
Mojim: A Reliable and Highly-Available

Non-Volatile Memory System

Yiying Zhang Jian Yang Amirsaman Memaripour Steven Swanson

Department of Computer Science and Engineering, University of California, San Diego

{yiyingzhang,jianyang,amemarip,swanson}@cs.ucsd.edu

Abstract

Next-generation non-volatile memories (NVMs) promise

DRAM-like performance, persistence, and high density.

They can attach directly to processors to form non-volatile

main memory (NVMM) and offer the opportunity to build

very low-latency storage systems. These high-performance

storage systems would be especially useful in large-scale

data center environments where reliability and availability

are critical. However, providing reliability and availability

to NVMM is challenging, since the latency of data repli-

cation can overwhelm the low latency that NVMM should

provide.

We propose Mojim, a system that provides the relia-

bility and availability that large-scale storage systems re-

quire, while preserving the performance of NVMM. Mojim

achieves these goals by using a two-tier architecture in which

the primary tier contains a mirrored pair of nodes and the

secondary tier contains one or more secondary backup nodes

with weakly consistent copies of data. Mojim uses highly-

optimized replication protocols, software, and networking

stacks to minimize replication costs and expose as much

of NVMM’s performance as possible. We evaluate Mojim

using raw DRAM as a proxy for NVMM and using an in-

dustrial NVMM emulation system. We find that Mojim pro-

vides replicated NVMM with similar or even better perfor-

mance than un-replicated NVMM (reducing latency by 27%

to 63% and delivering between 0.4 to 2.7× the throughput).

We demonstrate that replacing MongoDB’s built-in replica-

tion system with Mojim improves MongoDB’s performance

by 3.4 to 4×.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694370

Categories and Subject Descriptors D.4.2 [Storage Man-

agement]: Main memory

Keywords non-volatile memory; distributed storage sys-

tems; reliability; availability; data center; storage-classmem-

ory

1. Introduction

Fast, non-volatilememory technologies such as phase change

memory (PCM), spin-transfer torque magnetic memories

(STTMs), and the memristor are poised to radically alter the

performance landscape for storage systems. They will blur

the line between storage and memory, forcing designers to

rethink how volatile and non-volatile data interact and how

to manage non-volatile memories as reliable storage.

Attaching NVMs directly to processors will produce

non-volatile main memories (NVMMs), exposing the per-

formance, flexibility, and persistence of these memories to

applications. However, taking full advantage of NVMMs’

potential will require changes in system software [3].

The need for such changes is especially acute in large-

scale data center environments where storage systems re-

quire more than simple non-volatility. These environments

demand reliability and availability in the face of hardware,

software, and network failures. Without this reliability and

availability, NVMM will only be suitable as a transient data

store or as a caching layer—it will not be able to serve as a

reliable primary storage medium.

Data centers traditionally provide both reliability and

availability by adding redundancy using replication [5, 11,

15, 55, 56] or erasure coding schemes [18, 21]. These ap-

proaches rest on the assumption that storage is slow, so the

cost of the network and software protocols required to im-

plement replications is acceptable.

NVMM will change this situation completely, since the

networking and software overhead of existing replication

mechanisms will squander the low latency that NVMM can

provide. The interface with NVMM is also different from

traditional storage: applications access NVMM directly with

fine-grained memory operations.

We proposeMojim1, a system that provides replicated, re-

liable, and highly-available NVMM as an operating system

service. Applications can access data in Mojim using nor-

mal load and store instructions while controlling when and

how updates propagate to replicas using system calls. Mo-

jim allows applications to build data persistence abstractions

ranging from simple log-based systems to complex transac-

tions.

Mojim uses a two-tier architecture that allows flexibility

in choosing different levels of reliability, availability, con-

sistency, and monetary cost, while minimizing performance

overhead. The primary tier includes one primary node and

one mirror node. Mojim can, depending on the configura-

tion, keep these nodes strongly or weakly consistent. An op-

tional secondary tier provides an additional level of redun-

dancy with one or more backup nodes that are weakly con-

sistent with the primary tier.

Mojim efficiently replicates fine-grained data from the

primary node to the mirror node using an optimized RDMA-

based protocol that is simpler than existing replication pro-

tocols. The mirror node replicates data to the backup nodes

in the background, thus keeping the secondary tier off the

performance-critical path. This design offers good perfor-

mance and two strongly consistent copies of data plus more

copies of weakly consistent data. To further improve avail-

ability and reliability, Mojim also provides a fast recovery

process and atomic semantics that guarantee data integrity.

In buildingMojim, we explore the performance and mon-

etary cost impacts of providing availability, reliability, and

consistency with NVMM, and we explore trade-offs among

replication protocols for NVMM. Interestingly, we find that

adding availability, reliability, and consistency does not nec-

essarily impair NVMM performance, as long as the replica-

tion protocols and software layers are optimized for NVMM.

We evaluate Mojim using raw DRAM as a proxy for fu-

ture NVMMs and with an industrial NVMM emulation sys-

tem. Our evaluation shows that, surprisingly, Mojim reduces

the average latency of the un-replicated system by 27% to

63%, even when it provides strongly consistent copies of

data. Mojim’s performance gain is mainly due to inefficien-

cies in the current instruction sets the un-replicated system

uses to enforce data persistence. Mojim provides 0.4 to 2.7×
the throughput of the un-replicated system. We also run sev-

eral popular applications including a file system [12], the

Google Hash Table [16], and MongoDB [40] on Mojim. The

MongoDB results are the most striking: Mojim is 3.4 to 4×
faster than the MongoDB replication mechanism and 35 to

741× faster than un-replicated MongoDB.

The rest of the paper is organized as follows. Section 2

provides some background on persistent memory and repli-

cated storage systems. We present Mojim and its implemen-

tation in Sections 3 and 4. Section 5 describes our experi-

ence adapting applications to use Mojim. We then present

1Mojim (!") is the Chinese word for “magic mirror.”

the evaluation results of Mojim in Section 6. Finally, we dis-

cuss related work in Section 7 and conclude in Section 8.

2. NVMM in the Data Center

NVMM blurs the line between memory and storage, and it

poses new challenges for system designers and architects.

Previous research on NVMM has focused on how to use

these memories in a single machine [3, 8, 9, 12, 39, 58,

59], while most mission-critical data resides in distributed,

replicated storage systems (e.g., in data centers). For NVMM

to succeed as a first-class storage technology, it must provide

the reliability and availability that these storage systems

require [26].

Mojim’s goal is to make NVMM a reliable and highly-

available storage layer suited to these data center environ-

ments. Achieving this goal will require designers to address

trade-offs between performance, reliability, monetary cost,

and consistency. Below, we introduce NVMM and discuss

why it demands new approaches to providing availability,

reliability, and consistency in storage systems.

2.1 Next-Generation Non-Volatile Memory

NVM technologies are closing the performance, cost-per-

bit, and capacity gap between low-latency, volatile memory

technologies and high-capacity, persistent storage technolo-

gies [25, 32, 49, 62]. Next-generation NVM technologies

(like PCM, the memristor, and STTM) are byte-addressable

and projections show that their performance may approach

that of DRAM [20, 27, 35, 60]. For example, PCM, the most

mature next-generation NVM technology, has access laten-

cies within a small factor of DRAM [33, 34, 38, 48].

Attaching next-generation NVMs to the main memory

bus provides a raw storage medium that is orders of mag-

nitude faster than modern disks and SSDs. NVMM presents

many new technical challenges and has inspired a host of

research projects on topics including OS management of

NVMM [3], user-space libraries and programming mod-

els [8, 58], specialized NVMM file systems [9, 12, 59],

and hybrid main memory and heterogeneous memory allo-

cation [39, 41, 50]. This work focuses on the problems of

replicating NVMM content so that NVMM can be applied

in a distributed data center context.

2.2 NVMM Availability, Reliability, and Consistency

Although NVMM protects against power failure by mak-

ing the contents of memory persistent, it does not address

the other ways that systems fail, including software, hard-

ware, and networking errors that are common in data cen-

ters [14, 42]. Providing availability and reliability in such

environments is important to meet client SLAs [55] and ap-

plication requirements. Strong consistency is also desirable

in storage systems, since it makes it easier to reason about

system correctness.

Adding redundancy or replication is a common technique

for providing reliability and availability [1, 5, 11, 15, 17,

18, 29, 46, 47, 51, 52, 56, 61]. Various protocols exist to

provide different consistency levels among redundant copies

of data [2, 4, 11, 22, 31, 47]. For traditional storage sys-

tems with slow hard disks and SSDs, the performance over-

head of replication is small relative to the cost of access-

ing a hard drive or SSD, even with complex protocols for

strong consistency. With NVMMs, however, the networking

round trips and software overhead involved in these tech-

niques [4, 22, 31, 56] threaten to outstrip the low-latency

benefit of using NVMMs in the first place. Even for systems

with weak consistency [11, 47], increasing the rate of rec-

onciliation between inconsistent copies of data can threaten

performance [17, 28].

