISM OF AXIS-SWITCHING IN LAMINAR RECTANGULAR JETS

2.1 Description

Axis-switching, in the jet study, refers to the rotation of the jet’s cross-section’s

axes as the jet develops. It has been a topic of interest for over last few decades, for

the insight it provides in understanding fundamental physics and developing practi-

cal applications. Axis-switching phenomenon has been observed for a variety of jet

scenarios since more than three decades ago, including elliptic jets [2,20–30], rectan-

gular jets [3–8,31,32], and jets with more complicated geometry [1,33–35]. It has been

believed that in elliptic jets, the underlying mechanism of axis-switching behavior re-

sults from self-induced Biot–Savart deformation of vortex rings due to non-uniform

azimuthal curvature and interaction between azimuthal and streamwise vorticities [1].

Not too long ago, an experiment confirmed the azimuthal vortex deformation in the

region of the axis-switching of a lobed orifice jet [36].

Rectangular jets combine the variable-aspect-ratio feature of elliptic jet with the

corner vortex feature of square jets. This combination yields features which do not

appear in elliptic jets and are of importance in practical applications. One example is

the axis-switching of 45◦ in a square jet AR = 1 and 90◦ in rectangular jet AR = 1.5

[3].

In this chapter we want to investigate axis-switching in rectangular jets by sys-

temically studying one square jet and four rectangular laminar jets at a relatively low

Reynolds number listed in Table 2.1, through direct numerical simulation (DNS) us-

ing LBM. Focus is on the correlations between the primary downstream penetrating

flow and the secondary entertainment on transverse planes to reveal the mechanism

of axis-switching in rectangular jets.
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Table 2.1. Five jets conducted in this study. The unit for length is meter(m).

Jet AR b, h B,H,L jet grid size Domain grid size

I 1 0.01, 0.01 0.063, 0.063, 1.0 8, 8 50, 50, 800

II 1.5 0.015, 0.01 0.063, 0.063, 1.0 12, 8 50, 50, 800

III 2 0.02, 0.01 0.063, 0.063, 1.0 16, 8 50, 50, 800

IV 2.5 0.025, 0.01 0.063, 0.063, 1.0 20, 8 50, 50, 800

V 3 0.03, 0.01 0.063, 0.063, 1.26 24, 8 50, 50, 1000

For the simplicity of implementation, we employ D3Q19 SRT lattice model for

the laminar jet simulations. Besides, for a relatively low Reynolds number, DNS

is applied for the advantage of high accuracy without sacrificing much computation

cost. In this lattice model, the 3D discrete phase space is defined by cubic lattice

with 19 discrete particle velocities by Eq. 1.11 and weighting factors by Eq. 1.12.

For the remainder of this chapter, we show results on the mechanism of 45◦ and

90◦ axis-switching through the correlations between the primary downstream velocity

and the vorticity on transverse planes before concluding the axis-switching study with

a short discussion.

2.2 Results

2.2.1 Characteristic Regions

For the given dimension of the jets, we first identify the three characteristic regions

for each jet at a representative Reynolds number (Re = 200) with u0 = 23(m/s) and

ν = 1.51e − 5(m2/s) in Table 2.2 through monitoring the shape of jet through the

half-width contour (HWC) on each transverse planes at each downstream grid. The
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HWC on an x-plane is the contour of the grid points (y 1
2
, z 1

2
) where the streamwise

velocity is half of the centerline velocity:

u(x, y 1
2
, z 1

2
) =

1

2
ucl (2.1)

The onset of the CD region is determined when the original lines and corners of the

rectangular or square shape of the HWC become round, whereas the onset of the AC

region is where the shape of the HWC becomes circular. It shows that the length of

PC region is independent of the jet AR when normalized by h, whereas the range of

CD region varies with AR. Bigger AR corresponds to longer CD region. When AR

changes from 1 to 3, the length of CD region varies with different AR. The bigger

the AR, the longer the length of the CD region. When AR changes from 1 to 3, the

length of the CD region doubles.

Table 2.2. Lengths of PC, CD regions for different AR at Re = 200.

Jet AR PC CD AD

I 1 x≤ 0.38h 0.38h < x ≤ 37h x > 37h

II 1.5 x ≤ 0.75h 0.75h < x ≤ 57h x > 57h

III 2 x ≤ 0.75h 0.75h < x ≤ 64h x > 64h

IV 2.5 x ≤ 0.75h 0.75h < x ≤ 74h x > 74h

V 3 x ≤ 0.75h 0.75h < x ≤ 82h x > 82h

2.2.2 45◦ and 90◦ Axis-switching

The HWC is a direct measure of the level of jet mixing. Fast spreading of HWC

indicates rapid entrainment and mixing. The physics of entrainment and HWC evolu-

tion can be understood by examining the secondary flow: i.e., flow on the transverse

plane (y, z) normal to the primary flow direction (x). Figure 2.1 shows the down-

stream evaluation of HWC at Re = 200 for jet (a) I,(b) II,(c) III, and (d) V at
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Figure 2.1. Downstream evaluations of HWC of jet (a) I,(b) II,(c)
III,(d) V at indicated representative downstream locations, Re =
200.

representative downstream locations. The numbers adjacent to the HWC lines in

the figures are the downstream distance from the jet inlet normalized by the jet in-

let height h. In the square jet (Fig. 2.1 (a)), the jet starts from a square (dashed



18

line) shape. The axes switch 45◦ at x = 2.75h,and then switch back to a round

square shape at x = 10.88h. At location x = 39.75h, the jet becomes axisymmet-

ric, indicating that the AD region starts. As speculated, the AD region extends to

infinity. The axis-switching in rectangular jets are more interesting since there will

be two axis-switchings occurring downstream as shown in Fig. 2.1 (b)-(c). For ex-

ample, jet II (AR = 1.5) starts from a rectangular shape (dashed line) at the jet

inlet, first switches 45◦ at x = 3.38h, then switches back as a rounded rectangle at

x = 14.13h, then switches again to 90◦ at x = 37.38h, and eventually becomes round

at x = 59.38h. The features of axis-switching in rectangular jets may be summarized

as follows.

