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ABSTRACT

Deep, Debanjan. M.S.M.E., Purdue University, December 2013. A Study of Blood
Flow in Normal and Diseased Aorta. Major Professor: Whitney Yu.

Atherosclerotic lesions of human beings are common diagnosed in regions of arte-

rial branching and curvature. The prevalence of atherosclerosis is usually associated

with hardening and ballooning of aortic wall surfaces because of narrowing of flow

path by the deposition of fatty materials, platelets and influx of plasma through in-

timal wall of Aorta. High Wall Shear Stress (WSS) is proved to be the main cause

behind all these aortic diseases by physicians and researchers. Due to the fact that

the atherosclerotic regions are associated with complex blood flow patterns, it has

believed that hemodynamics and fluid-structure interaction play important roles in

regulating atherogenesis. As one of the most complex flow situations found in cardio-

vascular system due to the strong curvature effects, irregular geometry, tapering and

branching, and twisting, theoretical prediction and in vivo quantitative experimental

data regarding to the complex blood flow dynamics are substantial paucity. In recent

years, computational fluid dynamics (CFD) has emerged as a popular research tool

to study the characteristics of aortic flow and aim to enhance the understanding of

the underlying physics behind arteriosclerosis. In this research, we study the hemo-

dynamics and flow-vessel interaction in patient specific normal (healthy) and dilated

(diseased) aortas using Ansys-Fluent and Ansys-Workbench. The computation con-

sists of three parts: segmentation of arterial geometry for the CFD simulation from

computed tomography (CT) scanning data using MIMICS; finite volume simulation

of hemodynamics of steady and pulsatile flow using Ansys-Fluent; an attempt to

perform the Fluid Structure Simulation of the normal aorta using Ansys-Workbench.

Instead of neglecting the branching or smoothing out the wall for simplification as a
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lot of similar computation in literature, we use the exact aortic geometry. Segmen-

tation from real time CT images from two patients, one young and another old to

represent healthy and diseased aorta respectively, is on MIMICS. The MIMICS seg-

mentation operation includes: first cropping the required part of aorta from CT dicom

data of the whole chest, masking of the aorta from coronal, axial and saggital views

of the same to extract the exact 3D geometry of the aorta. Next step was to perform

surface improvement using MIMICS 3-matic module to repair for holes, noise shells

and overlapping triangles to create a good quality surface of the geometry. A hexahe-

dral volume mesh was created in T-Grid. Since T-grid cannot recognize the geometry

format created by MIMICS 3-matic; the required step geometry file was created in

Pro-Engineer. After the meshing operation is performed, the mesh is exported to

Ansys Fluent to perform the required fluid simulation imposing adequate boundary

conditions accordingly. Two types of study are performed for hemodynamics. First

is a steady flow driven by specified parabolic velocity at inlet. We captured the flow

feature such as skewness of velocity around the aortic arch regions and vortices pairs,

which are in good agreement with open data in literature. Second is a pulsatile flow.

Two pulsatile velocity profiles are imposed at the inlet of healthy and diseased aorta

respectively. The pulsatile analysis was accomplished for peak systolic, mid systolic

and diastolic phase of the entire cardiac cycle. During peak systole and mid-systole,

high WSS was found at the aortic branch roots and arch regions and diastole resulted

in flow reversals and low WSS values due to small aortic inflow. In brief, areas of

sudden geometry change, i.e. the branch roots and irregular surfaces of the geom-

etry experience more WSS. Also it was found that dilated aorta has more sporadic

nature of WSS in different regions than normal aorta which displays a more uniform

WSS distribution all over the aorta surface. Fluid-Structure Interaction simulation

is performed on Ansys-WorkBench through the coupling of fluid dynamics and solid

mechanics. Focus is on the maximum displacement and equivalent stress to find out

the future failure regions for the peak velocity of the cardiac cycle.
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1. INTRODUCTION

Due to the advances in computer hardware and numerical algorithms, computational

fluid dynamics (CFD) has emerged to reveal underlying physics of blood flow and

flow-vessel interaction (FVI) in human cardiac vasculature [1, 2]. Patient-specific

computation [3-8] based on magnetic resonance imaging (MRI) [9] and advanced X-

ray computed tomography (CT) [10] is of considerable interest due to the strong

anatomical, functional, and hemodynamic interdependency of various cardiovascular

structures. The underlying physics of hemodynamics and FVI through numerical

simulation and parametric analysis plays an important role to reveal new bio-markers,

which can separate benign and high risk lesions with respect to their progression and

eventually lead to heart attack by quantifying the degree of flow dynamics and wall

stress.

If we look closer about the facts of heart diseases we find that it is the number

one cause of death for both men and women in the United States, killing more than

600,000 Americans each year, cancer and stroke round out the top three [33]. It

accounts for 40% of all US deaths, more than all forms of cancer combined. The

most common cause of heart disease is coronary artery disease, which is a blocked

or narrowed coronary artery that supplies the heart with blood. Up to 1.5 million

people in the US suffer from aortic diseases; 500,000 within this group suffer from

severity of the same.

One more alarming economical fact is heart disease costs the United States $316.4

billion annually [33], where aortic diseases cost 108.5 billion alone. The research is

motivated by the fact that if the areas prone to aortic diseases could be pointed out

by computational fluid dynamic analysis, this would help the physician to figure out

the diseases and thus fatalities could have been mitigated greatly beforehand.
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1.1 Hemodynamics of Aorta

Oxygen-rich blood enters the aorta, the largest artery in the body, from the left

ventricle. Blood flow crosses the aortic valve and is directed toward the aortic arch

arteries and descending aorta. If anyone has artery disease, those arteries become

narrow and blood cannot flow as they should. Fatty matter, calcium, proteins, and

inflammatory cells build up within the arteries to form plaque of different sizes. The

plaque deposits are hard on the outside and soft and mushy on the inside.

When the plaque is hard, the outer shell cracks (plaque rupture), platelets (disc-

shaped particles in the blood that aid clotting) come to the area, and blood clots form

around the plaque. Researchers found the potential effect of blood flow in addition

to blood-tissue interaction within the aorta. In the next paragraphs below this will

be explained more.

The aorta is the main trunk of a series of vessels which convey the oxygenated

blood to the tissues of the body for its nutrition. It commences at the upper part of

the left ventricle, where it is about 3 cm. in diameter, and after ascending for a short

distance, arches backward and to the left side, over the root of the left lung; it then

descends within the thorax on the left side of the vertebral column, passes into the

abdominal cavity through the aortic hiatus in the diaphragm, and ends, considerably

diminished in size (about 1.75 cm. in diameter), opposite the lower border of the

fourth lumbar vertebra, by dividing into the right and left common iliac arteries.

Hence it is described in several portions, viz., the ascending aorta, the arch of the

aorta, and the descending aorta, which last is again divided into the thoracic and

abdominal aorta.

A brief overview of all parts of the Aorta:

Aortic root - The root is the beginning of the aorta. Starting from the aortic

valve (annulus) and becoming slightly wider in diameter, it gives rise to two coronary

arteries and ends at the beginning of the ascending aorta. The two coronary arteries

are responsible for carrying oxygen-rich blood to the heart muscle itself.
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Figure 1.1. Aorta and its branches (Ref: www.cedars-
sinai.edu/Patients/Programs-and-Services/Heart-Institute/)

Ascending aorta - This segment extends upward from the aortic root to the point

where the innominate artery branches off the aorta, and the aorta begins to form an

arch. It is within the heart sack by itself and no arteries branch from it. There is little

support from surrounding tissue and it must face the entire cardiac output volume

(minus the coronary arteries), making the ascending segment the most vulnerable

part of the aorta.