Since NVMM is vastly faster than existing storage tech-

nologies, it presents new challenges to data replication. First,

NVMM-based systems must deliver high performance to

justify their increased cost relative to disks or SSDs. Ex-

isting replication mechanisms built for these slower storage

media have software and networking performance overhead

that would obscure the performance benefits that NVMM

could provide.

Second, NVMM is memory, and applications should be

able to use it like memory (i.e., via load and store instruc-

tions without operating system overheads for most accesses)

rather than as a storage device (i.e., via I/O system calls).

3. Mojim Design

Mojim provides an easy-to-use, generic layer of replicated

NVMM that ensures reliability, availability, and consistency,

while sacrificing as little of NVMM’s performance as possi-

ble. Mojim uses a two-tier architecture and supports several

operating modes to let applications tune Mojim’s reliability,

availability, and consistency to match their particular needs.

This section discusses Mojim’s interfaces and architec-

ture and the different modes Mojim provides.

3.1 Mojim’s Interfaces

Mojim is an operating system service that provides reliable

and highly-available NVMM. This section describes Mo-

jim’s typical usage scenario and the interface it provides.

To use Mojim, a system configuration file specifies a set

ofMojim regions on the primary node to be replicated, along

with a mirror node and a list of backup nodes where the

replicas should reside. The primary node supports reads and

writes to the replicated data. The mirror node and backup

nodes support reads only. Kernel modules can access these

regions and use them to build complex, replicated, memory-

based services such as a kernel-level persistent key value

store, a persistent disk cache, or a file system. The kernel

could also make these services available to applications via

a malloc()-like interface.

While Mojim can serve as the basis for many memory-

based services, deploying an NVMM-aware file system to

manage the replicated NVMM region would provide the

most flexibility in application usage models. The file system

would provide familiar file-system-based mechanisms of al-

location and naming as well as conventional file-based ac-

cess for non-performance-critical applications. The key re-

quirement of the file system is that, for an mmap’d file, it

maps the the NVMM pages corresponding to the file directly

into the applications’ address spaces rather than paging them

in and out of the kernel’s buffer cache. In our experiments,

we use PMFS [12] for this purpose.

With a file system in place, applications can create files

in the Mojim-backed file system and map them into their

address space usingmmap. We call the NVMM area mapped

by applications the data area. After an mmap, applications

can perform direct memory accesses to the data area using

load and store instructions on the primary node and load

instructions on the mirror node.

Mojim provides a mechanism called a sync point that

allows applications to control when and what updates in

the data area propagate to the replicas. At each sync point,

Mojim atomically replicates all memory regions specified by

an application.

Two APIs allow applications to create sync points:msync

and gmsync.

Mojim leverages the existing msync system call to spec-

ify a sync point that applies to a single, contiguous address

range. The semantics of Mojim’s msync correspond to con-

ventional msync, and applications that use msync will work

correctly without modification under Mojim. Mojim allows

an application to specify a fine-grained memory region in

the msync API and replicates it atomically, while traditional

msync flushes page-aligned memory regions to persistent

storage and does not provide atomicity guarantees [45].

Mojim’s gmsync adds the ability to specify multiple

memory regions for the sync point to replicate, allowing

for more flexibility than msync.

Mojim provides a mechanism to allow applications to

make their data persistent atomically, but it does not provide

primitives for synchronization. It would be possible to add

synchronization primitives to Mojim, but this would increase

the complexity of the system and require selecting a set of

synchronization mechanisms to support. A better approach

would be to build synchronization mechanisms that leverage

Mojim’s mechanisms.

Figure 1 shows a simple example in C of how to use Mo-

jim to manage an append-only log on Mojim. The program

first opens and mmaps a file in a Mojim region. It then up-

dates the access count of the log and makes this value per-

sistent with the conventional msync API. Next, it appends a

log entry and updates the size of the log. It makes both these

data persistent with an gmsync call. The atomicity that gm-

sync provides guarantees that the log size is consistent with

the log content on the replica nodes.

int fd = open("/mnt/mmapfile", O_CREAT|O_RDWR); // open a file in mounted Mojim region

void *base = mmap(NULL, 40960, PROT_WRITE,

MAP_SHARED, fd, 0); // mmap a 40KB area in the file

unsigned long *access_count_p = base; // access count of the log

unsigned long *log_size_p = base + sizeof(unsigned long); // size of the log

int *log = base + 2*sizeof(unsigned long); // the log

*access_count_p = *access_count_p + 1; // memory load and store

msync(access_count_p, sizeof(unsigned long), MS_SYNC); // call conventional msync

int beautiful_num = 24;

unsigned long curr_log_pos = *log_size_p; // memory load and store

log[curr_log_pos] = beautiful_num;

*log_size_p = *log_size_p + 1;

struct msync_input { void *address; int length; };

struct msync_input input[2];

input[0].address = &(log[curr_log_pos]);

input[0].length = sizeof(int);

input[1].address = log_size_p;

input[1].length = sizeof(unsigned long);

gmsync(input, 2, MS_MOJIM); // call gmsync to commit the log append

Figure 1. Sample code to use Mojim. Code snippet that implements a simple log append operation with Mojim.

Figure 2. Mojim Architecture. The numbered circles repre-

sent different steps in the Mojim replication process. MLog stands

for the metadata log.

3.2 Architecture

Mojim uses a two-tier architecture. The primary tier contains

a primary node and its read-only mirror node; the secondary

tier includes one or more backup nodes with weakly consis-

tent, read-only copies of data. Figure 2 depicts the architec-

ture of Mojim.

Mojim’s primary tier contains a pair of mirroring nodes: a

primary node replicates data to its mirror node at each sync

point (i.e., call to msync or gmsync). The application can

read and write data on the primary node, but Mojim only

allows reads from the mirror node.

The primary tier offers good performance even when

guaranteeing strong consistency, since it requires only one

networking round trip for each sync point. Existing archi-

tectures that allow writes to all replicas (E-writeall) [31], or

that use one primary and multiple secondary nodes (E-chain

and E-broadcast) [2, 56], require multiple networking round

trips or other performance overhead to guarantee strong con-

sistency. We will discuss how Mojim differs from these ex-

isting schemes in more detail in Section 7.

To further improve performance, we connect the primary

node and the mirror node with a high-speed Infiniband link

and use an efficient software and networking layer to repli-

cate data between them.

To improve reliability, we place the primary node and

the mirror node on different racks, since failure bursts often

happen within the same rack [14, 42].

The optional secondary tier includes one or more backup

nodes to maintain additional copies of data. It provides ad-

ditional reliability and availability, so that failure bursts will

not be catastrophic. The mirror node replicates data to the

backup nodes in the background. Thus, data in the backup

nodes is not strongly consistent with data in the primary tier.

By keeping the replication to the secondary tier in the back-

ground and off the performance-critical path, Mojim ensures

good application performance.

With both tiers in operation and a total of N nodes, Mo-

jim can tolerate N − 1 node failures. In most environments,

one or a few backup nodes are enough to prevent data loss,

since failure bursts are more likely to involve only a small

number of nodes [14, 42]. Also, in most failure bursts, the

nodes do not all fail at the same time; failures are usually

separated by a few seconds. A fast recovery can thus prevent

data loss even with few copies of replicated data. We discuss

recovery optimizations in Section 4.3.

Scheme R A C $

S-unreplicated 0 Worst N/A Low

M-async 1 Good Weak Fair

M-sync 1 Good Strong Fair

M-syncdisk 1 OK Strong Low

M-syncsec N−1 Best Strong+Weak High

M-syncseceth N−1 Good Strong+Weak Fair

E-writeall N−1 Best Strong High
E-chain N−1 Best Strong High

E-broadcast N−1 Best Strong High

Table 1. Replication Schemes. Mojim supports a wide range

of reliability, availability, consistency, and monetary cost levels

(columns 2-5). The reliability column represents the number of

node failures that can be tolerated in a system of N nodes. The last

three rows compare Mojim to other existing replication schemes.

3.3 Mojim Modes and Replication Protocols

Mojim supports several replication modes and protocols that

allow users to choose different levels of performance, relia-

bility, consistency, availability, and monetary cost depending

on application requirements.

Table 1 summarizes these different modes and their prop-

erties, and we discuss them below using the numbered cir-

cles in Figure 2 to illustrate the replication process in each

mode.

Across all the modes Mojim provides, Mojim achieves

most of its performance by adopting a different architecture

than most replicated storage systems. Instead of supporting

multiple consistent replicas, Mojim only supports strong

consistency at a single mirror node. This decision makes our

replication protocols much simpler (e.g., there’s no need for

multi-phase commit or a complex consensus protocol) and,

therefore, allows for much higher performance.