• 45◦ axis-switching occurs in all five rectangular jets at approximately the same

downstream location independent of AR, implying that the 45◦ axis-switching

results in the corner vortex feature unique in rectangular jets.

• The shape of jet when 45◦ axis-switching occurs varies from a diamond (AR =

1), to rhombus (AR = 1.5), to deformed rhombuses with saddle-back around

the center of the minor axis (AR ≥ 2), indicating that the aspect ratio does

affect the jet entrainment to the surrounding, which is a feature of elliptic jets.

Thus, the axis-switchings in a rectangular jet are contributed by both corner

effect and aspect-ratio effect.

• 90◦ axis-switching follows 45◦ axis-switching. A smaller-AR jet develops the 90◦

axis-switching closer to the jet inlet than a larger-AR jet.

• Both 45◦ and 90◦ axis-switching happen in CD region. The former is before

the latter, implying that the corner feature is kicked in early then the elliptic

feature.

• Dumbbell velocity contour observed in 45◦ axis-switching for relatively large-

AR jets is another peculiar behavior in rectangular jets reported in experiments
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[7, 8, 19, 37, 38] and computation [5], which will be a focus in our future study,

thus not discussed here.

2.2.3 Velocity-Vorticity Correlation

Close look has been taken on the correlation of penetrating velocity u of primary

flow and flow on transverse planes. Figures 2.2 show various properties including nor-

malized downstream velocity (u/ucl), downstream vorticity (ωx = ∂w
∂y
− ∂v

∂z
), secondary

flow velocity (V = vj + wk) and its magnitude (Vm =
√
v2 + w2) on representative

downstream planes: (1) x = 3.38h; (2) x = 14.13h; (3) x = 37.38h; (4) x = 59.38h,

corresponding to the contour lines in Fig. 2.1 (b) for jet II (AR = 1.5). The four

representative downstream planes correspond to the typical stages of the jet develop-

ment, 45◦ axis-switching, round rectangle, 90◦, and circle as described above where

only the half-velocity contour (u/ucl = 0.5) lines are presented. From Fig. 2.2 (A), it

is seen that axis-switchings, both 45◦ and 90◦, occur on almost all the levels of u/ucl.

The 45◦ axis-switching (Fig. 2.2 (A) (1)) seems more significant when the velocity

ratio reduces outward, whereas the 90◦ axis-switching (Fig. 2.2 (A) 3) is stronger

when the velocity ratio is large. The corresponding vorticity contours, secondary

vector fields and their magnitude contours are shown in Fig. 2.2 (B), (C), and (D).

These patterns will be discussed later in this work.

Inspired by the fact that the secondary flow is induced due to the entrainment with

the surroundings when the jet is penetrating downstream, we define the correlation

function of penetrating velocity u and vorticity ωx as

ρuω =
〈u(m,n)|ωx(m,n)|〉√
〈u2(m,n)〉〈ω2

x(m,n)〉
(2.2)

where 〈· · · 〉 represents volume averaging for homogeneous turbulence and where sum-

mation over repeated indices is understood. Figure 2.3 shows the correlation functions

of velocity and vorticity along downstream direction for the five jets. It is shown that

velocity and vorticity quickly team up to a peak after the jet starts to develop. Close

examination indicates that the 45◦ axis-switching occurs right after the peak in each
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A

Figure 2.2. Secondary flow properties of jet with AR = 1.5 on rep-
resentative downstream planes: (1) x = 3.38h; (2) x = 14.13h; (3)
x = 37.38h; (4) x = 59.38h, corresponding to the contour lines in
Fig. 2.1 (b). (A): contour fields of normalized penetrating veloc-
ity in the direction of jet propagates, ux/ucl; (B): contour fields of
vorticity ωx = ∂uz

∂y
− ∂uy

∂z
; (C): vector fields of the secondary flow,

V = uyj + uzk; (D): contour fields of velocity magnitude of the sec-
ondary flow, V =

√
u2
y + u2

z.
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Figure 2.3. Correlation function of velocity and vorticity along down-
stream direction for the five jets. Solid line: AR = 1; dashed line:
AR = 1.5; dotted line: AR = 2; dash-dot line: AR = 2.5; dash-dot-
dot line: AR = 3.

jet. In the course to develop 90◦ axis-switching, the correlation function fluctuates

quite a bit, shifting between coloration and decoloration and bigger AR jet tends

to have bigger fractionation. At the late stage when the jet becomes circular, the

correlation function tends to approach 0.5 and maintain.