Aortic arch - The arch represents the curved portion at the top of the aorta. The

innominate, left common carotid, and left subclavian arteries, which supply blood to

the head and upper body, branch from the arch. It is outside the pericardial sac and

generally has better support from surrounding structures.

Descending aorta - This section begins just beyond the arch as the aorta bends

down into the body. The descending aorta ends at the diaphragm. It contains the

intercostal arteries that feed the spinal cord.



4

Thoracoabdominal aorta - This section begins at the diaphragm and ends at the

visceral vessels.

Abdominal aorta - The abdominal aorta begins below the renal arteries, which

supply blood to the kidneys. The aorta ends where it divides into the two iliac

arteries. It contains a small artery named the inferior mesenteric artery.

1.2 Cardiovascular System Function

The cardiovascular system is one of the important organ systems of the human

body that performs several vital functions. The heart is one of the most vital com-

ponents of the human cardiovascular system, which is a complex organ system that

performs the vital function of distributing blood throughout the body. Blood is

transported to various parts of the body through a network of arteries, veins and

capillaries. It is important to understand the structure of this organ system in order

to comprehend how it works. The components of this body system work in tandem

to facilitate the task of distribution of blood and vital nutrients throughout the body.

The heart is a hollow muscle that pumps blood throughout the blood vessels by

repeated, rhythmic contractions. It is found in all animals with a circulatory system.

The term cardiac (as in cardiology) means ”related to the heart” and comes from the

Greek , kardia, for ”heart”.

The vertebrate heart is principally composed of cardiac muscle and connective

tissue. Cardiac muscle is an involuntary muscle tissue found only in this organ and

responsible for the ability of the heart to pump blood.

The average human heart, beating at 72 beats per minute, will beat approximately

2.5 billion times during an average 66 year lifespan.

The heart has four chambers that are enclosed by thick, muscular walls. It lies

between the lungs and just to the left of the middle of the chest cavity. The bottom

part of the heart is divided into two chambers called the right and left ventricles,
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Figure 1.2. Components of Heart (Ref: www.theodora.com)

which pump blood out of the heart. A wall called the interventricular septum divides

the ventricles.

The upper part of the heart is made up of the other two chambers of the heart, the

right and left atria. The right and left atria receive the blood entering the heart. A

wall called the interatrial septum divides the right and left atria, which are separated

from the ventricles by the atrioventricular valves. The tricuspid valve separates the

right atrium from the right ventricle, and the mitral valve separates the left atrium

and the left ventricle.

Two other cardiac valves separate the ventricles and the large blood vessels that

carry blood leaving the heart. These are the pulmonic valve, which separates the

right ventricle from the pulmonary artery leading to the lungs, and the aortic valve,

which separates the left ventricle from the aorta, the body’s largest blood vessel.



6

Arteries carry blood away from the heart. They are the thickest blood vessels,

with muscular walls that contract to keep the blood moving away from the heart and

through the body. In the systemic circulation, oxygen-rich blood is pumped from the

heart into the aorta. This huge artery curves up and back from the left ventricle, then

heads down in front of the spinal column into the abdomen. Two coronary arteries

branch off at the beginning of the aorta and divide into a network of smaller arteries

that provide oxygen and nourishment to the muscles of the heart.

Unlike the aorta, the body’s other main artery, the pulmonary artery, carries

oxygen-poor blood. From the right ventricle, the pulmonary artery divides into right

and left branches, on the way to the lungs where blood picks up oxygen. Aortic walls

have three layers:

1. The endothelium is on the inside and provides a smooth lining for blood to

flow over as it moves through the artery.

2. The media is the middle part of the artery, made up of a layer of muscle and

elastic tissue.

3. The adventitia is the tough covering that protects the outside of the artery.

1.3 Aortic Diseases

Diseased aortic tissue is characterized by degeneration of the cells composing the

aortic wall. This diseased tissue is weak, lacking sufficient elastic components to

stretch and contract well. The first indication of this abnormality may be a localized

enlargement in the area of weakness. When it reaches a certain size this enlarged

area is referred to as an aneurysm.

Aortic tissue may also tear, even if the aorta is not enlarged. Tearing of the

inner layer of the vessel wall allows blood to leak into the middle layer of the aorta,

separating the inner and outer layers. This is called dissection.
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1.3.1 Thoracic Aortic Aneurysms

The permanent enlargement of some portion of a blood vessel is often described

as bulging, ballooning or dilation (Fig: 1.3). The diameter of the enlargement will

determine whether or not it is considered an aneurysm. Traditionally for the aorta,

any permanently dilated section measuring 4.0 cm or greater in diameter has been

called an aneurysm.

Figure 1.3. Thoracic Aortic Aneurysm (Ref: www.sphcs.org/images)

1.3.2 Thoracic Aortic Dissection

Aortic dissection (Fig: 1.4) is the tearing of the inner layer of the aortic wall,

allowing blood to leak into the wall itself and causing the separation of the inner and

outer layers.

Dissection beginning in the ascending aorta is called Type A dissection. As de-

picted in the drawing, Type A dissection often begins just above the coronary arteries.
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Figure 1.4. Thoracic Aortic Dissection (Ref: www.sphcs.org/images)

Dissection occurring here, where the aorta is the largest, thinnest, lacks support from

surrounding structures and experiences the greatest amount of wall tension, is life

threatening. Type A dissection is always treated as a surgical emergency.

1.4 Diagnosis of Aortic Diseases

Thoracic aortic disease is discovered in different ways. Sometimes there is pressure

or pain in the chest or back, but most often there are no warning symptoms. A

dilated aorta or aneurysm may be discovered in the course of testing for something

else or perhaps as part of a routine physical. Patients may have been advised that the

existence of a bicuspid aortic valve puts them at risk for aortic aneurysm or dissection.

A patient may also have been told that a connective tissue disorder, such as Marfan’s

syndrome, is affecting the aorta and the valves of the heart.
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Diagnostic testing is the first step in establishing a treatment strategy. A high

degree of accuracy in the performance and interpretation of these tests is particularly

critical in the evaluation of aortic disease.

1.5 Objective

The main objective to this work is to understand the hemodynamics of an aorta

for a normal case and a diseased case. This was performed by comprehensive 3D

finite volume simulation using Ansys for the normal and diseased aorta cases with

preliminary results of FSI simulation.

The objectives of this study were achieved by realizing the following aims:

Aim 1: Image segmentation of CT Dicom data of a healthy and an aged patient

to get the 3D image of their respective aortas.

Aim 2: Finite volume analysis of the aortas to compare the flow field for steady

and pulsatile cases and calculate for high WSS to find out atherosclerosis prone areas.

Aim 3: Attempt to perform a very preliminary study of 2 way FSI simulation

using Ansys Workbench on the normal aorta to find out the maximum deformation

and equivalent stress regions of the aortic wall.