Mojim achieves the goal of providing its atomic data

persistence interface by ensuring that atomic operations are

replicated atomically to the mirror node and the backup

nodes, by appending replicated data to logs on the mirror

node and the backup nodes.

Un-replicated without Mojim: A single machine without

Mojim (S-unreplicated) must flush an msync’d memory re-

gion from the processor’s caches to ensure data persistence.

S-unreplicated has poor availability and is only as reliable as

the NVM devices. Moreover, even if the NVMM is recov-

ered after a crash, data can still be corrupted. For example,

if a crash occurs after a pointer is made persistent but be-

fore the data it points to becomes persistent, the system will

contain corrupted data.

Sync: Mojim’s M-sync mode guarantees strong consistency

between the primary and the mirror node. It provides im-

proved reliability and availability over S-unreplicated, since

in the case of a failure the mirror node can take the place of

the primary node without losing data.

In M-sync, when an application calls msync or gmsync

(1© in Figure 2), Mojim pushes data from the primary node

to the mirror node via RDMA (3©) and writes the data in

the mirror node log (4©). The primary node waits for the

acknowledgment from the mirror node (5©), and then returns

the msync or gmsync call (6©). The mirror node later takes

a checkpoint to apply the log contents to the data area (7©).

Mojim stores both the mirror node logs and its data area in

NVMM for high performance and fast recovery.

In M-sync, Mojim does not flush data from the pri-

mary node’s caches (2©). Modern RDMA devices are cache-

coherent, so they will send the most up-to-date data [24, 30].

Thus, the mirror node always gets the latest data and pushing

data to the mirror node is sufficient to ensure persistence. If

the primary node crashes, the mirror node has the most up-

to-date data. If the mirror node crashes, the primary node

has all the data, but it may not be persistent, so the primary

node immediately flushes its caches to prevent data loss.

This means there is a small “window of vulnerability” after

a mirror node failure during which a primary node failure

could result in data loss. On our system, this window lasts

for 450 µs, the time required to flush the processor caches.

Surprisingly, our evaluation results show that M-sync of-

fers performance comparable to or better than S-unreplicated

because flushing CPU caches is often more expensive than

pushing the data over RDMA. The current clflush instruction

is strongly ordered and cannot utilize the parallelism offered

in modern processor architecture. Intel recently announced

two instructions that are more efficient than clflush and that

will be available on future systems [23], which should help

resolve this problem.

Sync with cache flush: To close the window of vulnerability

mentioned above, Mojim can flush data from the primary

node’s caches (2©) before returning to applications’ msync

or gmsync calls (6©). This mode is called M-syncflush, and

with M-syncflush, all data can survive simultaneous failures

of the primary node and the mirror node.

Async: M-async provides weaker consistency between the

primary node and the mirror node.M-async ensures that data

is persistent on the primary node for each sync point (2©) and

pushes the data to the mirror node (3©), but it does not wait

for the mirror node’s acknowledgment (5©) to complete the

application’s msync or gmsync call (6©). Thus, data on the

mirror node can be out of date relative to the primary node.

M-async must flush the primary node CPU caches at each

sync point to ensure that the latest data is persistent.

Sync with slow storage: To reduce the monetary cost of M-

sync, Mojim supports a mode that stores the log on the mir-

ror node in NVMM, but stores the mirror node’s data area on

a hard disk or SSD (M-syncdisk). M-syncdisk has a slower

recovery process than M-sync, since Mojim needs to read

data from hard disk or SSD to NVMM before applications

can access them.

Sync with the secondary tier: M-syncsec adds the sec-

ondary tier to M-sync and increases reliability and avail-

ability by adding more copies of data. Mojim replicates data

from the mirror node to the backup node in the background

(8©-11©). M-syncsec provides two strongly-consistent copies

of the data at the primary and mirror nodes and one weakly-

consistent data copy at each backup node. The amount of

inconsistency between the mirror node and backup nodes

is tunable and affects the recovery time. Even though the

data at each backup node may be out-of-date, it still repre-

sents a consistent snapshot of application data because of

the atomic semantics Mojim provides. Our evaluation re-

sults show that M-syncsec delivers performance similar to

M-sync because replication to the backup nodes takes place

in the background.

Sync with low-cost secondary tier: M-syncsec requires

fast networks between the mirror node and backup nodes,

which increases the monetary cost and networking band-

width consumption of the system. A lower cost option,

M-syncseceth, uses Ethernet between the mirror node and

backup nodes. M-syncseceth has the worst performance of

all the Mojim modes, but it still provides the same reliability,

availability, and consistency guarantees as M-syncsec.

4. Implementation

This section describes our implementation of Mojim in the

Linux kernel. The core of Mojim comprises an optimized

network stack and the replication and recovery code.

4.1 Networking

The networking delay of data replication is the most impor-

tant factor in determiningMojim’s overall performance.Mo-

jim uses Infiniband (IB), a high-performance switched net-

work that supports RDMA. RDMA is crucial because it al-

lows the primary node to transfer data directly into the mirror

node’s NVMMwithout requiring additional buffering, copy-

ing, or cache flushes.

Mojim uses IB-Verbs, a set of native IB APIs based on

send, receive, and completion queues [37]. IB-Verbs requires

the application to post send (receive) requests to send (re-

ceive) queues. It uses completion messages in the comple-

tion queue to indicate the completion of requests and sup-

ports both polling and interrupts to detect completions. IB-

Verbs offers native IB performance and outperforms alterna-

tive IB protocols such as IPoIB and RDS (see Section 6.2).

Existing IB-Verbs implementations are userspace libraries

that bypass the kernel. We created a kernel version of IB-

Verbs for Mojim.

Mojim uses a thin protocol based on the reliable trans-

portation mode of IB-Verbs. The Mojim protocol directly

fetches data from the primary node and writes it to NVMM

on the mirror node. For each sync point, the primary node

posts a send request on the IB send queue and polls for its

completion. The mirror node posts a set of receive requests

in advance and polls for the arrival of incoming messages.

Our measurements show that polling is more efficient than

interrupts.

Figure 3. Example of Mojim Replication. An example of

Mojim’s replication process. Each cell represents a request. The

letter in the cell stands for the memory address and the number in

the cell represents its unique ID. The upper-left part shows three

threads placing three gmsync calls. The upper-right part shows the

data area on the mirror node. The ∗ represents the end mark of

a gmsync operation. The gray cell in the mirror node data area

represents the data that is recovered after a crash.

The protocol does not require explicit acknowledgment

messages from the mirror node to the primary node, since

we configure the IB link to provide a successful completion

notification for the primary node’s send request only once

the data transfer succeeds. In the event of an error or a

timeout, the primary node resends the message to the backup

node. After a set number of unsuccessful re-send attempts,

Mojim invokes its recovery process.

To sustain high bandwidth, Mojim creates multiple IB

connections to handle client requests. For each connection,

we assign one thread on the mirror node to poll for incom-

ing messages. On the primary node, we let the application

thread perform IB send operations for M-sync and use a

background thread to post these operations for M-async.

4.2 Replication

We now describe theMojim replication process and the tech-

niques that we use to enable reliable, atomic, and consistent

data replication.

Primary tier replication: At each sync point, the primary

node posts IB send requests containing the target memory

regions. Mojim ensures that all requests belonging to the

same atomic operation are consecutive and on the same IB

connection and marks the last request to let the mirror node

know the end of an atomic operation. Since Mojim’s reliable

IB protocol ensures ordering in each IB connection, these

requests will appear in the same order on the mirror node.

A unique ID on each send request allows the mirror node

to keep updates ordered across IB connections. For recovery

purposes, the primary node stores the memory addresses of

the most recent requests in a metadata log.

For each IB connection, the mirror node maintains a cir-

cular log and a thread that polls incoming requests. Mojim

places the logs in NVMM for good performance and per-

sistence and pre-allocates fixed-size buffers on the logs for

RDMA accesses. With pre-allocated memory slots, Mojim

only needs one IB roundtrip to replicate data from the pri-

mary node to the mirror node. Because the receive buffer

size is fixed, we limit the size of each send request on the

primary node and break original memory regions into mul-

tiple send requests if needed. Since RDMA writes directly

to NVMM, there is no need to flush the cache on the mirror

node.

After all the data for a sync point has arrived on the

log, the mirror node can write them to their permanent lo-

cations in the data area. This checkpointing happens peri-

odically after a configurable number of requests (CHECK-

POINT THRESH) have been received, as well as when the

system is idle and when a log is full. Mojim maintains global

pointers to the beginning and end of each log to indicate data

available for checkpointing.

To ensure that read-only applications on the mirror node

see a consistent view of their data, Mojim removes the

page table entries of the affected memory locations before

a checkpointing operation. During the checkpointing, an

application reading from those pages will generate a page

fault. We changed the page fault handler to wait until Mojim

completes the checkpointing and then restore the page table

entries and return the application read.

