
Purdue University: ECE438 - Digital Signal Processing with Applications 1

Welcome

to
The Video and Image Systems Engineering (VISE) Lab

October 6, 2010

1 Introduction

The purpose of this lab is to introduce you to the basics of signal, speech and image processing
using digital computers, the Matlab (MATrix LABoratory) software environment and the
XV image processing software.

2 Signal Processing

The concept of signals arise in an extremely wide variety of fields, and the ideas and tech-
niques associated with signal processing play an important role in such diverse areas as
communications, acoustics, seismology, biomedical engineering, circuit design, aeronautics
and chemical process control.

In this part of the lab, you will use the Simulink extension to Matlab to design a a simple
system to view a sine signal and to synthesize a square wave using sine waves.

Down load SignalLabUtilities

To get the library of Simulink functions for this section, download the SignalLabUtil-
ities . Then start Matlab on your workstation by typing the command
matlab

in a command window. After starting up, you will get a Matlab prompt.
>>

Once Matlab is started, type
SignalLab

to bring up the library of Simulink components shown in Fig. 1. This library contains a
full library of Simulink blocks, a sine wave generator, a scope, a spectrum analyzer, and a
pre-designed system for the square wave synthesis experiment you will be running.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/SignalLab.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/SignalLab.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/SignalLab.tar

Purdue University: ECE438 - Digital Signal Processing with Applications 2

Full Block
Library

Complete set of Simulink
Blocks

Sine Wave Spectrum
Analyzer

Scope

Synthesizer

Experiment 2

Figure 1: Simulink utilities for the signal processing section.

Sine Wave Scope

Spectrum
Analyzer

Figure 2: Simulink model for the introductory example.

2.1 Viewing A Sine Wave

In order to familiarize yourself with Simulink, you will first build the system shown in Fig. 2.
This system consists of a sine wave generator that feeds a scope and a spectrum analyzer.

1. Open a window for a new system by using the New option from the File pull-down
menu, and select Model.

2. Drag the Sine Wave, Scope, and Spectrum Analyzer blocks from the Lab3 window into
the new window you created.

3. Now you need to connect these three blocks. With the left mouse button, click on the
output of the Sine Wave and drag it to the input of the Scope. Now use the right
button to click on the line you just created, and drag to the input of the Spectrum

Analyzer block. Your system should now look like Fig. 2.

4. Double click on the Scope block to make the plotting window for the scope appear.

5. Set the simulation parameters by selecting Parameters from the Simulation pull-down
menu. Under the Solver tab, set the Stop time to 100, and the Max step size to 0.02.
Then select Close. This will allow the Spectrum Analyzer to make a more accurate
calculation.

Purdue University: ECE438 - Digital Signal Processing with Applications 3

Scope

Scope 2

+
+
+
+
+
+
+
+

Sum

Mux

Mux

0

Constant

Sine wave7

Sine wave6

Sine wave5

Sine wave4

Sine wave3

Sine wave2

Sine wave1

Spectrum
Analyzer

Figure 3: Simulink model for the square wave synthesis experiment.

6. Start the simulation by using the Start option from the Simulation pull-down menu.
A window entitled Figure 1 will pop up showing the output of the Spectrum Analyzer.

7. Change the frequency of the sine wave to 5 rad/sec by double clicking on the Sine

Wave icon and changing the number in the Frequency field. Restart the simulation.
Observe the change in the waveform and its spectral density.

8. When you are done, close the system window you created by using the Close option
from the File pull-down menu. You don’t need to save this model.

2.2 Synthesizing A Square Wave

It is a well-known fact from signal processing that any periodic signal (signal which repeats
itself in time) can be written as a sum of infinitely many sine waves. In this section of the
experiment, you will create a periodic square wave by adding up 7 sine waves. Now, double
click the icon labeled Synthesizer to bring up a model as shown in Fig. 3. This system may

Purdue University: ECE438 - Digital Signal Processing with Applications 4

be used to approximately synthesize any periodic signal by adding together 7 sine waves.

In the model given to you, only one of the sine wave generators, Sine wave 1, is generating
a non-zero output. The amplitudes of the rest of the sine wave generators are set to 0.