1.6 Thesis Contribution

The present work aids physicians for remedial contribution against first killer in

the US (40% of all US deaths) that costs the nation approximately 385 billion dollar

annually. Aortic disorder is one of the prime reasons for most of the heart diseases.

The first and foremost contribution is the computational simulation for a aorta

geometry without compromising the geometry curvatures to represent actual flow

modeling within a human aorta. The work also presents WSS distribution at various

time phases of a cardiac cycle to determine the disease prone regions. This will be

helpful for the physicians to recognize the weak regions on aortic wall to take necessary

therapeutic measure beforehand.



10

The preliminary results of Fluid-Structure-Interaction (FSI) simulation deter-

mines the deformation and Von-Mises stress distribution while the peak flow is in

progress.
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2. LITERATURE REVIEW

In order to investigate the flow dynamics of the complex geometry of the human

aorta, it is imperative to understand idealized flow models in simple models like

curved pipes. Theoretical and experimental studies of flow in curved pipes started

with the investigation of Thomson (1876) on the effect of curvature in open channels.

In 1902, Williams et al. observed that the location of the maximum axial velocity

is shifted toward the outer wall of a curved tube. Later, Eustice (1910) proved the

presence of secondary flow by injecting ink into water flowing through a coiled pipe.

The presence of secondary flows is another interesting phenomenon associated with

curvature effects. Secondary flow is attributed to the physical fact that the fluid

elements experience a variation in centrifugal force along their position in the arch.

Dean (1927) developed analytical solutions of fully developed, steady flow in a curved

tube of a circular cross section. The results explained that as the flow moves around

the curved tube, an imbalance between centrifugal forces and the inwardly directed

radial pressure gradient results in secondary flow developed within the tube cross

section. The fluid in the core moves toward the outer wall of curvature and returns

to the inner wall along the tube wall resulting in two symmetric vortices. As a result

of secondary motion, the axial velocity is skewed with a maximum axial velocity

magnitude found more towards the outer wall with increasing curvature (Dean, 1927

- 1928) (Fig: 2.1). Dean number: De = 2
√

(a × Re/R), where De, a, R and Re are

Dean number, the pipe radius, the radius of the curvature of the pipe and Reynolds

number respectively.

Aortic replacement based on computational fluid dynamics analysis has been one

of the celebrated topics for last few years. In a paper, Lantz Heim et al. [11] found out

the fact that high stress on residual aortic tissue may result in aneurysm formation

or aneurysmal dilatation. Utilizing a computational fluid dynamic evaluation, they
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Figure 2.1. Secondary flow pattern for steady flow in curved pipe (Dean,
1927), the Effect of the Dean number on secondary flow patterns can be
seen

aimed to define possible optimal operative interventions with regard to the extent of

aortic replacement.

For proof of principle, a computational fluid dynamic (CFD) analysis, using Fluent

6.2 (Ansys UK Ltd, Sheffield, UK), was performed on a simplified ascending arch and

descending aortic geometry. Wall shear stress in three dimensions was assessed for the

standard operations: ascending aortic replacement, arch replacement and proximal

descending aortic replacement. They concluded that CFD analysis of patient-specific,

3D anatomical and physiological study may direct the replacement of normal diameter

aortas in the future.

In a Large Eddy Simulation (LES) of subject specific human aorta, the same

authors [12] calculated the disturbed flow field and wall shear stress. It has been

found that both WSS and Oscillatory Shear Index (OSI) are important with respect to

formation and stability of atherosclerotic plaque (see, e.g. [13]), and that they can be

used to determine the complexity of lesions [14, 15]. In this study they investigated the

WSS in a subject specific human aorta using an LES turbulence model and measured
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velocity profiles as boundary conditions, to increase the physiological relevance. The

complex flow situation in the aorta was shown in detail and the WSS was investigated

using both integrated and instantaneous values. This decomposition of WSS into

pulsating and fluctuating parts increases the understanding of how WSS affects the

aortic wall, and allows for both qualitative and quantitative comparisons.

Thus, the methodology described here has the potential value to identify local

WSS abnormalities that might be connected to the development or progression of

vascular diseases.

In their formulation, velocity profiles were measured with MRI in a plane in both

the ascending and the descending aorta, and the measurement in the ascending aorta

was used to provide a physiological inlet boundary condition. The Eddy-viscosity

WALE model was used in their simulation and Ansys-CFX was the solver for the

simulation performed there.

An industrial Bioengineering group of Department of Mechanics, Politecnico di

Torino also did some research about Visualization and Quantification of Blood Flow

in the Human Aorta from in vivo 4D Phase Contrast MRI to Subject-Specific Com-

putational Hemodynamics.

They looked for some common phenomena while blood is flowing within the aorta

such as helicity of flow irrespective of age and gender. Moreover they also did sig-

nificant research on TAWSS (Time-averaged wall shear stress) and OSI for various

inlet boundary conditions that closely matches with physiological circumstances and

determined what might happen in case of varying inlet boundary situations.

For all the above simulations they used a finite volume solver, FLUENT, and

Matlab to post process the data for two different Aorta models (Fig: 2.2).



14

Figure 2.2. Aorta models used by the group of Politecnico di Torino [37]

Figure 2.3. Cross sections evaluated in double bend geometries [32]
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Figure 2.4. Physical orientation of each section: points A and B follow a
continuous line along the geometry [32]

Moreover, in extensive research Lee and Parker [32] in their publication of spectral

modeling of non-planar bends have Dean Vortex patterns within the curved flow

situation. Moreover they also showed that the asymmetry of the vortices pairs reduces

as Reynolds number is increasing. In the following figures (Fig: 2.4) at different cross

sections they were able to demonstrate their findings.

In the publication by P.E. Vincent et al. [23] the distribution of atherosclerotic

lesions within rabbit vasculature was investigated in the rabbit aortic arch and de-

scending thoracic aorta. They were able to determine the consequences of curved flow

i.e. vorticity pairs and skewness (Fig: 2.5) of velocity within the aorta as well. More-

over, they also looked for WSS distribution on the aortic wall (Fig: 2.6) for different

phases of pulsatile blood flow. After that , experiments were performed on the aortic

wall and they inferred that WSS is the dominant factor behind atherosclerosis and it

is highly dependent on Reynolds number.
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Figure 2.5. Re = 125: The isocontour shows the vortex structure high-
lighting the two Dean vortex patterns [32].

Figure 2.6. Comparison of WSS on the descending part of aorta from
simulation and in vivo where from left to right Re is increasing. Blue
shading denotes areas in which WSS is 75% of the average in each excised
region, and red shading denotes areas in which WSS is 125% of the average
in each excised region [23].
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After initial studies on steady flow by Dean (1927, 1928), Womersley (1957) tack-

led the question of time periodicity on the laminar flow in curved and elastic pipes.

