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ABSTRACT
First-person videos (FPVs) captured directly from wearable cameras
are usually too shaky for humans to watch comfortably. Existing
video stabilization methods can solve the problem but remove im-
portant First-person motion information (FPMI) from the FPVs.
FPMI contains both subjective and objective information: First-
person feeling (FPF) and First-person motion range (FPMR), respec-
tively. In this paper, we propose measurement of both the stability
and FPMI of FPVs. To improve the viewing experience of FPVs,
which includes both video stability and FPMI, we develop a video
processing system based on these measurements. Objective exper-
iments show that the measurement we propose is robust under
time shift, angular estimation drifting and white noise. Our subjec-
tive tests show that (1) our measurement can correctly compare
the stability and FPMI of a FPV across di�erent versions of the
same content, and (2) our video processing system can e�ectively
improve the viewing experience of FPVs.
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1 INTRODUCTION
First-person videos (FPVs) are captured using the wearable cameras
which are becoming popular recently. Compared with traditional
types of videos, they can be used to share experience from the
First-person perspective, such as playing sports and more generally,
the recorders’ life-logs. Some producers even started to make First-
person �lms. However, the original version of these FPVs are usually
too shaky for humans to watch comfortably. As a result, additional
tools such as gimbals are needed and the photographers are required
to have speci�c training. Our target is to increase the viewing
experience of FPVs based on computer vision techniques without
any additional physical assistance.
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The viewing experience of FPVs includes two parts. The most ba-
sic part is the stability of the FPVs. To enhance it, traditional video
stabilization techniques are e�ective and have been well-developed.
Normally, three steps are performed: motion estimation, motion
smoothing and frame/video reforming. Based on the motion type
they work with, the video stabilization techniques are classi�ed
into 2D [14, 24, 27, 32] and 3D solutions [21, 26, 33, 38]. In the
2D solutions, the motion on the image plane is estimated using
either local features or pixel intensity information. Then the frame
transformation is calculated based on the smoothed 2D motions.
In contrast, 3D solutions estimate the camera motions in the 3D
world. The estimation approaches mainly rely on the methods of
either structure-from-motion (SfM) [6] or visual-based simultane-
ous localization and mapping (vSLAM) [37]. The advantage of 3D
solutions is that they have a full understanding of the physical
camera motions.

The second and less-often considered part of viewing experi-
ence of FPVs is the First-person motion information (FPMI). FPMI
mainly consists of the recorder’s motion intentions. For improv-
ing this part, the traditional stabilization techniques have some
di�culties which are caused by their motion smoothing step. Tra-
ditional video stabilization techniques are primarily designed for
hand-held videos which are preferred to be similar to cinemato-
graphic videos after processing[12, 13]. As a result, their motion
smoothing approaches simply apply low-pass �lters to the esti-
mated motions [19, 25, 29, 36]. Some other works [12, 21, 26] modify
this but only add constraints to the smoothing procedure such as
minimizing the black area caused by the homographic transforma-
tion or minimizing the image mosaic errors. So either the low-pass
�lter approach or the constraint-based approach leads to the result
of over-stabilizing the FPVs, which will remove almost all the FPMI.
To �x this problem while also addressing the stabilization problem,
we propose measurements for both the stability and FPMI based
on a human perception model in order to carefully design the new
camera motion.

Despite the traditional video stabilization techniques, there are
also related works of processing FPVs [15, 21, 31, 35]. Their general
goals are the same as ours: create watchable egocentric videos. How-
ever, they place di�erent requirements on the resulting videos. To
�x the problem of motion smoothing, their strategy is to �nd and re-
move the video parts that have the undesired motions, which means
they allow the resulting video to be a reduced or fast-forwarded
version of the original one. When constructing the reduced version
of the video, they only choose the semantic segments, for example
the segments that contain human faces. However, we believe that
not only are the selected speci�c frames semantically meaningful
but also there is semantic meaning in First-person motions. In short,



Figure 1: System Pipeline

Table 1: Concept Abbreviations
Abbreviations Extend Names

FPVs First-person videos
FPM First-person motion
FPF First-person feeling

FPMR First-person motion range
FPMI First-person motion information

these works ignore and discard the FPMI when processing FPVs.
Only our prior work [28] takes a similar approach. However, they
do not measure the viewing experience and their human perception
model is inaccurate as we demonstrate in section 3.