1. Run the model by selecting Start under the Simulation menu. A graph will pop up
that shows the 1st sine wave signal and its spectral density which is just a spike. This
is the output of the device called Spectrum Analyzer. The spectral density plot is the
plot of the frequency components in the given signal. The fact that you see only one
spike means that there is only one frequency component, only one sine wave, in your
given signal. After the simulation runs for a while, the Spectrum Analyzer element will
update the plot of the spectral density plot and the incoming waveform. You may see
the plot of the 1st sine wave by double clicking on the Scope2 icon.

2. Then, sequentially change the amplitudes of the 2nd, 3rd, 4th, 5th, 6th and 7th
sine wave generators from 0 to 4/(3*pi), 4/(5*pi), 4/(7*pi), 4/(9*pi), 4/(11*pi) and
4/(13*pi) respectively by double clicking on the corresponding Sine Wave icons and
changing the number in the Amplitude fields. Make sure that you wait long enough
after every change you make for the correct spectral density plot to appear. Note the
changes in the plot of the synthesized waveform (entitled Signal), its spectral density
plot, and the graph window of Scope 2. With the addition of each new sine wave, your
synthesized waveform should look more and more like a square wave. Also note that
each sine wave you add causes a new spike (a new frequency component) to appear in
the spectral density plot. You can see the the simultaneous plot of all the sine waves
in the graph window of Scope 2.

3. Now that you have successfully created a periodic square wave, you can shift it up
and down. Double click on the Constant icon and change the number in the Constant

Value field from 0 to 1. Observe its effect on the synthesized waveform. Repeat the
procedure for Constant Value of -1.

4. When you are done, close the Synthesizer and the SignalLab system windows by using
the Close option from the File pull-down menus and close your figure windows by typ-
ing
close all

3 Speech Processing

A rapidly developing branch of signal processing is speech processing. Sophisticated signal
processing algorithms and hardware are being used for speech recognition and synthesis in
a wide range of systems such as security systems, automatic voice response systems and
consumer items like audio systems, learning aids, and even toys.

In this section of the experiment, you will filter a contaminated speech signal to reveal a
secret message and then, you will change the sampling rate of the speech signal to see how
it affects the audio output.

Purdue University: ECE438 - Digital Signal Processing with Applications 5

Down load noisyspeech.mat
Down load Matlab audio utilities
Down load FilterSpeech function

1. To run the experiment, first download the contaminated speech signal noisyspeech.mat
, the Matlab audio utilities , and the FilterSpeech function .

2. Load the contaminated speech signal into Matlab by typing the command
load noisyspeech

in your Matlab command window. This will load the signal nspeech and its spectral
density nspeechspec into your workspace.

3. Play nspeech by typing the command
auplay(nspeech)

You will hear a beep. In fact, there is also a speech signal in it that is masked by the
beep.

4. The beep that you hear is a sine wave. If you plot the first 50 points of this speech
signal by typing the following two lines
set(figure(1), ’pos’, [800 700 400 250])

plot(nspeech(1:50))

you will see that it looks almost like a sine wave.

5. To look at the spectral components of this signal, first bring up another plotting window
by typing
set(figure(2), ’pos’, [800 350 400 250])

Then, plot the spectral density of the signal by typing
plot(frequency,nspeechspec)

You will see a big spike around 1.35. This spike corresponds to the beep. In addition,
you will see considerably smaller spikes between 0.0 and 0.5, and between 1.5 and 2.0.
These correspond to the masked hidden message.

6. You will use the FilterSpeech function to filter out this beep and reveal the hidden
message. Type
FilterSpeech

This command will filter out the beep from the noisy signal nspeech, amplify the output,
and create a filtered signal called speech. It will also create speechspec, the spectral
density of the filtered signal.