Womersley used a simplified model based on linearization of the pulsatile flow in the

form of a sinusoidal wave. The non-dimensional parameter (Womersley number) is

defined as follows,

α = Rωρ/µ

Where R, ω , µ and ρ are vessel radius, angular frequency of the oscillation,

dynamic viscosity and density, respectively. Womersley applied this linear analysis

to a straight tube with a pulsatile flow in the form of a simple sinusoidal wave. The

Womersley number can be considered the Reynolds number of oscillatory flows. As

Figure 2.7. Colour maps of (a) blood velocity (ms−1) and (b) vorticity
(s−1) perpendicular to four planes within the descending aorta in both
cases, Re = 300 [23]

we move forward to dig deep into the effect of wall while the blood flow is happening

within the aorta, we came across a relevant research work by F. Gao and T. Matsuzawa

[16] who used a 3-layered simplified geometry of a aorta (Fig: 2.8) to investigate the

Wall stress distribution and effect of medial stress on variation circumferential stress

across the wall over different time period of cardiac cycle. This study lacks the

force effects due to the branches but provides the first layered aorta FSI insights in

accordance to carry out the dissection prone regions within Aortic Arch. The finite
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Figure 2.8. Three-layered aortic arch model. R represents the radius of
the arch. The angle α represents the wall position in the median longitu-
dinal cross-section [16]

element method (FEM) was utilized for all the computational studies reported in

their work. The code Fidap (Fluent Inc., Lebanon, NH) has been used to carry out

the simulation.

An exclusive study of abdominal aortic Aneurysm carried out by Florentina Ene

[17] also revealed the opportunity to explore the FSI using Ansys workbench which

inspired us to further our study in the arena of complex geometric aortic blood flow,

which is elaborated on in Chapter 4 of this thesis.
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3. CT IMAGE PROCESSING AND SEGMENTATION USING MIMICS

MATERIALISE (INC.)

X-ray computed tomography, also computed tomography (CT scan), is a medical

imaging procedure that uses computer-processed X-rays to produce tomographic im-

ages or ’slices’ of specific areas of the body. These cross-sectional images are used for

diagnostic and therapeutic purposes in various medical disciplines. Digital geometry

processing is used to generate a three-dimensional image of the inside of an object

from a large series of two-dimensional X-ray images taken around a single axis of

rotation.

The goal of this chapter is to process the CT image slices of real patients to get the

3D images of aortas to perform blood flow simulation on them. After getting the Di-

com data of a healthy and a diseased aorta from IU School of medicine, segmentation

was performed to get the aortas from the CT slices using MIMICS, Materialise.

Mimics is software specially developed by Materialise for medical image processing.

Mimics is used for the segmentation of 3D medical images (coming from CT, MRI,

microCT, CBCT, Ultrasound, Confocal Microscopy) and the result will be highly

accurate 3D models of the patients anatomy. These patient-specific models can be

used for a variety of engineering applications directly in Mimics or 3-matic, or export

the 3D models and anatomical landmark points to third party software, like statistical,

CAD, or FEA packages.

Mimics provides a bridge from CT/MRI data to: 3D computer models, optimized

surface meshes, FE and CFD analysis, physical 3D models, surgical simulation, de-

vice and implant design and traditional CAD. Mimics can import any 2D stack of

images and allows transforming them into a 3D model with the utmost accuracy and

flexibility in an extremely user-friendly environment. Mimics imports images like CT,

TechCT, MRI and Microscopy data in a wide variety of formats, far beyond DICOM.
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It is modular-based software that can be tailored to meet individual needs. The dif-

ferent modules can be combined into a solution that offers all the tools for powerful

medical image processing and editing. Various modules will each export the file in

the format needed. Some modules will also allow very specialized applications, e.

g. surgical simulation. The combination of this flexibility with its powerful features

and its user-friendly interface ensured that Mimics is worldwide the standard for 3D

image processing.

In short Mimics is used to:

Easily and quickly create accurate 3D models from imaging data Accurately

measure in 2D and 3D

Export 3D models in STL format for additive manufacturing

Export 3D models to 3-matic to optimize the mesh for FEA or CFD

3.1 Segmentation Steps

The Steps to get the 3D image from the Dicom data are as follows.

3.1.1 Cropping the Dicom Data

Cropping the required portion of the Dicom data is the first and foremost task to

do for image segmentation. Since Dicom data comes with the entire chest CT scan

and we just need the portion of aorta, the unnecessary portion is chopped off. The

CT slice, after being chopped off looks like (Fig: 3.1):
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Figure 3.1. Dicom data and CT image slice (Dicom data courtesy: Ra-
diology Department, IU School of Medicine)

3.1.2 3D Rendering and Extraction of Organs Part by Part

The 2D image slices of coronal, axial and saggital views are masked properly to

extract the required part out of the Dicom data. Most of the times the segmented

parts come with other organs which are required to be chopped off later, one after

one, to get the desired part. In the case of diseased aorta, the tricuspid valve inlet

was modified in an inclined opening to provide a more realistic BC at the inlet.

3.2 Dilation Effect of a Diseased Aorta

Since image segmentation was the tool to discover the dilation effect of the aorta,

we take the privilege to illustrate our findings about dilated aorta here. Since dilation

is well described in the introductory chapter of the thesis, here we discuss in brief the
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reasons behind it. Dilation, also known as Aortic Aneurysm, generally happens for

the following reasons:

Having a bicuspid valve instead of a normal tricuspid one.

Individuals with high blood pressure are also prime candidates for an enlarged

aorta.

Tissue connectivity disorders, atherosclerosis, inflammatory conditions, Marfan

syndrome and Ehlers-Danlos syndrome.

Diagnostic tools are designed to check for an enlarged aorta included in computed

tomography (CT) scans and magnetic resonance imaging (MRI). Fig: 3.5 describes

the Aortic dilation a bit more.

In a clinical research paper [18] the authors have provided a useful chart (Fig: 3.6)

to distinguish the dilated aorta from the normal one. They also discovered that the

median aortic diameter at the time of rupture for the ascending aortic arch is 6.0 cm.

Now, if we look into our dilated aorta model that we have extracted from the

CT imaging technique, we could easily distinguish and infer that our model, that we

extracted from the 95 year old person Fig: 3.8 , was necessarily dilated having a mean

inlet diameter of about 5.58cm by comparing the above chart.
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Figure 3.2. Aorta with heart (top left), Aorta masked and ready to be
chopped out from (top right) and Aorta chopped out (below) (Dicom data
courtesy: Radiology Department, IU School of Medicine)



24

Figure 3.3. Views of normal Aorta segmentation (top) and diseased
(bottom)



25

Figure 3.4. Evolution of Diseased aorta from CT dicom data

Figure 3.5. Schema of the heart during ejection. (a) Without aortic
stenosis, the aortic valve is fully opened; (b) in the presence of aortic
stenosis, the calcified aortic valve cannot open fully, which causes an ob-
struction to blood flow from the left ventricle to the aorta and produces
a transvalvular flow jet [8]



26

Figure 3.6. Identification of normal aorta based on diameter size [18]
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Figure 3.7. Dilated aorta dimension (Dicom data courtesy: Radiology
Department, IU School of Medicine)
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Figure 3.8. Dilated aorta dimension (Dicom data courtesy: Radiology
Department, IU School of Medicine)
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4. FINITE VOLUME METHOD ANALYSIS ON A NORMAL AND A DISEASED

AORTA USING ANSYS FLUENT

The finite-volume method is a method for representing and evaluating partial dif-

ferential equations in the form of algebraic equations [LeVeque, 2002; Toro, 1999].