Secondary tier replication: Replication to the secondary

backups occurs in the background when there is data on

the mirror node’s logs. The protocol for replication to the

backup node mimics the replication to the mirror node.

The mirror node maintains a pointer for each log to in-

dicate the amount of data that has not yet been repli-

cated to the backup node. Mojim uses a threshold (SEC-

ONDARY TIER THRESH) to limit the amount of such un-

replicated data on the mirror node and stalls further replica-

tion to the mirror node until un-replicated data drops below

SECONDARY TIER THRESH.

Example: Figure 3 illustrates an example of Mojim’s data

structures and its replication process. In this example, Mo-

jim uses two IB connections and two mirror node logs.

Three application threads post three gmsync calls to the two

IB send queues. To guarantee atomicity, Mojim serializes

thread 2’s requests after thread 1’s requests on the second

send queue. Mojim then sends these requests to the mirror

node’s logs. The mirror node threads poll for the completion

of these writes and update the log-end pointers when they

have received all requests belonging to one gmsync call. The

checkpointing service processes the logs from the log-begin

pointer to the log-end pointer. The mirror node replicates the

log content between the log-bak-begin pointer and the log-

end pointer to the backup node.

4.3 Recovery

Fast recovery is crucial to providing high availability and

preventing data loss in the event of a failure. There are three

types of failure scenarios: primary, mirror, and backup node

failures. Mojim uses heartbeats to detect failures, but other

techniques [7, 36] are possible.

When the primary node fails, the mirror node becomes

the new primary node and a backup node becomes the

new mirror node. The new primary node first sends the

un-replicated data in its logs to the new mirror node and

checkpoints its log content to its data area after the failure.

For M-syncdisk, the new primary node needs to load data

from the data file on disk to the NVMM. After these op-

erations, applications can restart on the new primary node.

Until these operations complete, the Mojim contents will be

unavailable.

One option for activating a new backup node is to wait for

the failed node to come back online. Rebooting the machine

is often sufficient and more efficient than constructing a

new node [14]. When the crashed primary node restarts,

it receives the new data accumulated during its down time

from the new primary node. When the failed node cannot

reboot fast enough, a human operator or a systemmonitoring

service selects a new backup node based on its available

NVMM size, its networking topology, and other criteria [6,

53]. The new node receives a complete copy of the memory

region and begins processing updates from the new mirror

node.

When the mirror node or the backup node fails, the recov-

ery process is similar. If the mirror node fails, the primary

node first flushes its CPU caches. It also uses its metadata

log to locate un-replicated data and sends them to the backup

node. To restart the mirror node or the backup node, Mojim

replays the logs and writes only the completed atomic op-

eration content to the data area, with the help of the atomic

operation end mark and unique IDs. In the example in Fig-

ure 3, the mirror node crashes after Mojim checkpoints G.

The recovery process will checkpoint C and discard H . If

the failed node cannot restart, a newly chosen node receives

replicated data from the primary node as described above.

When both the primary node and the mirror node fail

in quick succession, Mojim falls back to the backup node.

Now Mojim needs to reconstruct two new nodes that the

administrating node selects. This recovery process is more

costly than the recovery of a single node failure. We reduce

the risk of this situation by placing nodes on different racks

and by setting a small SECONDARY TIER THRESH, thus

speeding up the recovery process of a single node failure.

5. Mojim Applications

We have ported several existing systems to Mojim to illus-

trate how applications can use Mojim’s interface. The appli-

cations include the PMFS file system [12], the Google hash

table [16], and MongoDB [40].

5.1 PMFS

The Persistent Memory File System [12] (PMFS) provides

a conventional file-system-like interface to NVMM, allow-

ing applications to allocate space with file creation, limit ac-

cess to data via file permissions, and name portions of the

NVMMusing file names. The key difference between PMFS

and a conventional file system is that its implementation of

mmap maps the physical pages of NVMM into the appli-

cations’ address spaces rather than moving them back and

forth between the file store and the buffer cache.

PMFS ensures persistence using sfence and clflush in-

structions. Mojim invokes its replication when PMFS per-

forms its persistence procedure. Mojim’s M-sync also re-

moves clflush and only performs sfence on the primary node.

Mojim’s change required modifications to just 20 lines of

PMFS source code. Applications can usemmap to gain load-

/store access to a file’s contents and then use fsync, msync,

or gmsync to manage replication and data consistency.

5.2 Google hash table

Google hash table [16] is an open source implementation of

sparse and dense hash tables. Our Mojim-enabled version

of the hash table stores its data in mmap’d PMFS files and

performs msync at each insert and delete operation to let

Mojim replicate the data. Porting the Google hash table to

Mojim requires changes to just 18 lines of code.

5.3 MongoDB

MongoDB [40] is a popular NoSql database. Several aspects

of MongoDB make it a good comparison point for Mojim.

First, MongoDB stores its data in memory-mapped files and

performsmemory loads and stores for data access—a perfect

match for Mojim’s NVMM interface. Second, MongoDB

supports both single node and replication in a set of nodes

in several different modes (called “write concerns”) that

trade off among performance, reliability, and availability.

Mojim provides similar functionality with a more general

mechanism.

By default, MongoDB logs data in a journal file and

checkpoints the data to the memory-mapped data file in a

lazy fashion. With the JOURNALED write concern, Mon-

goDB blocks a client call until the updated data is written to

the journal file. With the FSYNC SAFE write concern, Mon-

goDB flushes all the dirty pages to the data file after each

write operation and blocks the client call until this operation

completes.

MongoDB supports data replication across a set of ma-

chines. A primary node in a MongoDB replica set serves

all write requests and pushes operation logs to the sec-

ondary nodes. Secondary nodes can serve read requests but

may return stale data. The MongoDB write concern REPLI-

CAS SAFE returns the client request after at least two sec-

ondary nodes have received the corresponding operation log.

The REPLICAS SAFE write concern does not wait for jour-

nal writes or checkpointing on the primary node.

Mojim offers another way to provide reliability and avail-

ability to MongoDB. With the help of Mojim’s gmsync API

and its reliability guarantees, we can remove journaling from

MongoDB and still achieve the same consistency level. To

guarantee the same atomicity of client requests as available

through MongoDB, we modify the storage engine of Mon-

goDB to keep track of all writes to the data file and group the

written memory regions belonging to the same client request

into a gmsync call. In total, this change requires modifying

117 lines of MongoDB.

An alternative way of using Mojim is to run unmodi-

fied MongoDB onMojim by configuringMongoDB to place

both its data file and journal file in Mojim’s mmap’d data

area. When MongoDB commits data to the journal or check-

points the data to the data file, it performs an msync opera-

tion, which will trigger Mojim’s data replication transpar-

ently.

6. Evaluation with DRAM

In this section, we study the performance of Mojim under

each of the configurations and applications we described in

Sections 3 and 5. Specifically, we first evaluate the perfor-

mance of different Mojim modes and compare them to ex-

isting replication methods. We then evaluate the effects of

different application parameters and Mojim configurations,

the performance of applications ported to Mojim, and Mo-

jim’s recovery costs.

6.1 Test Bed Systems

We use two different systems to evaluate Mojim. The first

is an industrial NVMM emulation system from Intel called

PMEP [12]. PMEP augments an off-the-shelf, dual-socket

server platform with special CPU microcode and custom

firmware. It partitions the system’s DRAM into emulated

NVMM and regular DRAM. PMEP emulates NVMM read

latency, read and write bandwidth, and data persistence

costs. For read latency and read/write bandwidth, PMEP

modifies the CPU and the memory controller. The PMEP

platform uses write-back CPU caches and does not emulate

NVMMwrite latency. It uses software to emulate the cost of

data persistence: the kernel running on PMEP issues clflush

instructions followed by an sfence, and adds a write bar-

rier delay to model the cost of ensuring data persistence in

NVMM. In our experiments, we emulate NVMM by setting

the read latency to 300 ns, read and write bandwidth to

5 GB/s and 1.6 GB/s (1/8 of DRAM bandwidth), and the

write barrier delay to 1 µs, the configuration used in Intel’s

PMFS project [12].

Each PMEP node has two 2.6GHz 8-core Intel Xeon

processors, 40 MB of aggregate CPU cache, 8 GB of DDR3

DRAM used as normal DRAM, 128 GB of DRAM used

as emulated NVMM, and a 7200RPM 4 TB hard disk.

They also have 40 Gbps Mellanox Infiniband NICs and

are directly connected to each other via Infiniband without

a switch. The platforms run Ubuntu 13.10 and the 3.11.0

Linux kernel.