7. Play speech by typing the command
auplay(speech)

Listen to the hidden message, note that most of the beep is filtered out.

http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/noisyspeech.tar
http://engineering.purdue.edu/VISE/ee438L/matlab/audio/data/autools.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/FilterSpeech.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/noisyspeech.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/noisyspeech.tar
http://engineering.purdue.edu/VISE/ee438L/matlab/audio/data/autools.tar
http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/FilterSpeech.tar

Purdue University: ECE438 - Digital Signal Processing with Applications 6

8. You can verify that the beep is gone by looking at speechspec. Bring up another plotting
window by typing
set(figure(3), ’pos’, [800 10 400 250])

Then, plot the spectral density of the filtered signal by typing
plot(frequency,speechspec)

Note that the big spike around 1.35 is no longer there. The spikes that you now see are
the amplified versions of the smaller spikes you have observed between 0.0 and 0.5, and
between 1.5 and 2.0 in the plot of nspeechspec, the spectral density of the contaminated
speech signal.

9. Matlab is designed to play audio files that are sampled at 8kHz, that is it will play
the audio signal correctly if 8000 samples are taken from the analog audio signal per
second. If you try to play audio signals sampled at different rates, you get interesting
consequences. For example, sample this speech signal at 16kHz by typing the command
speech16=interp(speech,2);

Do not forget to put a semicolon at the end of the command. Play this new speech
signal by typing the command
auplay(speech16);

and note the difference.

10. Sample the speech signal at 4kHz by typing the command
speech4=decimate(speech,2);

Play this new speech signal by typing the command
auplay(speech4);

and note the difference.

11. When you are done, quit Matlab by typing
quit

4 Image Processing

Image processing is the manipulation and analysis of images by a computer. Image processing
is closely related to how humans perceive the outside world. As a result, it has a large
number of existing and potential applications in a wide variety of areas like communications,
medicine, defense and robotics. Some everyday appliances that employ image processing
are television sets, monitors, CAT and MRI scanners, and digital cameras. In this section,
you will experiment with grayscale and colored images. You will apply grayscale or color
transformations to them and you will filter them to make them sharper or to find the edges
in them.

Down load imagedata.tar

http://engineering.purdue.edu/VISE/ee438L/welcome_lab/data/data.tar

Purdue University: ECE438 - Digital Signal Processing with Applications 7

5 Grayscale Transformations

In this part we will look at some simple grayscale transformations that can have dramatic
effects on images. We will use a program called xv to take a look at three different transfor-
mations.

5.1 Contrast Reversal

1. Type ./begin followed by the Return key in the lower-right text window. This will
start two copies of the xv program. After a short delay, two windows with an image of
the Teton Mountains will appear in the top corners of the screen.

2. In the lower-left corner of the screen is a window containing the xv color editor. Changes
made in this window will affect the upper-left image.

3. Grayscale transformations are performed by manipulating the Intensity graph located
at the bottom of the center column of the xv color editor window. To reverse the
contrast of the image, we need to do the following:

(a) Remove the two intermediate handles by twice pressing the third button up from
the bottom of the Intensity graph (it has a scissors on the button). Note: The
“handles” are small squares at a quarter and three quarters of the way up the
line. (Handles are also at the ends of the line.)

(b) Drag the bottom-left handle to the top-left position and the top-right handle to
the bottom-right position. You can see that the straight line in the Intensity

graph now goes from top-left to bottom-right. The upper left image should look
like a photographic negative of the upper right image.

4. After comparing the two images, press the reset button (the second button up from
the bottom on the Intensity graph).

5.2 Thresholding

In this section we will explore thresholding. Our original image contains up to 256 different
levels of gray. In this section we will reduce the image to just two levels of gray (black and
white).

1. Press the button second from the top on the Intensity graph in order to use straight
lines to connect the handles.

2. Press the button third from the top on the Intensity graph twice in order to add two
handles.

3. Drag the two intermediate handles to manipulate the Intensity graph so that it looks
like the graph in Figure 1(a). You can see that the image now contains only black and
white information.

Purdue University: ECE438 - Digital Signal Processing with Applications 8

(a) (b) (c)

Figure 4: Intensity graphs for (a) thresholding and (b) and (c) contrast enhancement

4. After comparing the two images, leave the images as they are and move on to the next
section.

5.3 Contrast Enhancement

1. Return to the Intensity graph and make the appropriate adjustments so that it looks
like the graph in Figure 1(b).

2. The clouds now appear more vibrant and dramatic.

3. In addition, simple modifcations to the Intensity graph can reveal details hidden in the
original image. Modify the Intensity graph to look like the graph in Figure 1(c).