In this work, we propose a system that can measure and im-
prove the viewing experience of FPVs. Our strategy is to improve
the stability of the FPVs while preserving an adequate amount of
FPMI. And note that we do not discard any part of the video. In
general, we follow the pipeline of 3D video stabilization techniques
and replace the motion smoothing step with our approach, which
can be illustrated by Fig. 1. In the next section, we introduce the
geometric basis of our work, which is the 3D motion estimation. To
form our measurement, we introduce a human perception model of
FPVs in section 3. Then, in section 4, our proposed measurements
are demonstrated. Based on the measurements, the detail of our
motion editing method is shown in section 5. Objective and sub-
jective experiments are illustrated in section 6 to demonstrate the
robustness of our measurements and the whole system. Finally, we
conclude our work in section 7.

Note that we de�ne several new concepts in this work. For read-
ers’ convenience, we summarize them in Table. 1.

2 3D CAMERA MOTIONS
In [28], we demonstrated that to stabilize FPVs, only angular mo-
tions of the camera need to be estimated and stabilized. The transla-
tions known as head bobbing are necessary to provide a First-person
feeling. The traditional SfM algorithm is simpli�ed according to this
statement, and the bundle adjustment is performed using the graph
optimization tool provided by [5]. We adopt their algorithm for this
part. Note that our motion estimation is not a real-time algorithm.
Recent work in [10] introduced a robust real-time system. We do
not focus on this topic in this paper.

Given the estimated camera poses, the Euler angles are used
instead of quaternions to describe the rotation of a camera. This is
because Euler angles have more physical meanings for humans. To
further analyze and modify the angular motion, the rotation matrix
is decomposed as:

Rcam = Rz (θz )Rx (θx )Ry (θy ), (1)
where Rcam is the estimated camera motion. Rx , Ry and Rz are

the rotation matrices for pitch, yaw and roll. This decomposition
order aligns with the normal human motion order. The primary
motion for human activities is yaw, which is performed to look
around. Looking up and down has intermediate importance, and is
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Figure 2: Example of a single angular motion

performed by pitch. Roll is removed in the subsequent stabilization
procedures since it is rarely performed on purpose.

3 HUMAN PERCEPTION MODEL OF FPVS
In this section, we �rst demonstrate the di�erence between percep-
tion in real-life and while watching FPVs. Then we introduce the
eye movement model proposed in [8] and the basic geometry of eye
movement while watching FPVs. Then by considering a practical
situation, we reform it into a more general eye movement model
which forms the basis of measuring the viewing experience of FPVs.

3.1 Smooth pursuit and catch-up saccade
The experience of watching a FPV usually is not identical to what
the recorder experienced. As demonstrated in [28], this is because
these two situations are described using di�erent human perception
models. In real-life, the recorder performs the vestibulo-ocular re�ex
(VOR) to compensate for rotations of the head in order to maintain
the image of the target on the fovea. The frequency of VOR can
reach up to 100 Hz [1], which ensures the stabilization can be
performed in real-time.

On the contrary, when watching a FPV, the spectator performs
smooth pursuit eye movements (SPEM) to follow the target. Note
that the SPEM only relies on visual clues and is less e�cient than
VOR. Before the spectator starts to pursue the target, a catch-up
saccade needs to be performed to catch the target, which takes
nearly 150 ms [7]. A catch-up saccade is also triggered when SPEM
lag behind the target. During a catch-up saccade, visual information
is not processed. This leads to an experience of instability.

3.2 Triggering condition of catch-up saccade
Fig. 2 shows an example of angular motion decomposed using the
approach in section 2. A single motion starts from one local extreme
and ends at the next one, de�ning two motion anchors. The motion
changes rapidly around each motion anchor. Between them, there
is a constant speed area in which the spectator can perform SPEM
to follow the target.

In [28], three assumptions were made based on this motion
model, which are not strictly precise:
(1) A catch-up saccade is always triggered at the beginning and

the ending of a single motion;
(2) During the constant speed area, the spectator is guaranteed to

perform SPEM without any catch-up saccade;
(3) As long as spectators’ eye movement aligns with the estimated

camera motion, they can smoothly pursue the target.
In this paper, we build a more precise model that is not restricted
by these assumptions.