2.2.4 Flow Pattern and Mechanism

We now reveal the underlying mechanism of axis-switching. Through close inspec-

tion of the secondary velocity field and vorticity on the transverse planes just before

the axis-switching occurs, we are able to identify specific patterns for 45◦ and 90◦

axis-switching, shown in Figs. 2.4 and 2.5 respectively, which are considered as the

triggers for the axis-switchings. In Fig. 2.4, it can be seen that the velocity at the
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Figure 2.4. Flow pattern and vorticity field for 45◦ axis-switching.
(a) Square jet; (b) Rectangular jet.
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Figure 2.5. 90◦ axis-switching mechanism: (a) Flow pattern and
vorticity field; (b) Boundary effect.
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four corners of jet profile is uniformly toward the center while the flow is expanding

outward at the four sides. Meanwhile, corresponding vorticity fields indicate that 45◦

axis-switching follows the occurrence of vortex pairs at the corners, which contribute

a centripetal momentum and thus result in 45◦ axis-switching afterward. This mecha-

nism applies to 45◦ axis-switching in both square and rectangular jets. The difference

between 45◦ axis-switching in square (Fig. 2.4 (a)) and rectangular jet (Fig. 2.4 (b))

is that in the latter, the pair of vorticity along spanwise is stronger than that along

lateral while both pairs are equally strong in the former. Similar approach is applied

to shed some light on 90◦ axis-switching in rectangular jets. The 90◦ axis-switching

is driven by a different pattern as shown in Fig. 2.5. There is strong inflow stream

along spanwise and outflow stream along lateral, driving the jet to elongate in the

lateral direction. The boundary effect is profound for 90◦ axis-switching. When the

jet develops, the major direction approaches the boundary first and is squeezed by

the boundary, leading the flows changes from the major to minor direction, to 90◦

axis-switching. The vorticity point of view is no more applicable since its magnitude

has become very small (0.002 in LBM unit) in Fig. 2.5 (a) compared to 0.03 in Fig.

2.4 (b) to exert the influence on bringing about 90◦ axis-switching.

2.3 Conclusions and Discussion

Through SRT-DNS-LBM, we systematically studied axis-switching phenomena in

five low aspect-ratio rectangular jets. Although the axis-switching in elliptic jet was

extensively studied in the past, axis-switching behavior in rectangular jets is more

complicated due to the fact that rectangular jets combine the variable aspect-ratio

feature of elliptic jets with the corner vortex feature of square jets. The underlying

fluid dynamical mechanism is far from clear. In this work, we focus on the correlation

between downstream velocity and secondary flow. The development of the HWC lines

clearly exhibit two consecutive axis-switchings when the jet is propagating, indicating

richer mixing features than square or elliptic jets. The 45◦ axis-switching occurs
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shortly after the jet enters the characteristic decay (CD) region while 90◦ appears

when the jet is about to exit from the CD region toward the axisymmetric decay

region. It is found that the location of 45◦ axis-switching has weak dependence of

the jet AR yet the shape of the 45◦ axis-switching varies with AR, implying that the

45◦ axis-switching is contributed by both corner feature and elliptic feature. The 90◦

axis-switching seems to have a different story. As the jet develops, it spreads through

the mixing and entrainment with the surroundings. When the flow in the major axis

approaches the boundary, the entrainment in the major axis is weakened while the

mixing along the minor axis becomes competitive to the major axis. As the jet further

develops, the flow along minor axis exceeds that along the major axis, which is how

the 90◦ axis-switching occurs. In our study, we synthesized two specific patterns to

reveal the underlying dynamics from the secondary velocity field and vorticity contour

to reveal the mechanism of the 45◦ and 90◦ axis-switching.
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3. TURBULENT INLET VELOCITY PROFILE

3.1 Introduction

Turbulent rectangular jets were systemically studied in a previous work [5], us-

ing MRT-LBM. To achieve relatively high Reynolds numbers from 14,000 to 184,000,

comparable to the experiments, large-eddy-simulation (LES) were performed. Exten-

sive comparisons with experiment and computations to validate the MRT-LBM-lES

approach. In spite of good overall agreements of mean field statistics such as nor-

malized centerline velocity development and MSV profiles, the characteristics close

to the inlet like turbulence intensity profiles, were not well captured. For example,

certain degree of disagreement between simulation results and Quinn’s experimental

data [39] was seen in the matter of centerline mean streamwise velocity (MSV) decay

and turbulence levels. This disagreement was attributed the fact that their simulation

did not account for unsteady inflow condition as implemented in the experiment. In

an attempt to confirm this concern and well capture the turbulence features of the

turbulent rectangular jets, we develop and generate a turbulent inlet velocity profile,

and re-simulate the turbulent jets.

Motivated by Petersen’s Ph.D. dissertation [40], we consider the generation of

turbulent inlet velocity profile as follows.

For a turbulent inlet, the two-dimensional (2D) velocity field consists of two parts,

i.e.,

ui = Ui + u′i, (3.1)

where Ui accounts for the mean velocity distribution generally given, while u′i is

the mean-free fluctuation component which, combined with Ui, determines the field’s

turbulence intensity. After the decomposition of velocity, the generation of a turbulent

inlet (ui) goes down to that of s 2D fluctuating velocity field (u′i).
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For incompressible flow, u′i must satisfy continuity equation:

∂u′i
∂xi

= 0. (3.2)

Meanwhile, the fluctuation field is enforced with a prescribed energy spectrum, which

makes it possible to adjust the motion scales of the turbulence injected. The intensity

of turbulence in the velocity profile is easily adjustable by adding a factor to u′i. In

this way, comparisons can be made between jets with different energy spectra and

turbulence intensity at the inlet, and their effects on the jet development is likely to

be obtained.

3.2 Algorithm

The general idea is described as follows. First, we generate a three-dimensional

(3D) isotropic fluctuating velocity field, which fulfils the continuity and specified

energy spectrum mentioned above. Then we select a plane in the 3D space and

extract its velocity distribution as the 2D u′i to be applied in Eq. 3.1, by which the

desired turbulent inlet ui is obtained.

There are eight steps and to achieve such a turbulent inlet velocity profile, as

illustrated in Fig 3.1. The procedures are implemented with coding work under the

Matlab environment. All related functions are listed in the parentheses at the end of

each step in the following paragraphs.