We have access to only two PMEP machines (located at

an Intel facility), so to evaluate Mojim modes that require

more than two machines, we use similar machines in our

S−unrep−DRAM

M
−async−DRAM

M
−sync−DRAM

M
−syncflush−DRAM

M
−syncdisk−DRAM

S−unrep−NVM
M

M
−async−NVM

M

M
−sync−NVM

M

M
−syncflush−NVM

M

M
−syncdisk−NVM

M

A
v
g
 L

a
te

n
c
y
 (

u
s
e
c
)

0

4

8

12

16

Figure 4. msync Latency with DRAM and NVMM. The

average 4 KB msync latency with PMEP’s DRAM and NVMM

modes.

S−unrep−DRAM

M
−async−DRAM

M
−sync−DRAM

M
−syncflush−DRAM

M
−syncdisk−DRAM

S−unrep−NVM
M

M
−async−NVM

M

M
−sync−NVM

M

M
−syncflush−NVM

M

M
−syncdisk−NVM

M

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

0

0.2

0.4

0.6

0.8

Figure 5. msync Throughput with DRAM and NVMM.
The 4 KB msync bandwidth with PMEP’s DRAM and NVMM

modes.

298

S−unreplicated

M
−syncsec

M
−syncseceth

E−chain

E−broadcast

A
v
g
 L

a
te

n
c
y
 (

u
s
e
c
)

0

5

10

15

20

Figure 6. msync Latency with DRAM-based machines.
The average 4 KB msync latency with S-unreplicated and Mojim

two-tier architecture.

S−unreplicated

M
−syncsec

M
−syncseceth

E−chain

E−broadcast

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

0

0.2

0.4

0.6

0.8

Figure 7. msync Throughput with DRAM-based ma-
chines. The 4 KBmsync throughput with S-unreplicated and Mo-

jim two-tier architecture.

lab that do not include PMEP functionality and use ordi-

nary DRAM as a proxy for NVMM. Each of these machines

has two Intel Xeon X5647 processors, 48 GB DRAM, one

40 Gbps Mellanox Infiniband NIC, and a 1000 Mbps Ether-

net. A QLogic Infiniband Switch connects these machines’

IB links. All machines run the CentOS 6.4 distribution and

the 3.11.0 Linux kernel.

In all experiments, unless otherwise specified, we set

CHECKPOINT THRESH (the frequency of checkpointing

the mirror node logs) to 1 (after each log write) and SEC-

ONDARY TIER THRESH (the threshold for sending un-

replicated data to the backup nodes) to 40 MB.

6.2 Overall Replication Performance

We first compare the microbenchmark performance of Mo-

jim modes that only involve two nodes using the PMEP plat-

forms. To evaluate the impact of NVMM vs. DRAM, we run

the same experiments with both PMEP’s DRAM mode and

its emulated NVMM.

Figures 4 and 5 present the average latency and through-

put of msync calls with S-unreplicated, M-async, M-sync,

M-syncflush, and M-syncdisk. For each experiment, we per-

form 10000 random 4 KB msync calls in a 4 GB mmap’d

file.

Surprisingly, M-sync outperforms S-unreplicated signif-

icantly for both DRAM and emulated NVMM (reducing

latency by 45% and 40% respectively). Even though M-

sync waits for a networking round trip between the primary

node and the mirror node, it still outperforms S-unreplicated

because it does not need to flush data from processors’

caches, while S-unreplicated must flush data on each msync.

M-async’s performance is similar to S-unreplicated, as it

also needs to flush primary node’s caches. M-syncflush has

higher latency than S-unreplicated, since it performs both

cache flushes and networking round trips.

Placing the mirror node data on disk adds only 1% to

10% overhead. However, M-syncdisk does not support read

applications on the mirror node and adds an overhead in

recovery time (see Section 6.5).

Comparing DRAM and emulated NVMM, the perfor-

mance with emulated NVMM for all schemes is close to

that with DRAM, indicating that the performance degrada-

tion of NVMMover DRAM only has a very small effect over

application-level performance.

Request Size

8B 64B 256B 1K 4K 8K12K

A
v
g
 L

a
te

n
c
y
 (

u
s
e
c
)

0

5

10

15

20

25

30
S−unreplicated
M−async
M−sync

Figure 8. Average msync Latency with Different msync
Sizes on Emulated NVMM. The average latency of msync

operation on NVMM with request sizes from 8 bytes to 12 KB.

Num of Threads

1 2 4 8 12

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

0

1

2

3

4

5

6
S−unreplicated
M−async
M−sync_4threads
M−sync_2threads
M−sync_1thread

Figure 9. Throughput with Different Application
Threads on Emulated NVMM. The msync throughput with

1 to 12 threads performing msync.

Next, to augment the PMEP results with more machines

and to test Mojim’s two-tier architecture, we use three

DRAM-based machines in our lab to evaluate the perfor-

mance of Mojim’s two-tier modes and two existing schemes

that use a one-primary, multiple-secondary architecture (Ta-

ble 1). One of these existing schemes, E-chain, allows writes

only at the primary node and propagates data replication

from the primary node to the secondary nodes in a serialized

order [2, 56]. The other existing scheme, E-broadcast [15],

is similar to E-chain but broadcasts updates to the secondary

nodes. E-chain and E-broadcast use one primary node and

two secondary nodes interconnected by IB. They use the

same IB protocol that we implemented for Mojim.

Figures 6 and 7 plot the average latency and throughput

of using our lab machines to run the experiments shown

in Figures 4 and 5. Compared to S-unreplicated, Mojim

with the secondary tier does not degrade performance if a

fast network connects the backup node. However, the lower-

cost Ethernet configuration degrades performance by 37×,

because the mirror node cannot drain its circular log fast

enough and has to stall the primary tier replication.

Both E-chain and E-broadcast are slower than Mojim,

increasing latency by 1.8× and 2.8× respectively, compared

to M-syncsec.

Finally, we compare Mojim with two existing IB kernel

protocols, RDS and IPoIB. We find that they both have

worse performance than Mojim’s networking protocol on

IB-Verbs, with 4.9× and 31× slowdown.

Overall, Mojim delivers performance similar to or better

than no replication while adding reliability and availability.

Mojim’s good performance is due to its efficient replication

protocol, its ability to avoid expensive cache flush opera-

tions, and its optimized software and networking stacks.

6.3 Sensitivity Analysis

Both Mojim’s configuration parameters and application-

level behavior can affect performance. In this section, we

measure their impact on Mojim’s performance.

6.3.1 msync Size

The amount of data per msync has a strong impact on per-

formance. Figure 8 plots the average latency of performing

msync calls to random memory regions of 8 bytes to 12 KB

with S-unreplicated, M-async, and M-sync using PMEP’s

emulated NVMM.

For smaller request sizes, M-async performs much better

than S-unreplicated. S-unreplicated underperforms because

of the current way msync call are implemented in Linux,

with the msync call handler checking for the range of the

msyncmemory and rounding it to memory pages (4 KB page

for the default Linux kernel). With Mojim, we modify the

msync call handler to allow any memory address range and

only flush and replicate the application-specified memory

regions.

M-sync does not perform clflush (since transferring the

data to the mirror node guarantees persistence). As a result,

its performance is always better than S-unreplicated and is

better than M-async when msync size is bigger than 1 KB.

6.3.2 Application Threads and Networking

Connections

Application thread count and the number of network con-

nections Mojim uses also impact performance. Figure 9

presents the 4 KB msync throughput with one to 12 applica-

tion threads for S-unreplicated, M-async, and M-sync using

PMEP’s emulated NVMM.

Both M-async and S-unreplicated scale well with the

number of application threads, while M-sync with one IB

connection (and thus one log) scales poorly. With more con-

Varmail FileServer WebServer

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

0

200

400

600

800

S−unreplicated M−async M−sync

Figure 10. Filebench Throughput with Emulated
NVMM. The throughput of three Filebench workloads with

single machine and no replication, the M-async mode, and the

M-sync mode.

Sequential Random

A
v
g
 L

a
te

n
c
y
 (

u
s
e
c
)

0

0.05

0.1

0.15

0.2

0.25

S−unreplicated M−async M−sync

Figure 11. Google Hash Table Average Latency with
Emulated NVMM. The average latency of sequentially and

randomly inserting key-value pairs to the Google dense hash ta-

ble.

426

J
O

U
R

N
A

L
E

D

F
S

Y
N

C
_

S
A

F
E

R
E

P
L

IC
A

S
_

S
A

F
E

M
−

a
s
y
n

c

M
−

s
y
n

c

L
a
te

n
c
y
 (

m
s
)

0

10

20

30

40

Figure 12. Insert Avg La-
tency. Average latency of in-

serting key-value pairs on emu-

lated NVMM.

J
O

U
R

N
A

L
E

D

F
S

Y
N

C
_

S
A

F
E

R
E

P
L

IC
A

S
_

S
A

F
E

M
−

a
s
y
n

c

M
−

s
y
n

c

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

0

200

400

600

800

1000

1200

Figure 13. Insert
Throughput. Through-

put of inserting key-value pairs

on emulated NVMM.