First, we introduce the triggering condition for a catch-up sac-
cade using the model in [8]. In this model, a catch-up saccade is
triggered based on the eye-crossing time (TXE ) that the human
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Figure 3: Camera motion (yaw/pitch) and object image

brain estimate. If the TXE is between 40 ms and 180 ms, the catch-
up saccade is not triggered. TXE is de�ned as:

TXE =
−PE
ωr s

, (2)

where PE is the angular position error. ωr s is the relative angular
speed (target’s image speed on fovea) or so-called retina slip. In-
tuitively, their ratio is the time that human eyes need to catch the
target.

Based on this condition, we proposed a probabilistic model of
SPEM for watching FPVs. We demonstrate the basic geometry in
section 3.3. The probabilistic model and measuring approaches are
shown in section 4.

3.3 Basic geometry of SPEM for FPVs
Fig. 3 shows the geometric relationship among the target object,
camera and spectator across the time from the top view. Images
from the left to right describe that the camera yaws from angle
α1 to angle α2 and captures the object on the image plane. The
spectator perceives this process through the images.

Note that for FPVs, the translation of the recorder can be ignored
within a short period since it is relatively small. As a result, the
relative position of the target with respect to the camera center
is �xed. Also, in real life the depth of most objects is much larger
than the focal length, so the height of the object in the image plane
remains the same. Then it is reasonable and convenient to illustrate
this geometry in 2D from the top view.

Suppose the target position with respect to the camera center
is βk at frame k while the camera focal length is f . The viewing
distance of the spectator is d and the estimated camera position is
θ . So the observation angle of the target for the spectator is:

φob j (k ; βk ) = arctan
[ f tan βk

d

]
. (3)

At framem, the observation angle changes to:

φob j (m; βk ) = arctan
[ f tan(βk −

∑m−1
i=k αi )

d

]
, (4)

αi = θ (i + 1) − θ (i ). (5)

Assume that the frame rate is 30 and the spectator performs a
SPEM from frame k to frame (k + 1), then the PE (βk ) and ωr s (βk )
at frame (k + 2) can be calculated as:

PE (βk ;k + 2) = φob j (k + 2; βk ) − 2φob j (k + 1; βk ) + φob j (k ; βk ), (6)
ωr s (βk ;k + 2) = 30 · PE (βk ;k + 2). (7)

The geometry of roll motion is di�erent from yaw and pitch as
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Figure 4: Geometry of roll motion

shown in Fig. 4. Suppose the object is on the x − z plane in the kth
frame. Then the position at framem is:

φob j (m; βk ) = arctan
[ 2r sin(∑n−1

i=k αi /2)√
(f + d )2 + r 2

]
, (8)

r = f tan βk . (9)

Directly applying the condition given in equation (2) indicates
that the catch-up saccade is always being triggered, which is incon-
sistent with the actual situation. Several reasons cause this.

Firstly, the model in [8] treats the SPEM as an open-loop system.
The position errors are generated by changing the target position
abruptly. This weakens the predictive ability of SPEM, which is
the key of the closed-loop characteristic of SPEM [22]. In addition,
[8] used laser spots or circles as the tracking target to test the
SPEM properties of human eyes, which will also underestimate the
predictive ability of SPEM. According to [3, 4], the target shape
can provide additional information for visual tracking. Moreover,
[2, 22, 34] concluded that the predictive ability can be generated by
scene understanding or the experiences of motion patterns. None
of them are taken into account in [8]. Consequently, we relax the
constraint by recognizing the spectator can utilize this information.
For example, without the additional information, the gaze may lead
the target in both position and velocity, which causes a negative
value ofTXE . When the additional information is available, the eye
movement can be de-accelerated before the next frame is shown,
which makes the TXE fall into the desired region.

Secondly, the sensitivity of the human visual system needs to
be taken into consideration in practical situations. A position error
less than the minimum angular resolution cannot be perceived by
human eyes. Meanwhile, human eyes also have errors estimating
the position error.

As a result, we relax the constraint in equation (2) by treating the
SPEM as a closed-loop system. The condition required to maintain
SPEM becomes:

0.04 ≤
|PE (βn ;n + 2) | + b
|ωr s (βn ;n + 2) |

≤ 0.18 or |PE (βn ;n + 2) | < MAR, (10)

where MAR is the minimum angular resolution of human eyes,
and b is the bias of position error estimation which is set to MAR.