Similar to the finite difference method or finite element method, values are calculated

at discrete places on a meshed geometry. ”Finite volume” refers to the small volume

surrounding each node point on a mesh. In the finite volume method, volume inte-

grals in a partial differential equation that contain a divergence term are converted

to surface integrals, using the divergence theorem. These terms are then evaluated as

fluxes at the surfaces of each finite volume. Because the flux entering a given volume

is identical to that leaving the adjacent volume, these methods are conservative.

The fundamental two steps of this FVM approach is as follows:

Step 1: To divide the domain into a number of control volumes (aka cells, elements)

where the variable of interest is located at the centroid of the control volume.

Step 2: Integrate the differential form of the governing equations (very similar to

the control volume approach) over each control volume.

Step 3: Interpolation profiles are then assumed in order to describe the variation

of the concerned variable between cell centroids. The resulting equation is called the

discretized or discretization equation.

Another advantage of the finite volume method is that it is easily formulated to

allow for unstructured meshes. Finite volume methods are especially powerful on

coarse nonuniform grids and in calculations where the mesh moves to track interfaces

or shocks. Hyman et al. (1992) [22] have derived local, accurate, reliable, and efficient

finite volume methods that mimic symmetry, conservation, stability, and the duality

relationships between the gradient, curl, and divergence operators on nonuniform
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rectangular and cuboid grids. The method is used in many computational fluid

dynamics packages.

In this thesis, a popular Finite Volume Method package named Ansys-Fluent was

used to calculate flow variables and different phenomena within normal and diseased

Aorta.

4.1 Governing Equations

From the mass conservation equation we know (Ref: From lecture notes of Dr.

Tamer Wasfy),

∂ρ

∂t
+ ρ

∂vi
∂xi

= 0

where ρ is the density of the fluid, vi is the velocity component and t is the time.

Again from the momentum conservation equation we can also write,

ρ
∂vi
∂t

= −ρvj
∂vi
∂xj

+
∂σji
∂xj

+ ρbi

Where σij is the stress in fluid can be divided into a hydtrostatic stress and a

viscous stress(σij = −Pδij + τij) and bi is the body force term.

For turbulence kinetic model we have used k − ε model which uses two transport

equations to represent the turbulent properties of the flow. The first transported vari-

able is turbulent kinetic energy, k, which can be expressed by the following equation

(Ref: http : //www.cfd− online.com/Wiki/Standardk − epsilonmodel):

∂(ρk)

∂t
+
∂(ρkvi)

∂xi
=

∂

∂xj
[(µ+

µt
σk)

∂k

∂xj
] + C1ε

ε

k
+ Pk − ρε

where where µt is turbulent viscosity and S is the modulus of the mean rate of strain

tensor.

µt = ρCµ
k2

ε

Pk = µtS
2
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where S is the modulus of the mean rate of strain tensor, defined as:

S =
√

2SijSij

for dissipation ε,

∂(ρε)

∂t
+

(∂εkvi)

∂xi
=

∂

∂xj
[(µ+

µt
σε)

∂ε

∂xj
] + C1ε

ε

k
(Pk) − C2ερ

ε2

k
+ Sε

Following are the values of model constants:

C1ε = 1.44, C2ε = 1.92, C3ε = −0.33, Cµ = 0.09, σk = 1.0, σε = 1.3

4.2 Flow Simulation within the Aortas

One of the primary reasons for numerically simulating the flow in the aortic sys-

tem is to understand the development of atherosclerosis and its dependence on flow

structure. It has been observed that early atherosclerotic lesions develop preferen-

tially in the vicinity of arterial branching and curvature where blood flow patterns

are complex and multi-directional. The prevalence of atherosclerosis varies within

the mammalian vasculature, particularly in regions of arterial branching and curva-

ture. Since these regions are associated with complex blood flow patterns, it has been

postulated that blood flow may play an important role in regulating atherogenesis.

Fry [14] inferred from studies of hypercholesterolaemic animals that lesions develop

in regions of high wall shear stress (WSS), hypothesizing that high WSS damaged

the arterial endothelium, and hence increased lipoprotein influx into the intima.
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Figure 4.1. Hexahedral fluid mesh with triangular mesh on the wall of
normal aorta using Tgrid.Left: the entire aorta, Right: Zoomed in view
of the aortic arch, Down: Mesh examination along the cross section line.
(Courtesy: Tgrid)
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Figure 4.2. Hexahedral fluid mesh with triangular mesh on the wall of
dilated aorta using Tgrid.Left: the entire aorta, Right: Zoomed in view
of the aortic arch, Down: Mesh examination along the cross section line.
(Courtesy: Tgrid)
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Meshing was done in T-Grid (Fig: 4.1,4.2) with hexahedral mesh interior and

tetrahedral transformation along the boundary. The total number of cells was around

1.8M for the normal and 3.2M for the dilated aorta.

In the present study, a Finite Volume method using Ansys-Fluent was carried out

to model blood flow within a realistic representation of the human aortic arch and

descending thoracic aorta for two different cases: one is a normal aorta of an 18 year

old boy and the other was of a diseased aorta of a 95 year old man. The geometries

was obtained from high-resolution computed tomography (CT) of a vascular cast.

It included all the blood-carrying branches at the aortic arch named left common

carotid artery, left subclavian artery and brachiocephalic trunk (Fig: 4.3). Interest-

ingly enough, the normal aorta had its right subclavian artery and right common

carotid artery started from the base of the aorta instead of branching out from the

brachiocephalic trunk which at our knowledge has not been computationally simu-

lated beforehand.

Three-dimensional, steady-state and pulsatile flows in the displayed aorta geome-

tries are analyzed by solving incompressible continuity and NavierStokes equations.

The analysis in this chapter did not include the distensibility of the aortic walls. In

the paper [21] it was shown that the omission of the wall distensibility does not lead

to a substantial deterioration for the velocity and shear stress profiles predicted for

the cardiac artery. Thus the aortic walls were considered rigid for the present study.

The non-Newtonian behavior is a further challenge, which is typical for the blood

flow. This is also neglected, and a fully Newtonian behavior for the blood is assumed,

since it is argued [22] that departures from the Newtonian behavior start to play a role

for rather small arteries, whereas we are interested in the flow in the large arteries.

We also chopped off the top outlet branches of the aortas as they extend out toward

the other parts of the body, to further simplify the geometry. These simplifying

assumptions, such as the assumption of rigid walls and a Newtonian behavior, are

common to much of the previous work in the field, including the recent ones [21, 28].
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Figure 4.3. Demonstration of Aortic branches (Ref:
www.chw.org/display)

Boundary Conditions: Parabolic shaped velocity was used as the boundary

condition at the inlet while flow split or outflow boundary conditions were applied

to represent fully developed BC. Pressure were kept constant at the outlets because

the pressure data varies from different persons and the specific data was not available

for the patients we studied for. Aortic wall was considered as no-slip. As initial

condition, inlet velocity was used at the inlet. For pressure velocity coupling, we used

PISO algorithm for both steady and pulsatile flow simulation because it improves the

efficiency of the calculation performing neighbor correction and skewness correction.