Step 1 initializes the fluctuating velocities u′i(n1, n2, n3), i = 1, 2, 3, randomly in

the physical space, with each component’s magnitude ranging from -1 to 1. n1, n2

and n3 are the coordinate indices of a component in the space along each axis. The

dimensions of u′i, N1, N2, N3, should be chosen so that two of them (say N1 and N2)

match the grid size of the inlet of jet to be simulated, and the third one has to be

large enough to get adequate variability. (rand)

Step 2 conducts a 3D fast Fourier transformation (FFT) with u′i(n1, n2, n3) to

get their spectral counterparts ũ′i(k1, k2, k3). (fftn)
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Figure 3.1. Flow chart for turbulent inlet velocity profile generation.

Here for an odd number of field dimension Ni, the wavenumber ki and index ni

are related as

ki(ni) =

 ni − 1 1 ≤ n ≤ Ni+1
2

ni − 1−Ni
Ni+1

2
≤ n ≤ Ni.

(3.3)

Step 1 and 2 makes sure u′i are real when ũ′i are transformed back into physical

space in Step 7.

Step 3 applies the formula below to get a divergence-free velocity field for each

velocity component to satisfy incompressibility. The enforcement of incompressibility

is achieved by subtracting the dilatational part from the original velocity, with the

solenoidal one remaining.

ũ′i = ũ′i −
kjũ′j
klkl

ki. (3.4)

Thus we have

ũ′iki = (ũ′i −
kjũj
klkl

ki)ki = ũ′iki − kjũ′j = 0, (3.5)
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which is the sufficient condition for the field to satisfy continuity equation in spectral

space.

Then the discretized energy spectrum of current turbulence field can be expressed

as

E(k) =
∑

k−∆k/2≤
√
k21+k22+k23<k+∆k/2

ũj(k1, k2, k3)ũj(k1, k2, k3)

2
(3.6)

where k=0,1,2,...,kmax,

kmax = max{
√
k2

1 + k2
2 + k2

3} (3.7)

and increment

∆k =
kmax
NE

, (3.8)

with NE being the total number of k.

Step 4 enforces ũ′i to conform with a specified energy spectrum Edes,

ũ′i(k1, k2, k3) =

√
Edes(k)

E(k)
ũ′i(k1, k2, k3), k−∆k/2 ≤

√
k2

1 + k2
2 + k2

3 < k+∆k/2. (3.9)

The resulting fluctuating velocities will fulfil the desired energy spectrum by itself

since up to here

E =
ũ′jũ

′
j

2
=

√
Edes

E
ũ′j

√
Edes

E
ũ′j

2
=

Edes

E
ũ′jũ

′
j

2
=
Edes
E

E = Edes. (3.10)

Step 5 performs an inverse fast Fourier transformation (IFFT) with ũ′i to get

an elementary distribution of turbulence field that is both divergent-free and energy-

spectrum-satisfied. (ifftn)

Step 6 multiplies u′i by a factor (C) to increase or decrease the u′i’s root-mean-

square (RMS) as wished. The RMS of u′i is defined as

rms{u′i} =
√
< u′iu

′
i >, (3.11)

which reflects the turbulence intensity of the inlet velocity profile.

Step 7 extracts the 2D u′i distribution on an n3 plane as the fluctuating part of

inflow velocities in Eq. 3.1.

Step 8 combines 2D fluctuating velocities u′i and mean velocities Ui to get the

target turbulent inlet ui.
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3.3 Application Studies

Turbulent inlet produced using the approach described in the previous section is

applied to re-simulate the turbulent jets [5], to observe the performance of rectangular

jets with high Reynolds numbers, through MRT-LBM-LES.

The eddy viscosity νt is calculated from the filtered strain rate Sij = (∂jui+∂iuj)/2

and a filter length scale δX , to implement the Smagorinsky model [41,42], as follows:

νt = (csδX)2S, (3.12)

S =
√
〈SijSij〉. (3.13)

Eddy viscosity νt and the effective kinematic viscosity ν∗ of LES are introduced

and related by

ν∗ = ν + νt, (3.14)

where νt can be calculated by previously discussed Smagorinsky model [Eqs. 3.12

and 3.13]. Then we have the formulas to compute the effective viscosity and s∗9:

ν∗ =
1

3
(

1

s∗9
− 1

2
)cδX (3.15)

and

s∗9 =
2cδX

6ν∗ + cδX
. (3.16)

For the implementation of LES, bulk viscosity ζ is introduced:

ζ =
2

9
(

1

s1

− 1

2
)cδX . (3.17)

By using the strain rate from the previous time step to calculate νt in Eqs. 3.12

and 3.13, the scheme’s simplicity and numerical accuracy are well-preserved at the

same time [43].

As we are investigating turbulent rectangular jets, we will manipulate time-mean

velocities and half-widths derived from them, U , V , W , Ucl, Yh and Zh, instead of

instantaneous ones as examined in laminar jet study.
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3.3.1 Axis-switching in A Turbulent Jet with AR = 1.5

We have closely looked at axis-switching phenomenon in Chapter 2 when study-

ing low-Reynolds-number laminar rectangular jets. Yet we are also curious if axis-

switching will be present in turbulent jets and how they will look like, especially

when our just developed turbulent inlet is implemented. In general, the turbulent

jets investigated in this and later chapters share the same set-up as in the laminar

jet study in Chapter 2. Chapter 1 can be referred to for details such as geometric

configurations and boundary conditions.