17 213 19 26 27 18 173

A B C D E F

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

0

0.5

1

1.5

2

2.5

3

3.5

JOURNALED FSYNC_SAFE REPLICAS_SAFE M−async M−sync

Figure 14. YCSB Average Latency. Average latency of

YCSB workloads on emulated NVMM.

nections, M-sync’s scaling improves. A tradeoff with in-

creasing networking connections is that Mojim uses more

threads to poll for receiving messages, consuming more

CPU cycles.

6.3.3 Checkpoint and Secondary Tier Replication

Thresholds

We change the two thresholds Mojim uses in its configura-

tions: we change CHECKPOINT THRESH, the frequency

of checkpointing the mirror node logs, from 1 to 10000,

and we change SECONDARY TIER THRESH, the amount

of un-replicated data to the backup node, from 40 KB to

400 MB. We find that neither CHECKPOINT THRESH nor

SECONDARY TIER THRESH affects the application per-

formance, because both the checkpointing process and the

secondary tier replication via IB are fast enough not to block

the primary tier replication.

6.4 Application Performance

In this section, we present the evaluation results for three ap-

plications: a file system, a hash table, and a NoSql database.

6.4.1 PMFS

We use the FileServer, WebServer, and VarMail workloads

in the Filebench suite [54] to evaluate different Mojim

modes under PMFS using emulated NVMM. Figure 10

presents the throughput of the three workloads of Filebench.

ForWebServer and Varmail, bothM-async andM-sync yield

performance similar to S-unreplicated. For FileServer, M-

async and M-sync have slightly worse performance than

S-unreplicated.

6.4.2 Google hash table

We perform sequential and random key-value insertion to

the Google Dense Hash Table [16]. Each key-value pair con-

tains an integer key and a random integer value. Figure 11

plots the average latency of S-unreplicated,M-async, andM-

sync with emulated NVMM. For both workloads, all three

schemes have similar performance, showing that Mojim has

small performance overhead when it comes to hash table op-

erations.

Workload Read Update Scan Insert Read&Update

A 50 50 - - -

B 95 5 - - -

C 100 - - - -

D 95 - - 5 -

E - - 95 5 -

F 50 - - - 50

Table 2. YCSB Workload Properties. The percentage of

different operations in each YCSB workload.

6.4.3 MongoDB

MongoDB is a natural fit for Mojim. We evaluate how

MongoDB and Mojim compare using micro- and macro-

benchmarks.

Microbenchmark: Our microbenchmark inserts key-value

pairs to MongoDB. Each insert operation contains 10 key-

value pairs, with each pair containing 100 bytes of ran-

domly generated data. Figures 12 and 13 present the aver-

age latency and throughput of key-value pair insertions with

PMEP’s emulated NVMM. We set the MongoDB replica-

tion method to use two replicas (the primary node and the

secondary node) and connect these nodes with IB.

MongoDB with Mojim outperforms the MongoDB repli-

cation method REPLICAS SAFE by 3.7 to 3.9×. This per-

formance gain is due to Mojim’s efficient replication proto-

col and networking stack.

Mojim also outperforms the un-replicated JOURNALED

MongoDBby 56 to 59× and the un-replicated FSYNC SAFE

by 701 to 741×. JOURNALED flushes journal content for

each client write request. FSYNC SAFE performs fsync of

the data file after each write operation to guarantee data

reliability without journaling. Both these operations are ex-

pensive.

To evaluate Mojim’s two-tier architecture with Mon-

goDB, we perform the same set of experiments using three

DRAM-based machines in our lab. Similar to the PMEP re-

sults, Mojim’s M-syncsec outperforms MongoDB’s repli-

cation method by 3.4 to 4×, the un-replicated JOUR-

NALED MongoDB by 35 to 43×, and the un-replicated

FSYNC SAFE by 238 to 311×, suggesting that Mojim’s

replication is better than MongoDB replication.

Finally, MongoDB can run unmodified on Mojim by con-

figuring both its journal and data file to be in a mmap’d

NVMM region. In this case, its performance is similar to

JOURNALED, with a performance overhead of 0.2% to 6%.

However, Mojim provides better reliability and availability

than the un-replicated MongoDB.

Macrobenchmark: YCSB [10] is a benchmark designed to

evaluate key-value store systems. YCSB includes six work-

loads that imitate web applications’ data access models. The

workloads contain a combination of read, update, scan, and

insert operations. Table 2 summarizes the number of these

operations in the YCSB workloads. Each workload performs

1000 operations on a database with 1000 1 KB records.

Figure 14 presents the latency of MongoDB and Mojim

using the six YCSB workloads on emulated NVMM. For

most workloads, both M-async and M-sync outperform the

un-replicated and replicated MongoDB schemes. The per-

formance improvement is especially high for write-heavy

workloads. We also find similar results with three DRAM-

based machines.

6.5 Recovery

Recovery performance is important because it directly af-

fects availability and may impact reliability, since Mojim is

vulnerable to additional node failures during some recovery

scenarios. To test the robustness of the system, we stop aMo-

jim node at random and find that the rest of the system can

continue serving client requests correctly. We further mea-

sure the recovery time in the event of a node failure.

We use a typical recovery scenario to illustrate Mojim’s

recovery performance. When a mirror node fails with M-

syncsec, the recovery process requires sending the remain-

ing, un-replicated data to the backup node, flushing the CPU

caches on the primary node, and copying all the data areas

to the new mirror node. Mojim performs these operations in

parallel. We set SECONDARY TIER THRESH to 40 MB

and use three machines in our lab to perform the recovery

performance evaluation.

Mojim takes 450 µs to flush the 26 MB CPU caches on

the primary node. Before the primary node flushes all its

caches, if it also fails, there will be data loss. The window

of vulnerability also depends on how soon the failure can be

detected, thus in practice it will be longer than 450 µs [7]. It

takes 14 ms to send 40 MB of data to the backup node and

1.9 seconds to send a 5 GB data area to the new mirror node.

The whole recovery process completes in 1.9 seconds for a

5 GB NVMM. Even for a 1 TB NVMM, the recovery pro-

cess will only take 6.5 minutes. Notice that the vulnerability

window depends on how fast primary node detects a failure

and flushes its caches, not on NVMM size.

For M-syncdisk, Mojim also needs to read the data file

from the disk to the NVMM before applications can access

the data. In this case, recovery takes 17 seconds for a 5 GB

data file, a much higher cost in availability than when we use

NVMM for the data area.

7. Related Work

This section places Mojim in context with other related

research projects and systems.

Non-Volatile Main Memory: Recent years have seen in-

creased interest in NVMM. Researchers have focused on

NVMM-related problems, such as building NVMM file

systems [9, 12, 59], hybrid DRAM/NVMM memory sys-

tems [39], memory allocators [41], memory management

and paging mechanisms [3], and programming models [8,

58]. While previous research has focused on un-replicated

NVMM in a single machine, Mojim focuses on providing

reliability, high availability, and redundancy to NVMM in

data center environments.

Redundancy and Replication: To provide data reliability

and availability, many systems use data redundancy or repli-

cation [1, 5, 11, 15, 17, 18, 29, 46, 47, 51, 52, 56, 61]. Sev-

eral previous systems adopt the architecture of one primary

and multiple backups [2, 15, 56]. These systems either use

a total ordering of node to serialize data replication [2, 56]

or broadcast the replicated data and have the primary wait

for all the backups [15] to guarantee strong consistency. Mo-

jim uses a two-tier architecture containing one primary node,

one mirror node, and multiple backup nodes. Mojim’s repli-

cation between the primary node and mirror node and the

background replication to the backup nodes is more efficient

than replication among one primary and multiple backups.

Other architectures allow writes to all replicas (E-writeall)

[11, 29, 47, 55]. Systems that require strong consistency

among the replicas use Paxos-like protocols [4, 22, 31]. With

such architectures, at least two networking round trips are

needed to deliver strong consistency. Moreover, the round

trips are necessary at each write (memory store) rather than

for the less frequent sync points. In contrast, Mojim only

replicates data at sync points. Ensuring strong consistency

for the Mojim primary tier is also much simpler and has

much smaller performance cost. There are also systems that

implement weak consistency protocols for the E-writeall

architecture [11, 29, 47]. These systems require a reconcili-

ation process for conflicts, which can increase performance

overhead [17]. Mojim does not involve any reconciliation

and supports strong consistency in its primary tier.

Mojim’s architecture is similar to the two-tier architec-

ture proposed [17], which reduced the locking and reconcil-

iation overhead in mobile, disconnected environments. How-

ever, we focus on data center environments where nodes are

mostly connected.Moreover,Mojim’s primary tier only uses

one primary and one mirror node for good performance.

To reduce system downtime, commercial storage systems

often maintain a pair of interconnected nodes (called high-

availability pairs) [13, 19, 43, 57]. When one node fails, the

other member of the pair takes over its duties. Most of these

high-availability pair schemes rely on shared storage and do

not replicate storage data, whereas Mojim replicates data

in NVMM. Moreover, Mojim can also provide additional

redundancy with its secondary tier.