In the present study, for the material properties of the blood, the following con-

stant values are used: density: 1060 kg/m3, dynamic molecular viscosity: 0.0035

kg/(ms). The volume mesh was created in T-grid for representing the fluid part was

created in T-grid ; steady and pulsatile flow simulation was performed in Ansys-Fluent

and post-processing was executed in Tecplot.
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4.3 Steady Flow Simulation in a Healthy and a Dilated Aorta

The main purpose of steady state simulation was to validate the simulation re-

sults with the work of E. Claes et al [29] where the authors have used a high-order-

continuous Galerkin Finite Element Method to simulate blood flow within a realistic

representation of the rabbit aortic arch and descending thoracic aorta. In their paper,

it was also observed that two Dean-type vortices form in the aortic arch and propagate

downstream the descending thoracic aorta (along with an associated skewed axial ve-

locity profile). This leads to the occurrence of axial streaks in WSS, similar in nature

to the axial streaks of lipid deposition found in the descending aorta of cholesterol-

fed rabbits. Also the authors proposed various reasons why steady-state simulations

were performed, as opposed to fully time-dependent studies. Primarily, the results of

steady-state simulations can be analyzed with relative ease; giving insight that will

facilitate interpretation of future (more complex) unsteady results, and focus on the

remittance of future (more costly) unsteady studies. Also they mentioned that some

disadvantages, like not being able to capture the truly unsteady flow phenomena,

which is elaborately discussed already in our literature review chapter, might occur.

The steady flow analysis was performed to capture the general features of blood

flow through the aorta. Hence, we chose a Reynolds number of 300 (inlet velocity

for normal aorta = 0.04m/s and similarly calculated for the dilated one) at inlet to

match with a previously published work. Hence the use of laminar flow as viscous

flow model is justified in this simulation.

Streamlines of velocity of both a normal and a dilated aorta are demonstrated in

(Fig: 4.4, 4.5).Walls are omitted in the right figures to display the streamlines better.
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Figure 4.4. Velocity (m/s) streamlines of the normal aorta.

Figure 4.5. Velocity (m/s) streamlines of the dilated aorta.
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We confirmed from Fig: 2.5 and 2.7 that the results of the authors [29] about the

pair of vortices and velocity skewness match with our simulation results as well. To

match with their computational setup, Reynolds number of 300 was taken at the inlet

(inlet velocity for normal aorta = 0.04m/s and similarly calculated for the dilated

one).

Figure 4.6. Skewed velocity profile m/s for Dilated (left) and nor-
mal(right) Aorta
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Figure 4.7. Z vorticity (s−1) pairs of Dilated(left) and normal (right)

From Fig: 4.6, we can easily distinguish the skewed velocity profile towards the

inner curvature of the aorta at the ascending part and outer curvature of the descend-

ing part of the aorta. Moreover from Fig: 4.7, distinct pairs of vortices were found

near the aortic arch region and descending aorta part. The pairs were of similar

pattern to the ones found in the aforementioned study of the authors. Thus we could

come to a point of validation that our CFD code and setup has a good match with

the simulation performed by the authors mentioned, and we could further proceed to

investigate the WSS results, which is our primary target, to determine atherosclerosis

prone regions.

4.4 Pulsatile Flow Simulation Analysis

We move forward to analyze the pulsatile flow consequences for a normal and

a dilated aorta. The goal of this part is to identify the regions of future probable

atherosclerosis. Thus dissection or aortic disorder could be easily identified from the
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WSS analysis. It is well established in the papers [27, 28] that as the size of the

inlet increases, the velocity, pressure and WSS all increase in the ascending aorta.

Since the size of the inlet is directly related to the effect of dilation of the aorta, the

disordered or future disordered parts could be easily identified.

Boundary Conditions: The boundary condition was same as the steady flow

simulation case but the inlet velocity was of pulsatile form that is described later in

this Chapter.

Figure 4.8. Aorta inlet velocity profile- Normal (top) and Diseased (bot-
tom) (Courtesy- Department of Radiology, IU School of Medicine, IUPUI)
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Figure 4.9. Velocity magnitude(m/s) with streamlines for four phases of
cardiac cycle
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The inlet pulsatile velocity profiles show that during peak flow the velocity in-

creases to a high value that results turbulent flow (Re >2000) within the aorta. In

the present work, the flow turbulence is modeled by k − ε turbulence model (since it

is computationally cheap and easy to implement) that can account for the turbulence

effects at the inlet which was not required in steady flow simulation.

From the streamline profile of the deceleration phase (Fig: 4.9) we can see a helical

flow profile of blood as it is flowing from the anterior part to the posterior part of the

aorta. Due to sudden negative flow velocity through the inlet, vorticity originates at

the arch and descending part. Again in the diastolic phase of the cardiac cycle, flow

moves at a very slow speed from the inlet opening to the outlets.

In the next part we look forward for the effect of WSS at different points of

pulsatile flow rate at the inlet. In Fig: 4.10, it is shown that during peak systolic flow

the subclavian artery has the highest shear stress and WSS is also high at the roots

of all branches. This is because the high flow velocity starting at the inlet has the

maximum flow passing through the nearest exit, leaving a considerably high amount

of WSS at that region.
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Figure 4.10. WSS(Pa) at the time of peak systolic flow (t = 0.15s) for
anterior (left) and posterior (right) part of normal Aorta

At the time of max deceleration (Fig: 4.11), the flow rate is minimum (almost

zero) resulting in a very small amount of WSS at that region. Comparatively higher

WSS is found at the inner curvature of the thoracic aorta and the descending aorta

since the fluid has not left the part yet, and that is why as we go down the descending

aorta part, WSS keeps increasing.
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Figure 4.11. WSS(Pa) at the time of maximum deceleration (t = 0.37s)
for anterior (left) and posterior (right) part of normal aorta

Again at time 0.52s we observe a slight increase of flow velocity, creating the same

WSS pattern, like peak systolic flow though the value of WSS is much lower than it

was during peak systolic flow.
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Figure 4.12. WSS(Pa) at the time of mid-diastole deceleration (t = 0.52s)
for anterior (left) and posterior (right) part of normal aorta

Now at the diastolic phase,which is the last phase of the flow (Fig: 4.12), flow

reversals occur. Since in this case flow is moving out of the inlet, backflow from the

descending part to the ascending part occurs resulting in higher values of WSS at the

branches. Random streamlines are formed resulting in sporadic WSS generation at

different regions of the aortic wall. WSS at the end part of the descending aorta is

higher due to high backflow and the turbulent nature of the flow.



46

Figure 4.13. WSS(Pa) at the time of end diastole period (t = 0.85s) for
anterior (left) and posterior (right) part of normal aorta

In similar fashion, the WSS distribution was also examined for the diseased aorta

to find the weak regions that are prone to aortic diseases like aneurysm or aortic

dissection.
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Figure 4.14. Velocity magnitude(m/s) with streamlines for peak systolic
and diastolic phases of the cardiac cycle



48

In Fig: 4.15, the peak systolic period was represented which necessarily displayed

high WSS values at the aortic arch and branch root regions. However, sporadic low

WSS values were found which definitely represented the presence of flow circulation

in those regions.

Figure 4.15. WSS(Pa) at the time of peak systole period (t = 0.18s) for
anterior (left) and posterior (right) part of dilated aorta

In the period of peak diastolic deceleration (t = 0.37s) a very low amount of flow

passes through the branches (Fig: 4.16) since inlet velocity is not high enough to drive
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the flow through the narrow branches. Thus high WSS generates near the aortic roots

and the aortic arch and the descending part of the aorta.