For the observation and comparison of axis-switching phenomenon with and with-

out turbulence at the inlet, we perform MRT-LBM-LES of two AR = 1.5 turbulent

rectangular jets with identical set-up except for the inflow condition. To be spe-

cific, the computation domain measures 90× 60× 450 in lattice unit while jet exit is

12 × 8 in dimensions. Jet with a laminar inlet issues with a uniform velocity profile

U0 = 39.0m/s, while jet with turbulent inlet starts from the slot with a bonus u′i with

I = 5%, in addition to a uniform MSV Ui = U0 = 39.0m/s. The fluid’s kinematic

viscosity ν = 1.51e− 5(m2/s), so Reynolds number characterized by the height of jet

(h = 0.01m) gets to 25900. Here I is a quantity that describes the inlet turbulence

intensity, defined as

I =

√
〈u′iu′i〉

Ux(0, 0, 0)
, (3.18)

where Ux(0, 0, 0), here equal to U0, denotes the laminar part of streamwise velocity at

the center of the inlet. Continuity equation is enforced as well as a specified energy

spectrum prescribed by

Edes = C
k6

(1 + k
60

)12
, C = 0.00009, (3.19)

where the adjusting factor C is already incorporated to yield the just indicated I.

Fig. 3.2 shows the HWCs at two specified downstream locations for each jet.

By comparing the line marked with a later location, it is seen that, with the same

Reynolds number, the ratio of longer to short axis in the case of turbulent inlet (b) is

larger than that in the laminar inlet (a). So it is concluded that the current turbulent
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Figure 3.2. Comparison of axis-switching between rectangular jets
with (a) laminar and (b) turbulent inlet profiles. The turbulent inlet
profile generates axis-switching in much better agreement with ex-
periment [4]. Red dashed line: jet inlet; black solid line: HWC at
selected downstream locations (x/2h = 2 and x/2h = 9).

jet with the turbulent inlet presents more profound axis-switching phenomenon than

the other one with a laminar inlet. In fact, Fig. 3.2 (b) agrees well with what was

captured in the experiment [4]. As axis-switching reflects the intensity of flow mixing,

it might be appropriate to say turbulence-involved inflow enhances flow mixing and

entrainment during the jet development.
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3.3.2 Square Jets

As mentioned at the beginning of this chapter, previous LBM study of a turbulent

square jet didn’t achieve quantitative agreement with Quinn’s experimental data [39],

for such aspects as centerline MSV decay and turbulence levels. Due to the fact that

0.5% of turbulence was supplied at the center of the slot exit plane in Quinn’s experi-

ment as compared to a laminar inflow in the computation investigation, it is suspected

that the disagreement comes from the different inlet conditions applied to the sepa-

rate study. Additionally, there exists an assumption that replacing the laminar inlet

with a comparable turbulent one to that in Quinn’s experiment, could possibly im-

prove the degree of agreement between the two investigations. For the purpose of

validating this supposition, we revisit the square jet study with our newly developed

turbulent inflow equipped. The studies of turbulent inlet and saddle-back velocity

profile deal with rectangular jets with relatively large Reynolds numbers. Considering

its better stability of characteristics and higher accuracy than its SRT brother and

trying to avoid expensive computation cost, we apply multiple-relaxation-time model

for large-eddy-simulation (MRT-LES) to conduct the turbulent jet investigations.

To begin with, the subject square jet of 20×20 sits in an 80×80×450 channel in

lattice unit. Jet height h = 0.04m and Ui follows the distribution illustrated in Fig.

3.3, with Ux(0, 0, 0) = 60.0m/s, to be consistent with Quinn’s experimental set-up.

The fluid kinematic viscosity ν = 1.30e − 5(m2/s), combined with Ux(0, 0, 0) and h,

gives Re = 184000. u′i is so added that I varies from 0 to 10% by adjusting C in the

following desired energy spectrum.

Edes(k) = C
kα

k2α + k2α
0

, α = 2, k0 = 2. (3.20)

We now compare our simulations results with Quinn’s experimental results in four

different aspects.
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Figure 3.3. Inlet velocity profiles with different I: (a) streamwise, (b)
spanwise. Circles: experimental mean velocities [39], black solid lines:
I = 0; purple dashed lines: I = 0.5%; blue dashed lines: I = 1%;
purple dashed lines: I = 2%; purple dashed lines: I = 10%.
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Figure 3.4. Inverse normalized mean centerline velocity decay of
square jets with different I. Circles: experiment [39], black solid lines:
I = 0; purple dashed lines: I = 0.5%; blue dashed lines: I = 1%;
purple dashed lines: I = 2%; purple dashed lines: I = 10%.

A. Velocity Decay

Firstly, we check the velocity evolution along the centerline downstream for jets

with different I levels. Curves for inverse normalized mean centerline velocity Umax/Ucl

against normalized streamwise displacement x/De are shown in Fig. 3.4, where

Ucl = Ux(x, 0, 0), (3.21)

and

Umax = max{Ucl}, (3.22)

De stands for the equivalent diameter of the rectangular jet to a round one with the

same area, calculated by

De = 2
√
wh/π. (3.23)



36

As can be seen in the graph, jets with all levels of I at the inlet align quite well with

Quinn’s observations of the centerline velocity evolution. However, we still observe

the difference between simulations and experimental data for the region that is most

close to the inlet (x/De < 1) to certain extent. And we are not able to decrease the

disagreement no matter how much turbulence is added to the inlet.