Finally, RAMCloud is a low-latency key-value store that

keeps all data in DRAM [44]. While Mojim and RAMCloud

both provide reliable memory-based storage systems, RAM-

Cloud provides a key-value interface rather than a memory-

like interface to applications. The key-value software layer

adds significant latency to accesses and obscures much of

the performance of the underlying memory. Mojim offers a

memory-based interface (i.e., applications access Mojim us-

ing memory load and store instructions). Based on the inter-

face it supports and its performance targets, Mojim makes

design decisions differently from RAMCloud. Mojim repli-

cates NVMM to NVMM at application sync points, while

RAMCloud replicates key-value contents on each put opera-

tion to slow storage devices. Mojim does not shard memory,

because sharding would result in portions of applications’

NVMM being on a remote node, vastly increasing latency.

As a result, Mojim uses fail-over to recover from failures in-

stead of RAMCloud’s approach that relies on sharded data

storage to achieve fast recovery.

8. Conclusions

We have described Mojim, a system for providing reliable

and highly-available NVMM. Mojim uses a two-tier archi-

tecture and efficiently replicates data in NVMM. Our results

demonstrate that Mojim can provide replication with small

cost, in many cases even outperforming the un-replicated

system. In doing so, Mojim paves the way for deploy-

ing NVMM in data centers that wish to take advantage of

NVMM’s enhanced performance but require strong guaran-

tees about data safety.

Acknowledgments

We thank the anonymous reviewers for their enormously

valuable feedback and comments, which have substantially

improved the content and presentation of this paper. We also

thank Dulloor Subramanya, Jeff Jackson, and the vLab team

from Intel Corp. for their help with the PMEP platforms.

Finally, we thank the members of the NVSL research group

for their insightful comments.

This work was supported in part by the Center for Fu-

ture Architectures Research (C-FAR), one of six centers of

STARnet, a Semiconductor Research Corporation program

sponsored byMARCO and DARPA. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of C-FAR or other institutions.

References

[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cer-

mak, Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R.

Lorch, Marvin Theimer, and Roger P. Wattenhofer. FAR-

SITE: Federated, Available, and Reliable Storage for an In-

completely Trusted Environment. In Proceedings of the 5th

Symposium on Operating Systems Design and Implementation

(OSDI ’02), Boston, Massachusetts, December 2002.

[2] Peter A. Alsberg and John D. Day. A principle for resilient

sharing of distributed resources. In Proceedings of the 2nd In-

ternational Conference on Software Engineering (ICSE ’76),

San Francisco, California, October 1976.

[3] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M.

Levy. Operating system implications of fast, cheap, non-

volatile memory. In Proceedings of the 13th USENIX Confer-

ence on Hot Topics in Operating Systemsi (HotOS ’13), Napa,

California, May 2011.

[4] Mike Burrows. The chubby lock service for loosely-coupled

distributed systems. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI ’06),

Seattle, Washington, November 2006.

[5] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-

tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-

wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Hari-

das, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,

Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agar-

wal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali

Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin

McNett, Sriram Sankaran, KavithaManivannan, and Leonidas

Rigas. Windows azure storage: A highly available cloud

storage service with strong consistency. In Proceedings of

the 23rd ACM Symposium on Operating Systems Principles

(SOSP ’11), Cascais, Portugal, October 2011.

[6] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica.

Leveraging endpoint flexibility in data-intensive clusters. In

Proceedings of the ACM SIGCOMM 2013 Conference on

SIGCOMM (SIGCOMM ’13), Hong Kong, China, August

2013.

[7] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil

Sit, Hakim Weatherspoon, M. Frans Kaashoek, John Kubia-

towicz, and Robert Morris. Efficient replica maintenance for

distributed storage systems. In Proceedings of the 3rd Sym-

posium on Networked Systems Design and Implementation

(NSDI ’06), San Jose, California, May 2006.

[8] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.

Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.

Nv-heaps: Making persistent objects fast and safe with next-

generation, non-volatile memories. In Proceedings of the Six-

teenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS

’11), New York, New York, March 2011.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost,

Engin Ipek, Doug Burger, Benjamin C. Lee, and Derrick Coet-

zee. Better i/o through byte-addressable, persistent memory.

In Proceedings of the 22nd ACM Symposium on Operating

Systems Principles (SOSP ’09), Big Sky, Montana, October

2009.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ra-

makrishnan, and Russell Sears. Benchmarking cloud serving

systems with ycsb. In Proceedings of the 1st ACM Symposium

on Cloud Computing (SoCC ’10), New York, New York, June

2010.

[11] Guiseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-

navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swami Sivasubramanian, Peter Vosshall, and Werner Vogels.

Dynamo: Amazon’s Highly Available Key-Value Store. In

Proceedings of the 21st ACM Symposium on Operating Sys-

tems Principles (SOSP ’07), Stevenson, Washington, October

2007.

[12] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,

Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jack-

son. System software for persistent memory. In Proceedings

of the EuroSys Conference (EuroSys ’14), Amsterdam, The

Netherlands, April 2014.

[13] EMC Corporation. EMC VNXe High

Availability. https://www.emc.com/

collateral/hardware/white-papers/

h8276-emc-vnxe-high-availability-wp.

pdf.

[14] Daniel Ford, François Labelle, Florentina I. Popovici, Murray

Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and

Sean Quinlan. Availability in Globally Distributed Storage

Systems. In Proceedings of the 9th Symposium on Operating

Systems Design and Implementation (OSDI ’10), Vancouver,

Canada, December 2010.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.

The Google File System. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP ’03),

Bolton Landing, New York, October 2003.

[16] Google Inc. Google Sparse Hash. http://

goog-sparsehash.sourceforge.net.

[17] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha.

The dangers of replication and a solution. In Proceedings of

the 1996 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD ’96), New York, New York, June

1996.

[18] Lisa Hellerstein, Garth A. Gibson, RichardM. Karp, Randy H.

Katz, and David A. Patterson. Coding Techniques for Han-

dling Failures in Large Disk Arrays. Algorithmica, 12(2):182–

208, August 1994.

[19] Hewlett Packard. HP NonStop operating system. http://

h17007.www1.hp.com/us/en/enterprise/

servers/integrity/nonstop/nonstop-os.

aspx.

[20] M Hosomi, H Yamagishi, T Yamamoto, K Bessho, Y Higo,

K Yamane, H Yamada, M Shoji, H Hachino, C Fukumoto,

et al. A novel nonvolatile memory with spin torque trans-

fer magnetization switching: Spin-ram. In Electron Devices

Meeting, 2005. IEDM Technical Digest. IEEE International,

pages 459–462, 2005.

[21] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,

Brad Calder, Parikshit Gopalan, Jin Li, and Sergey Yekhanin.

Erasure coding in windows azure storage. In Proceedings

https://www.emc.com/collateral/hardware/white-papers/h8276-emc-vnxe-high-availability-wp.pdf
https://www.emc.com/collateral/hardware/white-papers/h8276-emc-vnxe-high-availability-wp.pdf
https://www.emc.com/collateral/hardware/white-papers/h8276-emc-vnxe-high-availability-wp.pdf
https://www.emc.com/collateral/hardware/white-papers/h8276-emc-vnxe-high-availability-wp.pdf
http://goog-sparsehash.sourceforge.net
http://goog-sparsehash.sourceforge.net
http://h17007.www1.hp.com/us/en/enterprise/servers/integrity/nonstop/nonstop-os.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/integrity/nonstop/nonstop-os.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/integrity/nonstop/nonstop-os.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/integrity/nonstop/nonstop-os.aspx

of the USENIX Annual Technical Conference (USENIX ’12),

Boston, Massachusetts, June 2012.

[22] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Ben-

jamin Reed. Zookeeper: Wait-free coordination for internet-

scale systems. In Proceedings of the USENIX Annual Tech-

nical Conference (USENIX ’10), Boston, Massachusetts, June

2010.

[23] Intel. Add Support for New Persistent Memory Instructions.

http://www.lwn.net/Articles/619851.

[24] Intel. Intel 64 and IA-32 Architectures Software Developer’s

Manual.

http://www.intel.com/content/dam/www/publ

ic/us/en/documents/manuals/64-ia-32-archi

tectures-software-developer-manual-325462

.pdf.

[25] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug

Burger, and Thomas Moscibroda. Dynamically replicated

memory: Building reliable systems from nanoscale resistive

memories. In Proceedings of the 14th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS XIV), Pittsburgh, Pennsyl-

vania, March 2010.

[26] James Pinkerton. The Future of Computing: The Conver-

gence of Memory and Storage through Non-Volatile Memory

(NVM). Storage Industry Summit, San Jose, California, Jan

2014.