Figure 4.16. WSS(Pa) at the time of peak systolic period (t = 0.37s) for
anterior (left) and posterior (right) part of dilated Aorta

While the flow increases once again, flow gets past the branches, generating higher

WSS at the branches themselves. However, during all these time phases a strange

phenomenon is observed near the outlet of the descending aorta part. Irrespective

of all flow regimes, a low shear stress region is developed there. Vorticial effect is
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definitely there, but the reason behind the exact flow phenomena still needs some

further investigation.

Figure 4.17. WSS(Pa) at the time of 0.37s for anterior (left) and posterior
(right) part of dilated Aorta

Some common features of these flow phenomena can be validated from some pre-

vious research for simplified aortas. N. Shahcheragi et. al. [26] demonstrated high

WSS at branch roots for both diastolic and systolic phases of the cardiac cycle that

is evident in our results. Moreover, during a diastolic (decelerating) phase analysis

for different inlet boundary conditions, Manasori et.al [30] also discovered high WSS

at the lower aortic arch for all conditions. Our results also display the same (Fig:
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4.18, 4.19) for diastolic phase analysis of the cardiac cycle. Moreover, These results

confirm the accuracy of the fluid modeling methodology we used in our simulation to

proceed further accordingly.

Figure 4.18. WSS(Pa) validation at the branch roots for peak diastolic
phase

Figure 4.19. WSS(Pa) validation at lower aortic arch region for peak
diastolic phase



52

Figure 4.20. WSS(Pa) comparison for peak systolic flow
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WSS comparisons for pulsatile analysis results between the normal and the dilated

aorta are performed afterwards. Similar pulsatile flow profiles (normal aortic flow)

were assumed at the inlets. For peak systolic flow (Fig: 4.20), the dilated aorta

displayed lower WSS at the ascending aorta region. Due to dilation, the velocity was

lower at the ascending part of the aorta resulting in lower WSS.

For other phases of the pulsatile flow, a higher value of WSS was observed at

dilated aortic wall than normal aortic wall. Moreover, a more sporadic distribution

of WSS was found in the dilated aorta. Like previous findings, lower inlet flow rate

resulted in lower value of WSS whereas higher WSS was generated in the case of peak

systolic flow for both normal and dilated aortas.
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Figure 4.21. WSS(Pa) comparison for flow diastole
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Figure 4.22. WSS(Pa) comparison for mid diastole flow
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Figure 4.23. WSS(Pa) comparison for end diastole flow
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Velocity skewness comparison was also performed for both normal and dilated

aorta for peak systole (Fig: 4.24) and diastole (Fig: 4.25) of the cardiac cycle. For

peak systolic flow, lower velocity magnitude was obtained in the dilated aorta at the

ascending part because the diameter of that region was larger, but at the descending

part the velocity eventually got higher. For both the cases, velocity skewness was

found at the arch regions of the aortas.

Figure 4.24. Velocity(m/s) profile comparison for normal and dilated
aorta at peak systole

For the diastolic phase, the skewness was observed near the aortic arch regions

in a fashion similar to the systolic phase. Backflow was happening in this case and
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random vortices were created generating erratic flow patterns which were described

previously.

Figure 4.25. Velocity(m/s) profile comparison for normal and dilated
aorta at peak diastole
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5. PRELIMINARY RESULTS OF FLUID-STRUCTURE INTERACTION (FSI)

SIMULATION OF AORTA USING ANSYS-WORKBENCH

Fluidstructure interaction (FSI) is the interaction of some movable or deformable

structure with an internal or surrounding fluid flow. The interaction between fluid

and structure occurs in a wide range of engineering problems. The interaction be-

tween fluids and solids is a phenomenon that can often be observed in nature, for

example, the deformation of trees or the movement of sand dunes caused by wind. In

almost the same manner, wind can interact with buildings, sometimes with dramatic

consequences, such as the collapse of the Tacoma-Narrows Bridge in November 1940.

The solution for such problems is based on the relations of continuum mechanics and

is mostly solved with numerical methods. It is a computational challenge to solve

such problems because of the complex geometries, intricate physics of fluids, and

complicated fluid-structure interactions. Solution strategies for FSI simulations are

mainly divided into monolithic and partitioned methods; this section will focus only

on partitioned methods [20] since the package used for the simulation purpose here

is ANSYS Workbench that follows the same methodology.

5.1 Methodology

Regardless of whether one-way or two-way coupling methods are used, the solu-

tions are based on a partitioned method where separate solutions for the different

physical fields are prepared. One field that has to be solved is fluid dynamics, the

other is structure dynamics. At the boundary between fluids and solids, the fluid-

structure interface, information for the solution is shared between the fluid solver and

structure solver. The information exchanged is dependent on the coupling method.

For one-way coupling calculations, only the fluid pressure acting at the structure is
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transferred to the structure solver. For two-way-coupling calculations, the displace-

ment of the structure is also transferred to the fluid solver.

In the top part of Fig: 5.1 procedure is shown for one-way coupling. Initially,

the fluid field is solved until the convergence criteria are reached. The calculated

forces at the structure boundaries are then transferred to the structure side. Next,

the structure side is calculated until the convergence criterion is reached. Then, the

fluid flow for the next time step is calculated to convergence. The solution is finished

when the maximum number of time steps is reached.

Figure 5.1. Solution algorithm for one and strong two-way coupling [20].
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The process flow chart for the strong two-way coupling algorithm is shown on

the bottom of Figure 5.1. Within one-time step during the transient simulation, a

converged solution for the flow field is required to provide the forces acting on the

body. After interpolating the forces from the fluid mesh to the surface mesh of the

structure, a converged solution of the structural dynamics will be attained under

the effect of the acting forces. The response of the structure to the emerging load

represents a displacement of the structural grid nodes. The displacements at the

boundary between structure and fluid are interpolated to the fluid mesh which leads

to its deformation. This step closes one inner loop of the simulation. For strong

two-way-coupling simulations, these steps are repeated until the changes in the flow

forces and the structural displacements fall below a prescribed amount. Afterwards,

a new time step is launched. For weak two-way coupling simulations, the convergence

at the boundary between structure and fluid is not considered and a new time step

is launched directly.

Application-wise, FSI simulation can be categorized likewise in Fig: 5.2.
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Figure 5.2. Application based categorization of FSI simulation [21].

Some general comments can be made about both methods. Often the advantage of

one method is a disadvantage of the other. In general, the two-way coupling solution

is more accurate, especially for larger deflections where the fluid field is strongly

influenced by structural deformation. Strong two-way coupling solutions can be of

second-order time accuracy and are more stable (see Vaassen et al. [21]). The one-way

coupling method does not guarantee energy conservation at the interface, but two-way

does. A benefit of one-way coupling simulation is significantly lower computational

time. A second benefit is that deformation of the fluid mesh does not need to be

calculated, which provides a mesh of constant quality.
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5.2 FSI Modeling and Simulation of Normal Aorta

Figure 5.3. Flowchart of the coupling analysis (Courtesy: Ansys Work-
bench)

The figure above describes the schematic of the FSI simulation performed in Ansys.

Module A represents the fluid flow analysis, module B solid structural analysis and

module C is used to couple the simulation to get the FSI results.