B. Velocity Profile

Figure 3.5. Normalized MSV distribution along spanwise axis at
several downstream locations for square jets with different I. (a)
x/De = 0.266, (b) x/De = 1.108, (c) x/De = 2.659, (b) x/De = 4.475.
Circles: experiment [39], black solid lines: I = 0; purple dashed lines:
I = 0.5%; blue dashed lines: I = 1%; purple dashed lines: I = 2%;
purple dashed lines: I = 10%.
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Fig. 3.5 presents MSV profiles along spanwise axis at 4 selected downstream lo-

cations for the experiment and all simulation results. Once again, jet simulations

of all I levels have rather close performance to Quinn’s experiment. The shape of

MSV distribution evolves gradually from flat-topped, resembling that issued from the

exit, to parabolic when the flow has experienced thorough mixing with surrounding

medium. However, no evident diversity is seen between with or without added turbu-

lence, or how much turbulence is added. Therefore we conclude that MSV profiles are

insensitive to the inflow types and our LBM simulations with all cases of I perform

well as for the prediction of MSV profiles.

C. Half-width Growth

Figure 3.6. Half-width growth downstream for square jets with dif-
ferent I. Circles: experiment [39], black solid lines: I = 0; purple
dashed lines: I = 0.5%; blue dashed lines: I = 1%; purple dashed
lines: I = 2%; purple dashed lines: I = 10%.
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Jet’s half-width (Wh) is determined by

Wh =<
√
y2

1
2

+ z2
1
2

>, (3.24)

where 〈· · · 〉 takes the average over space of its argument, y 1
2

and z 1
2

satisfy

U(x, y 1
2
, z 1

2
) =

1

2
Ucl. (3.25)

Comparison of half-width growth downstream illustrated in Fig. 3.6 says that, for

the near-inlet field (x/De < 4), simulation curves’ deviation from experiment data of

either direction is obvious. So it means the appliance of turbulent inlet still fails to

capture jet expansion features in the most near field. However jet simulation with

I = 10% does a good job in predicting the monotonic growth of jet in contrast of

experiment data. It might be safe to say the addition of turbulence to the inflow

could improve the agreement with experiment for the far range of near field.

D. Turbulent Intensity Profile

Streamwise turbulence profile is another aspect that was mentioned to be unsat-

isfactory in the previous work. So we highly look forward to addressing this issue by

trying various levels of turbulence to the inflow. However, we are not able to decrease

the magnitude evidently however much I is applied. Although the shapes of profiles

are similar to the experimental counterparts (Fig. 3.7), there exists noticeable gaps

between curves from simulations and experiment, especially for closer planes to the

jet exit. We attribute this deficit to the fact that the inflow condition can still not be

guaranteed to be identical to experimental set-up. In the experiment only the tur-

bulence intensity in the center is given, while how it is distributed all over the plane

remains a mystery. In the near future, we might try turning to a temporal turbulence

distribution rather than the spatial one currently used, to see if any improvement will

be observed.
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Figure 3.7. Normalized streamwise turbulence intensity profiles along
spanwise axis at several downstream locations for square jets with
different I. (a) x/De = 0.266, (b) x/De = 1.108, (c) x/De = 2.659,
(b) x/De = 4.475. Circles: experiment [39], black solid lines: I = 0;
purple dashed lines: I = 0.5%; blue dashed lines: I = 1%; purple
dashed lines: I = 2%; purple dashed lines: I = 10%.

Summary

In order to validate the conclusion made by past work [5] and improve our abil-

ity to predict turbulent jets, we develop turbulent inlet velocity profiles inspired

by Petersen’s Ph.D. dissertation [40]. Characteristic comparisons of five jets driven

by laminar and turbulent inlets are performed. Although the turbulent inlets well

captured the near field velocity decay and velocity profiles, we did not see the im-

provement in terms of quantitative agreement of turbulence intensity profile with the

experiment. Also, we were not able to match the centerline velocity evolution and

half-width growth in the immediate proximity of jet exit with the actual experiment.
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It is speculated that inconsistency still exists because the space-based turbulence in

the inlet is not close enough to the actual turbulence added in the experiment. We

look forward to the development of more realistic turbulent inlet profiles and come

back to this subject again in the future.
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4. CHARACTERISTICS OF SADDLE-BACK VELOCITY PROFILE IN

TURBULENT RECTANGULAR JETS

4.1 Description

Saddle-back velocity profile in rectangular jets, which is regarded as another pe-

culiar behavior, has been reported in quite a few experiments and computations

[4, 6–8, 19, 37, 38, 44–46]. Saddle-back velocity profile is typically a behavior in rect-

angular with relatively large AR, however, the mechanism triggering such a behavior

during the jet revolution is not clear.

In the case of AR = 5, Tsuchiya [4] reported saddle-back velocity profile along

spanwise axis in his experiment, whereas another experiment by Quinn [46] did not

capture evident such a profile. Previously Yu et al. [5] also numerically studied a same

AR = 5 jet, but did not capture such a profile profoundly by using a laminar inlet

velocity profile. We now use the developed turbulent inlet velocity profile to study

a group of turbulent rectangular jets with varying AR to explore the mechanism of

this behavior. Their configurations are listed Table 4.1. The turbulent inlet velocity

field satisfies energy spectrum defined in Eq. 3.20.

Table 4.1. Jet configurations with varying AR. The unit for length is meter(m).

Jet AR I b, h B,H,L jet grid size Domain grid size

A 2 3% 0.01, 0.02 0.108, 0.043, 0.325 28, 14 150, 60, 450

B 3 3% 0.01, 0.03 0.108, 0.043, 0.325 42, 14 150, 60, 450

C 4 3% 0.01, 0.04 0.108, 0.043, 0.325 56, 14 150, 60, 450

D 5 3% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

E 6 3% 0.01, 0.06 0.108, 0.043, 0.325 84, 14 150, 60, 450
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4.2 Results

We begin with the study of one turbulent jet with AR = 5 through MRT-LBM-

LES using the developed turbulent inlet profile. After the saddle-back velocity pro-

file is identified, the underlying mechanism is obtained by comparison of normalized

streamwise velocity and turbulence intensity fields. Then we define two parameters,

profound saddle-back range and peak-center difference, to quantify the magnitude of

saddle-back, which enables us to compare the saddle-back velocity profile of rectan-

gular jets with different AR and turbulence intensity at the turbulent inlet I.