4. It should be evident that the mountains and grass in the foreground are more visible
in this image.

5. Experiment with other possible configurations of the Intensity graph. Are there other
details that are hidden in the original image?

In this part we will take a look at some of the finer details of how color images are
displayed on computer monitors and television sets. Computer monitors and televisions
form color images by presenting three primary colors (red, green, and blue). Your eyes
perceive these three colors which your brain interprets as a single color. We will explore this
concept by selectively removing the red, green, and blue color components of an image.

1. Click on the upper-left image and press the space bar. An image of the fountain on
Purdue’s engineering mall should appear. Do the same for the upper-right image.

2. We will now focus our attention away from the Intensity graph and toward the third
column of the xv color editor window. This column contains three Intensity graphs —
one for red, one for green, and one for blue. These graphs function in exactly the same
way as the Intensity graph, except they only effect one of the three colors.

3. Go to the Intensity graph for the red component and press the button third from the
bottom twice in order to remove the two middle handles.

Purdue University: ECE438 - Digital Signal Processing with Applications 9

4. Move the top-right handle to the bottom-right corner. In doing so you have removed
the red component from the image. Observe that the image takes on a greenish cast
and the pink flowers have turned blue.

5. In the same way, remove the green component from the image. Now the image appears
very blue. You may also notice that the image is darker.

6. Experiment with different combinations of these operations to see the effects of taking
out any one or two color components from the image.

7. We are now finished with these images. In order to remove them from the screen, move
the mouse arrow on top of the image and press q for quit. Do this for both images.

6 Spatial Filtering

In this section we will investigate some of the effects of spatial filtering on images. We
will explore three different types of spatial filtering — smoothing, sharpening, and edge
detection. Each function is performed in the same manner. The only thing that changes is
the weightings that we give to the pixel and its neighbors.

Each operation is performed using Matlab, an environment for processing data on a
computer.

6.1 Image Smoothing

1. Type the command ./matlab into a Unix window. This will bring up a Matlab com-
mand window.

2. Then type the following commands into Matlab.

kernal1 = [0.06 0.13 0.06 0.13 0.25 0.13 0.06 0.13 0.06];

FilterImg(’tree.tif’,kernal1);

3. Both the original and filtered image will appear. The filtered image should appear
smoother or more blurry.

4. The first three numbers in the above command correspond to the top row of the filter
kernel. The next three correspond to the middle row, and the last three correspond to
the bottom row. Hence the filter used above is:

1

16

1

8

1

16
1

8

1

4

1

8
1

16

1

8

1

16

Note: 1

16
≈ 0.06, 1

8
≈ 0.13, and 1

4
≈ 0.25.

5. When you are finished examining the images, remove them from the screen by typing
close all into the Matlab command window.

Purdue University: ECE438 - Digital Signal Processing with Applications 10

6.2 Image Sharpening

1. In this part we perform and operation very similar to the previous one, but the result
is the opposite. Instead of blurring the image we will sharpen it. The only difference
here is that we use a different set of weightings for the filter kernel.

2. Here we would like to filter the image with the following kernel:

−1

9

−1

9

−1

9
−1

9

17

9

−1

9
−1

9

−1

9

−1

9

We do this by typing the following commands into the Matlab command window:

kernal2 = [-0.11 -0.11 -0.11 -0.11 1.89 -0.11 -0.11 -0.11 -0.11];

FilterImg(’tree.tif’,kernal2);

3. The original and filtered images will appear on the screen. Observe that the filtered
image looks sharper than the original. You may enlarge the windows to get a better
look at the images.

4. When you are finished examining the images, remove them from the screen by typing
close all into the Matlab command window.

6.3 Edge detection

1. We can use the same technique (with yet other weightings) to create an image that
indicates where edges are present in the original image.

2. An appropriate set of filter weightings are:

−10

9

−10

9

−10

9
−10

9

80

9

−10

9
−10

9

−10

9

−10

9

3. To do this type the following commands into the Matlab command window.

kernal3= 10*[-0.11 -0.11 -0.11 -0.11 0.89 -0.11 -0.11 -0.11 -0.11];

FilterImg(’edge_in.tif’,kernal3);

4. The filtered image is bright where an edge is present in the original image and dark
where the original is smooth.