The aorta is comprised of a three-layered wall [16] with different values of Youngs

moduli,but in our case we took a mean total thickness of 2.5mm with a mean value

of Youngs modulus of 2.7 MPa and a density of 2000 kg/m3. At the aortic inlet, a

flat flow velocity profile was used with the peak velocity (1.1m/s) of the cardiac cycle

and the wall was considered as no-slip. The assumption of a flat velocity profile at

the aortic inlet is justified by in vivo measurements using hot film anemometry on

various animal models that have demonstrated that the velocity profile distal to the

aortic valve are relatively flat, Nerem [21].

Boundary Conditions: The surfaces of the aortic inlet and the aortic outlets

with the branches are fixed in all directions. The other outer surface of the aortic

model was taken as load free fluid solid interface (Fig: 5.4). The fluid boundary

condition was the same as steady flow simulation case.
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The simulation was performed for unsteady flow analysis and since the geometry

was highly complicated and mesh was highly skewed; a very low time step and coarse

mesh of fluid part was chosen for better mapping at fluid solid interface region. A very

low time step of 1.0e− 5s was chosen and the simulation ran for 12 time steps. k− ε

turbulent model was chosen as the viscous mode(since the peak velocity results in

turbulent flow from the very beginning) with PISO (Pressure-Implicit with Splitting

of Operators) algorithm as pressure velocity coupling to improve the efficiency by

performing neighbor correction and skewness correction. The FSI simulation in this

work was just an attempt to simulate the blood flow using Ansys Workbench since it

only ran for 12 time steps. High skewness of the mesh resulted in divergence of the

results after that time step. Thus the results presented here is to see the qualitative

nature of the blood flow at the very initial stage. A more extensive study needs to

be done here to represent the actual blood flow phenomena according to the actual

flow case.

Figure 5.4. Skin of the Aorta with structural boundary conditions (left)
and with the thickness of 2.5mm (right)
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Deformation is defined by the change in the shape or size of an object due to an

applied force. It can be resulted due to tensile, compressive, shear bending or torsion.

While displacement determines the a vector extending from a particle’s initial location

to its deformed location; deformation is determined by a deformation gradient tensor

that quantifies the changes in co-ordinate vectors from original position.

From the contours of deformation of the aorta (Fig: 5.5) we can see that a large

amount of deformation is occurring at the aortic arch and the branch roots of the

aorta.

Figure 5.5. Deformation of Aorta at cardiac cycle peak velocity of 1.1m/s,
Anterior view(left), posterior view (right)
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As we continued our study to find out the maximum equivalent (Von-Mises) stress

(Fig: 5.6), we also realized that a high amount is generated at the aortic arch and

for similar reasons described beforehand.

Figure 5.6. Equivalent (Von Mises) Stress of Aorta at cardiac cycle peak
velocity of 1.1m/s, Anterior view (left), posterior view (right)

The major limitation of the FSI simulation was, it was only performed for the

peak velocity of the cardiac cycle; disregarding the pulsatile tendency of the inlet

velocity. The reason was the computational expense was way above the capacity of

the machine to complete the work within required time frame. That’s the same reason

behind not performing the FSI simulation of the dilated aorta as well.
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6. DISCUSSION AND FURTHER WORK

Dilation of Ascending Aorta entails a high risk of dissection or aortic rupture in the

absence of surgical treatment. Aortic aneurysms remain the 13th leading cause of

mortality in western countries. The incidence of thoracic aortic aneurysms is esti-

mated to be 4.5 cases per 100000. Supravalvular aortic aneurysms are less common,

and predominantly affect male patients (ratio 3:1); the mean age at the time of di-

agnosis ranges from 59 to 69 years. In the case of aortic root aneurysms, patients

are younger (30 to 50 years), with a 1:1 sex ratio [30]. Preventive measures can be

taken beforehand if dilation prone locations can be identified and treated accordingly.

Thus, blood flow analysis for the whole cardiac cycle analysis is necessary to find these

regions accordingly.

On this line, our research helps in finding locations where high WSS was gener-

ated giving rise to the fact that high wall shear stress is the predominant factor in

determining the regions of several arterial wall diseases. Hence risk of diseases like

wall dissection and rupture can be significantly reduced if we can identify the risk

regions and take measures accordingly. This study was specifically important because

previous studies did not include an exact model of the real patient aorta by smoothing

out the geometry significantly to ease the mesh as well as the solution or excluding

the branches to reduce complexity of the geometry.

Modeling this problem, though straightforward, was full of technical ventures.

Most of the previous simulation used simplified geometry for modeling and simu-

lation of the blood flow scenarios, but this research comprised of an actual aorta

from patients without compromising the geometric complexities. Also to our knowl-

edge,the attempt to FSI simulation using Ansys Workbench for this case has not been

performed beforehand. Thus, the research showed a path to find out the higher WSS

and deflected areas accordingly.
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The results of the steady flow simulations have revealed a flow field that is largely

similar as described in Chapter 3 of the thesis that demonstrates that the results of

the simulations are credible. Thus, the simulations performed for pulsatile case can

only be referred to qualitative approximation of real time flow.

The results revealed that WSS values are always larger for a dilated aorta than

a normal Aorta. This happens due to the fact of having more curved nature of the

geometry that results in high WSS that is more prone to arterial diseases.

From the attempt to FSI simulation results, a high amount of deformation and

equivalent stress is found near the arch of the aorta which resembles that the region is

prone to rupture failure and physicians should take therapeutic measures accordingly

to prevent further occlusion and fatalities afterwards.

In this study the results that we simulated for pulsatile blood flow of normal and

dilated aorta is validated methodologically based on the steady flow simulation of a

relevant paper. But more accuracy could have been attained if we could compare the

same with an experimentation of actual blood flow situation within aorta. This was

not feasible for the time being because of an extremely costly approach and due to

more time requirement.

Also, though an actual Aorta is comprised of three layers: intima, adventitia and

media that have respective thickness values and Youngs modulus values, we considered

a total thickness of 2.5mm and E of 2.7MPa instead of taking them separately that

leave the accuracy of results somewhat weak.

Next, the mechanical properties and thickness values vary from age to age [29].

Hence to some extent though it will not create significant difference in the results.

But for more accurate patient relevant studies, these need to be taken care of in

farther research.

For the fluid structure interaction simulation, for more accurate acquisition of de-

flection and mechanical stress distribution, pulsatile flow simulation was necessary. In

our study we attempted for only cycle-peak velocity inlet but due to computational

cost and time requirement pulsatile flow analysis of the same could not be imple-
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mented. In future work, we also suggest doing this to get a grave insight of these

important parameters.

Conclusion

The arterial wall tissue reacts to both the normal and shear stresses [21]. In par-

ticular, the wall shear stress is involved with the formation of atherosclerosis that is

characterized by a narrowing of the arterial lumen due to the accumulation of fatty

material. However wall shear stress is difficult to measure in vivo with a sufficient spa-

tial resolution. Thus numerical simulations can help to predict the WSS distribution

in a specific geometry of the vessel, improving diagnosis and prevention. A reliable

numerical tool that carries out all the process from the patient-specific segmentation

to the simulation could help a medical doctor to choose the correct therapy adapted

to a specific patient. Furthermore, if the model is validated, a simulation of the WSS

distribution can help to solve the inverse problem, i.e., to identify the role that WSS

plays in the development of pathologies such as atherosclerosis.
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