4.2.1 Mechanism of Saddle-back Velocity Profile

Figure 4.1. Normalized MSV iso-surface (U/Ucl = 0.5) and selected
cross-sectional normalized MSV field for AR = 5, I = 3%.

Fig. 4.1 describes the development of the jet entrainment through an iso-surface

of normalized MSV in general. Contours on the cross-sectional planes at different

downstream locations present the jet propagation. To avoid the complex boundary

effects, we only look at the characteristics within the near-field. The near-field is



43

Figure 4.2. Near-field illustration on (a) iso-surface (U/Ucl = 0.5)
and (b) MSV field of spanwise axis plane, for AR = 5, I = 3%.

defined from the inlet until the spanwise ends of the jet start to diverge as illustrated

in Fig. 4.2.

In Fig. 4.3, four positions downstream are selected to check the normalized MSV

profiles along spanwise axis. The jet shape evolves from initially a flat top to a clear

central recessed saddle-back as seen in Fig. 4.3. Tsuchiya [4] compared the velocity

and turbulence intensity distribution and noticed that the peaks of mean velocity

correspond to the local minimum turbulence intensity as shown in Fig. 4.4. It was

thought that the saddle-back velocity profile is resulted from a mixing-retarded region

as compared its surroundings. Inspired by this hint, we compare the normalized
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Figure 4.3. Evolution of normalized MSV profile at representative
downstream locations for AR = 5, I = 3%. Black solid line: x/De =
1.132, blue dashed line: x/De = 1.699; cyan dotted line: x/De =
2.265; green dash-dot line: x/De = 2.604.

Figure 4.4. Saddle-back profile explanation by Tsuchiya [4]. Blue
solid line: MSV profile; red dashed line: streamwise turbulence profile.
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Figure 4.5. (a) Saddle-back velocity profile, (b) normalized MSV field
and (c) streamwise turbulence intensity field at the same downstream
laocation x/De = 2.60, for AR = 5, I = 3%. The figures share the
same horizontal axis as showed in (a).

MSV and streamwise turbulence intensity field, where saddle-back velocity profile

presents at the same downstream location (Fig. 4.5). It is then confirmed that the
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peak velocities correspond to the minimum turbulence intensity in the surrounding

regions. If it is true that streamwise turbulence intensity reflects local mixing level,

the saddle-back velocity profile becomes understandable as the two regions acquire

largest mean streamwise velocities thanks to the weakest mixing activity among their

neighborhoods. Therefore, our simulation results agree with Tsuchiya’s statement of

saddle-back velocity profile.

4.2.2 AR Effect on Saddle-back Velocity Profile

We now quantify saddle-back velocity profile by defining two parameters, the first

of which is called peak-center (∆pc) difference defined as

∆pc = max{Upeak − Ucl
Ucl

× 100%}, (4.1)

where Upeak and Ucl denote the velocity at the peaks and center of the saddle-back

profile respectively; max{· · · } means the largest difference among the profiles at all

near-field downstream locations is taken as the ∆pc. If ∆pc ≥ 10%, we call the velocity

profile as a profound sadd-back (PSB). Then the second quantifying parameter PSB

range is defined as the normalized streamwise length where PSB is observed. Fig. 4.6

shows how to determine the PSB range on the normalized MSV field of the spanwise

axis plane. Next, we compare the intensity of saddle-back velocity profile for jets

with different configurations. First, in an attempt to find out AR’s effect on the

degree of saddle-back velocity profile, we conduct simulations for six rectangular jets,

with AR ranging from 2 to 7 with the same turbulence intensity at the inlet, domain

dimension and grid size in Table 4.1.

It is seen that saddle-back velocity profile occurs in all jets in Fig. 4.7. This

observation is a supplementation to previous statement that saddle-back velocity

profile was only seen in large-AR jets, as saddle-back velocity profile even occurs for

the AR = 2 jet in our study. Moreover, with the increase of AR, the intensity of

saddle-back-profile becomes more significant. ∆pc for each case is calculated by Eq.

4.1 after Upeak and Ucl are obtained from the profiles in Fig. 4.7. We obtain the PSB
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Figure 4.6. Measurement of PSB range on the normalized MSV field
of the spanwise axis plane.

Figure 4.7. Most profound saddle-back velocity profiles and corre-
sponding downstream locations for jets with different AR.
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Figure 4.8. Normalized MSV field of the spanwise axis plane for different AR.

range by , identifying the start and end location for PSB on the normalized MSV field

of the spanwise axis plane for each jet in Fig. 4.8. These two essential parameters

are recorded and graphed in Fig. 4.9 for varying AR.

Figure 4.9. AR effect on: (a) PSB range, (b) peak-center difference.
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Figure 4.10. Dual saddle-back velocity profile for AR = 6, I = 3%.

It is seen that both ∆pc and PSB range increase with larger AR. As saddle-back

velocity profile reflects an uneven distribution of mixing levels, this trend might imply

a higher mixing intensity for slimmer rectangular jets. Yet we notice ∆pc of AR = 6

jet slightly shrinks compared to AR = 5, which somehow deviates from the overall

trend. After a closer look at the MSV profile with the strongest saddle-back for

AR = 6 jet (Fig. 4.10), we notice that our ∆pc formula is not suitable for measuring

its particular dual saddle-back shape, as the profile has two distinctive lowest points

around the centre compared to only one for the other cases. Thus, an alternative

formula for ∆pc is required to quantify this special kind of saddle-back profile more

accurately, which we might continue to search for in the future.

