1 Help on meshgrid

You can use the meshgrid command to generate two arrays containing the x - and y -coordinates at each position in a rectilinear grid. For example $[\mathrm{X}, \mathrm{Y}]=\operatorname{meshgrid}(-5: 1: 5)$ returns two 11×11 matrices - the X matrix defines the x -coordinates and the Y matrix the y -coordinates at each position in an 11×11 grid. Try typing this command and view the contents of X and Y.

This command is sometimes convenient for computing functions of 2 variables over a rectangular region of the coordinate system. For example, if we wanted to numerically compute the function $f(x, y)=x y$ over a set of points in the range $x \in[-5,5]$ and $y \in[-5,5]$, this could be accomplished using element-wise operations on our meshgrid matrices by the command $\mathrm{Z}=\mathrm{X} . * \mathrm{Y}$. This is much simpler than cycling through each point in the space $[-5,5] \times[-5,5]$ to compute each point of the function.

For some standard operations such as multiplication, division, and power, element-wise operations are specified by a period in front of the standard operator: $\mathrm{Z}=\mathrm{X} . * \mathrm{Y}, \mathrm{Z}=\mathrm{X} . / \mathrm{Y}$, $\mathrm{Z}=\mathrm{X} .{ }^{\wedge} \mathrm{Y}$. This shouldn't be confused with $\mathrm{Z}=\mathrm{X} * \mathrm{Y}$ which is interpreted as a matrix multiplication. Most other built-in math operations such as $\sin (\mathrm{x}), \cos (\mathrm{x})$ and $\exp (\mathrm{x})$ are naturally element-wise.
Example: Say you want to generate a sampled representation of the 2-D sinisoid $f(x, y)=$ $x \sin (x y)$ in the range $x \in[-5,5]$ and $y \in[-10,10]$. This could be accomplished using with the following
$[\mathrm{x}, \mathrm{y}]=$ meshgrid $(-5: 1: 5,-10: 1: 10)$;
$\mathrm{z}=\mathrm{x} . * \sin (\mathrm{x} . * \mathrm{y})$;
A finer sampling of the function can be obtained by decreasing the step size, for example using meshgrid(-5:.2:5,-10:.2:10).

You can then display the function by typing z (return) or by using the mesh or the image command.

2 MATLAB Help on meshgrid

```
MESHGRID X and Y arrays for 3-D plots.
    [X,Y] = MESHGRID(x,y) transforms the domain specified by vectors
    x and y into arrays X and Y that can be used for the evaluation
    of functions of two variables and 3-D surface plots.
    The rows of the output array }X\mathrm{ are copies of the vector }x\mathrm{ and
    the columns of the output array Y are copies of the vector y.
    [X,Y] = MESHGRID(x) is an abbreviation for [X,Y] = MESHGRID (x, x).
```

[^0][X,Y,Z] = MESHGRID(x,y,z) produces 3-D arrays that can be used to evaluate functions of three variables and 3-D volumetric plots.

For example, to evaluate the function $x * \exp \left(-x^{\wedge} 2-y^{\wedge} 2\right)$ over the range $-2<x<2,-2<y<2$,

```
[X,Y] = meshgrid(-2:.2:2, -2:.2:2);
Z = X .* exp(-X.^2 - Y.^2);
surf(X,Y,Z)
```

MESHGRID is like NDGRID except that the order of the first two input and output arguments are switched (i.e., $[X, Y, Z]=\operatorname{MESHGRID}(x, y, z)$ produces the same result as $[Y, X, Z]=\operatorname{NDGRID}(y, x, z))$. Because of this, MESHGRID is better suited to problems in cartesian space, while NDGRID is better suited to N-D problems that aren't spatially based. MESHGRID is also limited to 2-D or 3-D.

Class support for inputs $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$:
float: double, single
See also surf, slice, ndgrid.

[^0]: Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman, School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 4940340; bouman@ecn.purdue.edu