Note that equation (10) is a condition related to the angular
position of the target βn . By solving equation (10) for each frame,
we can obtain an interval of βn . Any object in the current frame
that has an angular position within this interval can be tracked
without having a catch-up saccade between the next two frames, if
the SPEM has already been performed. We de�ne this interval as
B (n) for future convenience.

4 VIEWING EXPERIENCE MEASUREMENTS
Given the camera motion of yaw, pitch or roll, we can �nd the
corresponding object position interval B (n). In this section, we �rst
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introduce a measurement of viewing experience (VE) using B (n)
based on a probabilistic model. Then, to speed up our algorithm,
we propose a simpler measurement based on B (n). However, it
does not have physical meaning like the probabilistic model. After
that, we introduce our approach to combine the measures of all 3
motions: yaw, pitch and roll.

4.1 Viewing experience score
Our viewing experience (VE) score is based on B (n) and a proba-
bilistic model. It measures the fraction of frames that can be viewed
by the spectator using SPEM.

Recall that B (n) is the object position interval of each frame.
However, each frame has its own camera position θ with respect
to the �rst frame. As a result, B̃ (n) is calculated where all frames
share the same coordinate:

B̃ (n) = B (n) + θ (n). (11)
In Fig. 5, the upper and lower boundaries show an example of B̃ (n).
Unlike B (n), B̃ (n) not only includes the object position interval
of each frame but also has the spatial relationship between the
intervals across the whole video.

To understand the procedure of computing VE, consider the
example in Fig. 5. Suppose the spectator randomly chooses a target
to track within the FOV from frame 1. Within a short period, the
objects keep at the same location with respect to the camera in the
�rst frame. So the trajectory of the target in this �gure is a straight
horizontal line. When this line intersects with the boundaries B̃ (n),
the spectator loses this target. In this situation, one of two things
happens. The spectator can perform a catch-up saccade to follow
the previous target. Or he/she can perform a saccade eye movement
to randomly retarget a new object within the FOV. Either of these
two procedures takes nearly 6 frames[7].

The procedure of targeting and smooth pursuit is de�ned as a
trail of tracking. A possible path of watching a video consists of
several trails of tracking. By calculating the length of each possible
path and their probability, we can �nd the expected value of the
fraction of frames for which the spectator performs SPEM. As a
result, a wider, more open pathway between the upper and lower
bounds shown in Fig. 5 will produce a higher expected value, i.e. a
higher VE score.

First, we compute the probability of a single tracking trail. De�ne
Vi, j to be the event:

Vi, j = {Target can be tracked from frame i to j}.
De�ne Ti, j to be the event:

Ti, j = {Target is tracked from frame i and lost at frame j}.

Then we have:
Prob (Ti,i+k+1) = Prob (V i,i+k+1, Vi,i+k )

= Prob (Vi,i+k ) − Prob (Vi,i+k+1),
(12)
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Figure 6: B̃ (n) of zero motion and motion with slope

where
Prob (Vi,i+k ) =

max
⋂i+k
n=i B (n) −min

⋂i+k
n=i B (n)

FOV
. (13)

Note that here we assume the objects are uniformly distributed
within the FOV.

Then we need to compute the probability of a possible path.
Suppose for an N -frame video, a possible path pathm has n trails
of tracking. Then the probability of pathm is:

Prob (pathm ) =
n−1∏
i=1

Prob (Tlm (i ),lm (i+1)−6) · Prob (Vlm (n ),N ), (14)

where lm (i ) encodes the start frame index of each trail of tracking
in pathm . And the length of this possible path is:

L(pathm ) = N − 6(n − 1). (15)

So our VE score of a video from frame i to frame (i + N ) can be
computed as:

V E (i ;N , θ ) =
1

N + 1

∑
m

Prob (pathm ) · L(pathm ), (16)

where θ is the camera motion.
The reason we calculate a VE score for (N + 1) frames instead of

the whole video is that objects may only be visible for a short period.
To compute the equation (16), we �rst identify all the possible paths
for a length (N + 1) video. Then we check whether each path is
feasible or not. A path is not feasible when any of its trails are not
feasible, which is indicated when the probabilities in equation (12)
and (14) are less than 0. Then we let:

Prob (pathm ) = 0. (17)

To reduce the computational complexity, we set (N + 1) to 10. As a
result, for a K-frame video, B̃ (n) of yaw, pitch or roll is a (K − 2) by
2 vector, and their VE score has length (K − 12).