4.2.3 Effect of Turbulence Intensity at the Inlet on Saddle-back Velocity

Profile

Now we also study the effect of turbulence intensity at the Inlet for six jets with

AR = 5. The variation of I is listed in Table 4.2. PSB range and peak-center

difference are examined and compared. All I levels present saddle-back velocity
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Table 4.2. Jet configurations with varying I. The unit for length is meter(m).

Jet AR I b, h B,H,L jet grid size Domain grid size

a 5 0 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

b 5 0.5% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

c 5 2% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

d 5 3% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

e 5 4% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

f 5 5% 0.01, 0.05 0.108, 0.043, 0.325 70, 14 150, 60, 450

profile of different degrees (Fig. 4.11 ). PSB range measurement within the near

field is feasible by checking the normalized MSV contours in Fig. 4.12, although

some cases present a more complicated pattern of contour.

Figure 4.11. Most profound saddle-back velocity profiles and corre-
sponding downstream locations for jets with different I.
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Figure 4.12. Normalized MSV field of the spanwise axis plane for different I.

Figure 4.13. I effect on: (a) PSB range, (b) peak-center difference.

Different from AR effect, neither ∆pc or PSB range presents a monotonic variation

as I increases. However, a minimum ∆pc and PSB range are obtained when I = 2%.

It seems that I = 2% leads to the weakest flow mixing intensity among all supplied

I levels. But the underlying mechanism for the least profound saddle-back velocity

profile and mixing showing up for an intermediate level of I is yet to be revealed.
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4.3 Conclusions and Discussion

This chapter starts with a AR = 5 jet investigation, we are able to capture the

saddle-back velocity profile for jets of AR ranging from 2 to 6. Tsuchiya’s explanation

for saddle-back phenomenon is confirmed by our own examination. It has been noted

that the saddle-back’s peak velocities are due to the local minimum mixing intensity.

In order to quantify the saddle-back, we define two parameters to compare saddle-

back velocity profile between different AR and turbulence intensity at the inlet. It is

found that saddle-back is more profound with larger AR or slimmer rectangular jets,

while its relation with I is still vague.
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5. SUMMARY AND FUTURE WORK

In this thesis, we numerically investigated the underlying physics of two peculiar

phenomena, which are axis-switching and saddle-back velocity profile, in both laminar

and turbulent rectangular jets using lattice Boltzmann method (LBM). Previously

developed computation protocols based on single-relaxation-time (SRT) and multiple-

relaxation-time (MRT) lattice Boltzmann equations are utilized to perform direct

numerical simulation (DNS) and large eddy simulation (LES) respectively. The main

work is summarized as follows.

In Chapter 2, the mechanisms of 45◦ and 90◦ axis-switching in laminar jets sug-

gested the independence of axis-switching behavior to the Re number, whereas the

downstream location where axis-switching occurs will vary for different Re numbers.

Based on the current work plus a turbulent inlet velocity profile we have developed

very recently, we plan to revisit the axis-switching in turbulent rectangular jets fo-

cusing on the Re number effects on axis-switching development in the next step.

In Chapter 3, step-by-step introduction to the generation of turbulent inflow condi-

tion is demonstrated. The resulting turbulence field is divergence-free, fulfils specified

energy spectrum and is flexible to achieve desired turbulence intensity. The first ap-

plication study shows Turbulent inlet leads to more profound axis-switching under the

current conditions for the inflow and jet configuration, which might imply stronger

mixing activity during jet development. The second application tries to improve the

simulation’s agreement with the experimental data of square jets. Both inflow types

result in a good prediction of jet development as for centreline velocity decay, MSV

profiles and half-width growth. However, the application of turbulent inlet profile

fails to perform a better prediction as for the nearest field nearest characteristics.

In Chapter 4, saddle-back velocity profile is observed for all AR rectangular jets.

The underlying mechanism is explained. In addition, quantitative measurement and
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comparison between jets with different AR and I are performed. It is then found

that magnitude of saddle-back becomes larger with the increase of AR in general, all

though AR = 6 jet presents a more sophisticated profile. But, influence of turbulence

intensity at the inlet on saddle-back is still uncertain.

This thesis proves that lattice Boltzmann method is a reliable alternative CFD ap-

proach to capture the characteristics of rectangular jets. Axis-switching phenomenon

and saddle-back velocity profile are observed and the underlying mechanism for each

behavior is discovered. AR effect on the two rectangular jet features is also examined.

For better prediction for rectangular jet development, the turbulent inlet velocity pro-

file is developed, which enhances axis-switching for a rectangular jet we studied. The

effect of turbulence intensity at the inlet on the saddle-back profile is investigated.

The understanding of rectangular jet characteristics and mixing features are much

improved through our systematic study.

Beyond this thesis, we want to further explore jet physics and its applications in

the following aspects:

• Axis-switching in turbulent rectangular jets and jets with more complicated

shapes.

• Dual saddle-back velocity profile as observed in jet with AR = 6.

• Effects of energy spectrum and turbulence intensity at the inlet (I) on jet charac-

teristic features, such as turbulence intensity profile, axis-switching and saddle-

back velocity profile.

• Produce a more realistic time-dependent turbulent inlet velocity profile.

• Relate our discoveries on turbulent jet to the mixing process between fuel and

air in the combustion engine.
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