1 Short help on Parks-McClellan design of FIR Low Pass Filters using Matlab

The design of an FIR filter using Parks-McClellan algorithm is a two-step process. First, you need to use the `remezord` command to estimate the order of the optimal Parks-McClellan FIR filter to meet your design specifications. The syntax of the command is as follows:

```
[n,fo,mo,w]=remezord(f,m,dev)
```

f is the vector of band frequencies. For a low pass filter, $f=[wp~ws]$ where wp is the upper edge of the passband and ws is the lower edge of the stopband. The vector m contains the desired magnitude response values at the passbands and the stopbands of the filter. Since a lowpass filter consists of a passband followed by a stopband, m has two entries. Namely, $m=[1~0]$ because you would like the magnitude response to be equal to 1 in the passband and equal to 0 in the stopband. The vector dev has the maximum allowable deviations of the magnitude response of the filter from the desired magnitude response. It has the same number of entries as there are m. Thus, for a low-pass filter it has two entries and is equal to $[\text{passband ripple, stopband ripple}]$. After you specify the vectors f, m and dev, you can run the `remezord` command in the syntax given above to compute the order of the filter n. The `remezord` command also outputs the resulting fo and mo vectors. In actually designing your filter using `remez`, you should use these two vectors instead of f and m. The second stage is the actual design of the filter, using the `remez` command. After running `remezord` and finding the n, fo and mo, type

```
b=remez(n,fo,mo)
```

to find the impulse response b of the Parks-McClellan FIR filter you need to design. The vector b contains the coefficients for the Z-transform of your filter $H(z)$. That is,

$$H(z) = b(1) + b(2)z^{-1} + b(3)z^{-2} + \cdots + b(n+1)z^{-n}$$

This concludes the design of your filter. The `remezord` and `remez` can be used to design also highpass, bandpassand multiband filters. See the Matlab help for details.

2 Matlab Help on Remezord

`remezord` FIR order estimator (lowpass, highpass, bandpass, multiband)

`[N,Fo,Ao,W] = REMEZORD(F,A,DEV,FS)` finds the approximate order N, normalized frequency band edges Fo, frequency band magnitudes Ao and weights W to be used by the `remez` function as follows:

```
B = REMEZ(N,Fo,Ao,W)
```

The resulting filter will approximately meet the specifications given.
by the input parameters F, A, and DEV. F is a vector of cutoff frequencies in Hz, in ascending order between 0 and half the sampling frequency Fs. If you do not specify Fs, it defaults to 2. A is a vector specifying the desired function’s amplitude on the bands defined by F. The length of F is twice the length of A, minus 2 (it must therefore be even). The first frequency band always starts at zero, and the last always ends at Fs/2. DEV is a vector of maximum deviations or ripples allowable for each band.

C = REMEZORD(F,A,DEV,FS,'cell') is a cell-array whose elements are the parameters to REMEZ.

EXAMPLE
Design a lowpass filter with a passband cutoff of 1500, a stopband cutoff of 2000Hz, passband ripple of 0.01, stopband ripple of 0.1, and a sampling frequency of 8000Hz:

\[
\begin{align*}
[n,fo,mo,w] &= \text{remezord}([1500 2000], [1 0], [0.01 0.1], 8000); \\
b &= \text{remez}(n,fo,mo,w);
\end{align*}
\]

This is equivalent to

\[
\begin{align*}
c &= \text{remezord}([1500 2000], [1 0], [0.01 0.1], 8000, 'cell'); \\
b &= \text{remez}(c{:});
\end{align*}
\]

CAUTION 1: The order N is often underestimated. If the filter does not meet the original specifications, a higher order such as N+1 or N+2 will.

CAUTION 2: Results are inaccurate if cutoff frequencies are near zero frequency or the Nyquist frequency.

3 Matlab Help on Remez

REMEZ Parks-McClellan optimal equiripple FIR filter design.

B=REMEZ(N,F,A) returns a length N+1 linear phase (real, symmetric coefficients) FIR filter which has the best approximation to the desired frequency response described by F and A in the minimax sense. F is a vector of frequency band edges in pairs, in ascending order between 0 and 1. 1 corresponds to the Nyquist frequency or half the sampling frequency. A is a real vector the same size as F which specifies the desired amplitude of the frequency response of the resultant filter B. The desired response is the line connecting the points (F(k),A(k)) and (F(k+1),A(k+1)) for odd k; REMEZ treats the bands between F(k+1) and F(k+2) for odd k as "transition bands" or "don’t care" regions. Thus the desired amplitude is piecewise linear
with transition bands. The maximum error is minimized.

\(B = \text{REMEZ}(N,F,A,W) \) uses the weights in \(W \) to weight the error. \(W \) has one entry per band (so it is half the length of \(F \) and \(A \)) which tells \(\text{REMEZ} \) how much emphasis to put on minimizing the error in each band relative to the other bands.

\(B = \text{REMEZ}(N,F,A,'\text{Hilbert}') \) and \(B = \text{REMEZ}(N,F,A,W,'\text{Hilbert}') \) design filters that have odd symmetry, that is, \(B(k) = -B(N+2-k) \) for \(k = 1, \ldots, N+1 \). A special case is a Hilbert transformer which has an approx. amplitude of 1 across the entire band, e.g. \(B = \text{REMEZ}(30,[[.1 \ .9],[1 \ 1]],'\text{Hilbert}') \).

\(B = \text{REMEZ}(N,F,A,'\text{differentiator}') \) and \(B = \text{REMEZ}(N,F,A,W,'\text{differentiator}') \) also design filters with odd symmetry, but with a special weighting scheme for non-zero amplitude bands. The weight is assumed to be equal to the inverse of frequency times the weight \(W \). Thus the filter has a much better fit at low frequency than at high frequency. This designs FIR differentiators.

\(B = \text{REMEZ}(...,\{\text{LGRID}\}) \), where \(\{\text{LGRID}\} \) is a one-by-one cell array containing an integer, controls the density of the frequency grid. The frequency grid size is roughly \(\text{LGRID} \times N/2 \times \text{BW} \), where \(\text{BW} \) is the fraction of the total band interval \([0,1]\) covered by \(F \). \(\text{LGRID} \) should be no less than its default of 16. Increasing \(\text{LGRID} \) often results in filters which are more exactly equally-ripple, at the expense of taking longer to compute.

\([B, \text{ERR}] = \text{REMEZ}(...)\) returns the maximum ripple height \(\text{ERR} \).

\([B, \text{ERR}, \text{RES}] = \text{REMEZ}(...)\) returns a structure \(\text{RES} \) of optional results computed by \(\text{REMEZ} \), and contains the following fields:

\[
\begin{align*}
\text{RES.fgrid}: & \text{ vector containing the frequency grid used in} \\
& \text{the filter design optimization} \\
\text{RES.des}: & \text{desired response on fgrid} \\
\text{RES.wt}: & \text{weights on fgrid} \\
\text{RES.H}: & \text{actual frequency response on the grid} \\
\text{RES.error}: & \text{error at each point on the frequency grid (desired - actual)} \\
\text{RES.iextr}: & \text{vector of indices into fgrid of extremal frequencies} \\
\text{RES.fextr}: & \text{vector of extremal frequencies}
\end{align*}
\]

See also \(\text{CREMEZ}, \text{FIRLS}, \text{FIR1}, \text{FIR2}, \text{BUTTER}, \text{CHEBY1}, \text{CHEBY2}, \text{ELLIP}, \text{FREQZ}, \text{FILTER} \).