4.2 Structure Viewing experience score
The VE score proposed in the previous section has a physical mean-
ing. It represents the fraction of frames that can be viewed using
SPEM. However, we �nd that computing this VE score may be
time consuming. So we propose a similar measurement that can be
computed rapidly: the Structure Viewing experience (SVE) score.

We start with considering the mechanism of VE score. Fig. 6
shows the B̃ (n) of a zero motion and a motion with slope. The
zero motion has the largest VE score since a target can be tracked
across the whole video as long as it is within the FOV. However,
the motion with slope yields the VE score that is smaller than 1.
Intuitively, the shaded area in Fig. 6 changes with the motion slope.
This illustrates that the VE score not only depends on the interval
value B̃ (n) of each frame but also depends on the shape of B̃ (n).
The more open the pathway of B̃ (n) is, the higher VE the video has.

Inspired by this, we proposed the SVE score. One approach would
be to compute the shaded area in Fig. 6. However, it becomes more



complex when the motion varies signi�cantly. Instead, we use the
following equations to compute SVE.

SV E (i ;N , θ ) = 1 −
∑N−1
m=0

(
∆B̃ (i +m)

) (
N −m

)
N · FOV

, (18)

∆B̃ (n) = B̃ (n + 1) − B̃ (n). (19)

We �rst compute the ∆B̃ of each pair of adjacent frames using
equation (19). ∆B̃ (n) quanti�es the number of objects that we lose
tracking from frame n to (n + 1). Then we assign di�erent weights
to ∆B̃ at di�erent time instants in equation (18), because earlier
time instants are more in�uential to the openness of the object
position interval B̃ (n). As a result, SVE has the similar property
with VE. The more complex the motion is, the smaller the SVE/VE
is. By testing, when N = 9, computing VE needs 0.425 seconds
for a 300-frame video while SVE only needs 0.155 seconds. More
robustness experiments are shown in section 6.

4.3 Score of a video
Note that either the VE score or SVE score measures just a single
motion. To obtain the viewing experience measurement of the
whole video, we need to combine the scores of all three of its
motions: yaw, pitch and roll. Suppose the measurement for these
motions are My , Mx and Mz respectively. The measurement for
the whole video is Mall . Then it is natural to have the following
combination approach:

Mall (i ;N , θ ) = min
j=x,y,z

Mj (i ;N , θ ). (20)

Equation (20) implies that the viewing experience measurement of
the whole video is limited by the measurement of the most shaky
motion.

5 MOTION EDITING
In this section, we introduce our motion editing method based on
the VE/SVE score proposed in the previous section. Our target is to
increase the stability of FPVs while preserving an adequate amount
of First-person motion information (FPMI). To achieve this goal, we
�rst systematically de�ne the First-person motion (FPM) including
its structure and properties. Then we illustrate the optimization
procedure that helps us to re-design the camera path. After that,
we supply details of how we speed up the optimization procedure.

5.1 First-person motion
First-person motion (FPM) is the camera motion estimated from
FPVs. Although we introduce the perceptual geometry based on
it in section 3.3, we have not demonstrated it systematically as an
object that we are going to measure and edit. First of all, we clarify
the intuitive parts of FPM: its properties, which are the parts the
spectator directly perceives. Then we introduce our de�nition of
the FPM structure, which actually controls its properties. After that,
the logic of our measurement assignment of di�erent parts of FPM
properties would be more apparent.

5.1.1 Properties of FPM. FPM has two properties: stability and
FPMI. We de�ne the sum of them to be the viewing experience of
a FPV. The stability describes the comfort extent of watching the
FPV. A low stability makes it di�cult for the spectator to perceive
the content of the video and may even causes dizziness.

The FPMI is the information conveyed by FPM. It has two sub-
parts: First-person motion range (FPMR) and First-person feeling

Stability
First-person 

feeling

First-person 
motion range

FPMI
Viewing 
Experience

Figure 7: Properties of First-person motion

(FPF). FPMR is the objective information, which is produced when
the recorder looks around. The damage to FPMR when doing mo-
tion editing makes the spectator lose any chance to observe some
particular objects. FPF is the subjective information, which is the
sense of watching activities captured from the perspective of a per-
son. It is produced by two con�icts. The �rst con�ict is between the
feeling of watching FPVs and traditional videos (such as cinemato-
graphic videos). The spectator �nds that the current video (FPV) is
not like the video he/she usually watches. By watching more FPVs,
this con�ict may be eliminated. The second con�ict for the spec-
tator is that the motion he/she perceives by watching FPVs is not
consistent with what he/she perceives in his/her own First-person
experience. The more obvious the con�ict is, the more obvious the
FPF is. Actually, in real life, spectator eyes do not perceive many
large motions using SPEM (but using VOR).