[27] Brian G Johnson and Charles H Dennison. Phase change

memory, September 2004. US Patent 6,791,102.

[28] Brent ByungHoon Kang, Robert Wilensky, and John Kubia-

towicz. The hash history approach for reconciling mutual in-

consistency. In Proceedings of the 23rd International Confer-

ence on Distributed Computing Systems (ICDCS ’03), Provi-

dence, Rhode Island, May 2003.

[29] John Kubiatowicz, David Bindel, Patrick Eaton, Yan Chen,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Westley

Weimer, Chris Wells, Hakim Weatherspoon, and Ben Zhao.

OceanStore: An Architecture for Global-Scale Persistent Stor-

age. In Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS IX), Cambridge, Massachusetts,

November 2000.

[30] Amit Kumar and Ram Huggahalli. Impact of cache coherence

protocols on the processing of network traffic. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO ’07), Chicago, Illinois, Dec 2007.

[31] Leslie Lamport. Paxos Made Simple. ACM SIGACT News,

32(4):18–25, November 2001.

[32] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.

Architecting phase change memory as a scalable dram alter-

native. In Proceedings of the 36th Annual International Sym-

posium on Computer Architecture (ISCA ’09), Austin, Texas,

June 2009.

[33] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.

Phase change memory architecture and the quest for scalabil-

ity. Commun. ACM, 53(7):99–106, 2010.

[34] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang,

Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger. Phase-

change technology and the future of main memory. IEEE mi-

cro, 30(1):143, 2010.

[35] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul

Lee, Man Chang, Ji Hyun Hur, Young-Bae Kim, Chang-Jung

Kim, David H Seo, Sunae Seo, et al. A fast, high-endurance

and scalable non-volatile memory device made from asym-

metric ta2o5- x/tao2- x bilayer structures. Nature materials,

10(8):625–630, 2011.

[36] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguil-

era, and Michael Walfish. Detecting Failures in Distributed

Systems with the Falcon Spy Network. In Proceedings of

the 23rd ACM Symposium on Operating Systems Principles

(SOSP ’11), Cascais, Portugal, October 2011.

[37] Mellanox Technologies. Rdma aware networks program-

ming user manual. http://www.mellanox.com/

related-docs/prod_software/RDMA_Aware_

Programming_user_manual.pdf.

[38] Micron Technology Inc. P8p parallel phase change mem-

ory (pcm). http://www.micron.com/˜/media/

Documents/Products/Data%20Sheet/PCM/p8p_

parallel_pcm_ds.pdf.

[39] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo

Faraboschi. Operating system support for nvm+dram hybrid

main memory. In The Twelfth Workshop on Hot Topics in

Operating Systems (HotOS XII), Monte Verita, Switzerland,

May 2009.

[40] MongoDB Inc. MongoDB. http://www.mongodb.

org/.

[41] Iulian Moraru, David G Andersen, Michael Kaminsky, Ni-

raj Tolia, Parthasarathy Ranganathan, and Nathan Binkert.

Consistent, durable, and safe memory management for byte-

addressable non volatile main memory. In Conference on

Timely Results in Operating Systems (TRIOS ’13), Farming-

ton, Pennsylvania, November 2013.

[42] Suman Nath, Haifeng Yu, Philip B. Gibbons, and Srinivasan

Seshan. Subtleties in tolerating correlated failures in wide-

area storage systems. In Proceedings of the 3rd Symposium on

Networked Systems Design and Implementation (NSDI ’06),

San Jose, California, May 2006.

[43] NetApp Inc. NetApp SnapMirror Data Replica-

tion. http://www.netapp.com/us/products/

protection-software/snapmirror.aspx.

[44] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John

Ousterhout, and Mendel Rosenblum. Fast Crash Recovery in

RAMCloud. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles (SOSP ’11), Cascais, Portugal,

October 2011.

[45] Stan Park, Terence Kelly, and Kai Shen. Failure-atomic msync

(): a simple and efficient mechanism for preserving the in-

tegrity of durable data. In Proceedings of the EuroSys Confer-

ence (EuroSys ’13), Prague, Czech Republic, April 2013.

[46] David Patterson, Garth Gibson, and Randy Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In Proceed-

http://www.lwn.net/Articles/619851
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p_parallel_pcm_ds.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p_parallel_pcm_ds.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p_parallel_pcm_ds.pdf
http://www.mongodb.org/
http://www.mongodb.org/
http://www.netapp.com/us/products/protection-software/snapmirror.aspx
http://www.netapp.com/us/products/protection-software/snapmirror.aspx

ings of the 1988 ACM SIGMOD Conference on the Manage-

ment of Data (SIGMOD ’88), Chicago, Illinois, June 1988.

[47] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Mar-

vin M. Theimer, and Alan J. Demers. Flexible Update Prop-

agation for Weakly Consistent Replication. In Proceedings of

the 16th ACM Symposium on Operating Systems Principles

(SOSP ’97), Saint-Malo, France, October 1997.

[48] Moinuddin K Qureshi, Michele M Franceschini, Luis A

Lastras-Montaño, and John P Karidis. Morphable memory

system: a robust architecture for exploiting multi-level phase

change memories. In Proceedings of the 37th Annual Interna-

tional Symposium on Computer Architecture (ISCA ’07), June

2010.

[49] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A.

Rivers. Scalable high performance main memory system us-

ing phase-change memory technology. In Proceedings of the

36th Annual International Symposium on Computer Architec-

ture (ISCA ’09), Austin, Texas, June 2009.

[50] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini.

Page placement in hybrid memory systems. In Proceedings

of the International Conference on Supercomputing (ICS ’11),

Tucson, Arizona, 2011.

[51] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weath-

erspoon, Ben Zhao, and John Kubiatowicz. Pond: The

oceanstore prototype. In Proceedings of the 2nd USENIX

Symposium on File and Storage Technologies (FAST ’03), San

Francisco, California, April 2003.

[52] Antony Rowstron and Peter Druschel. Storage Management

and Caching in PAST, A Large-scale, Persistent Peer-to-peer

Storage Utility. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP ’01), Banff, Canada,

October 2001.

[53] David Spence, Jon Crowcroft, Steven Hand, and Tim Harris.

Location based placement of whole distributed systems. In

Proceedings of the 2005 ACM Conference on Emerging Net-

work Experiment and Technology (CoNEXT ’05), Toulouse,

France, October 2005.

[54] Sun Microsystems. Solaris Internals: FileBench. http://

filebench.sourceforge.net/.

[55] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla,

Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. Consistency-Based Service Level Agreements for

Cloud Storage. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (SOSP ’13), Farmington,

Pennsylvania, November 2013.

[56] Robbert van Renesse and Fred B. Schneider. Chain replication

for supporting high throughput and availability. In Proceed-

ings of the 6th Symposium on Operating Systems Design and

Implementation (OSDI ’04), San Francisco, California, De-

cember 2004.

[57] VMWare Inc. VMware High Availability.

http://www.vmware.com/files/pdf/

VMware-High-Availability-DS-EN.pdf.

[58] Haris Volos, Andres Jaan Tack, and Michael M. Swift.

Mnemosyne: Lightweight persistent memory. In Proceedings

of the Sixteenth International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS ’11), New York, New York, March 2011.

[59] Xiaojian Wu and A.L.N. Reddy. Scmfs: A file system for

storage class memory. In International Conference for High

Performance Computing, Networking, Storage and Analysis

(SC ’11), Nov 2011.

[60] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart.

Memristive devices for computing. Nature nanotechnology,

8(1):13–24, 2013.

[61] Ming Zhong, Kai Shen, and Joel Seiferas. Replication degree

customization for high availability. In Proceedings of the

EuroSys Conference (EuroSys ’08), Glasgow, Scotland UK,

March 2008.

[62] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable

and energy efficient main memory using phase change mem-

ory technology. In Proceedings of the 36th Annual Inter-

national Symposium on Computer Architecture (ISCA ’09),

Austin, Texas, June 2009.

http://filebench.sourceforge.net/
http://filebench.sourceforge.net/
http://www.vmware.com/files/pdf/VMware-High-Availability-DS-EN.pdf
http://www.vmware.com/files/pdf/VMware-High-Availability-DS-EN.pdf

	Introduction
	NVMM in the Data Center
	Next-Generation Non-Volatile Memory
	NVMM Availability, Reliability, and Consistency

	Mojim Design
	Mojim's Interfaces
	Architecture
	Mojim Modes and Replication Protocols

	Implementation
	Networking
	Replication
	Recovery

	Mojim Applications
	PMFS
	Google hash table
	MongoDB

	Evaluation with DRAM
	Test Bed Systems
	Overall Replication Performance
	Sensitivity Analysis
	msync Size
	Application Threads and Networking Connections
	Checkpoint and Secondary Tier Replication Thresholds

	Application Performance
	PMFS
	Google hash table
	MongoDB

	Recovery

	Related Work
	Conclusions