There is another potential con�ict which is not included here.
This third con�ict happens in the vestibular system caused by mis-
matched motions: the visual motions make humans feel that their
body is moving while the body has no physical motion. It causes
disorder in the visual system, which is called vestibular illusion.
However, this e�ect varies with the strength of visual cues as il-
lustrated in [23]. Stronger visual clues make the spectator more
con�dent about the mismatched motions. Compared with VR sys-
tems, this e�ect has limited in�uence for 2D screens where FPVs
are played back.

Fig. 7 shows the relationship between the stability and FPMI.
In general, there is a trade-o� between them. When the FPM has
large amplitude, the FPMI increases (in both FPMR and FPF) while
the stability decreases. However, we show in section 5.2, it is still
possible to increase the stability while preserving the FPMI, i.e.
increasing the viewing experience of a FPV.

5.1.2 The structure of FPM. We model the FPM using the con-
cepts of motion anchors and motion shape. The motion anchor is
�rst de�ned in section 3 and Fig. 2. It is the core of FPM. Given
�xed motion anchors for a FPV, the motion amplitude and motion
frequency are �xed, which means the FPMI is �xed. The motion
shape is the path between motion anchors. It only in�uences the
stability of FPVs. Note that as the core of FPM, the motion anchors
also in�uence the stability of FPVs. This is because, the motion
anchors are the foundation of motion shapes. Motions have shapes
after their amplitude and frequency are �xed.

So the strategy applied in here is a two-step iteration. First, we
take a set of particular motion anchors to preserve the FPMI. Then
we �nd the motion shapes that produce the highest stability based
on this particular set of motion anchors. The iteration terminates
when we �nd the desirable motions that preserve an adequate
amount of FPMI and increase the stability.

However, we need a measurement for motion anchors. Consid-
ering the method proposed in section 4, we de�ne the pure FPM as
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the zigzag path that connects all the motion anchors. An example
of the pure FPM is shown in Fig. 2 using dotted lines. As long as
the motion anchors are �xed, the pure FPM is determined, and vice
versa. As a result, the pure FPM is independent of motion shape.
So we can use the measurement in section 4 of the pure FPM as
the descriptor of motion anchors. Since FPMI is only determined
by the motion anchors, any measurement of the pure FPM is also a
measurement of the FPMI.

To simplify the problem, in the current work, we �x the motion
frequency of the FPM and only focus on the motion amplitudes and
motion shape when we try to �nd the desirable motions.

5.1.3 Measurements assignment. So far, we introduced the prop-
erties and the structures of FPM. The properties are what we want
to measure and the structures are what we can extract out of the
video. The idea here is to assign di�erent measures to the structures,
which allows us to quantify the properties.

The VE/SVE score introduced in section 4 measures both FPMI
and the stability of FPVs. Given a FPM, the stability is measured
by the absolute VE/SVE score since their de�nitions align with
each other. However, the FPMI is measured by the negative VE/SVE
score of its pure FPM. This is because, �rstly, as demonstrated in
section 5.1.2, any measurement of the pure FPM can be seen as a
measurement of the FPMI. Secondly, consider the second kind of
con�ict discussed in section 5.1.1. The FPMI increases when the
con�ict becomes more obvious. In this case, the FPV has more or
large FPMs, which decreases the VE/SVE score.

Note that given a FPM, based on its pure FPM, we can �nd the
motion shapes which combine with the motion anchors to give the
highest VE/SVE score. This VE/SVE score measures the highest
potential stability of this FPM based on its pure FPM.

To better illustrate the logic of measurement assignment, con-
sider the Fig. 8. Fig. 8 (a) shows an example of pure motion: a zigzag
path between motion anchors that have a constant frequency and
amplitude. We use the easing function method (introduced in the
next section) to �nd the optimal motions that give the highest VE
scores. And we do this process by varying the amplitude of the
zigzag motion from 1 to 20. Fig. 8 (b) shows the VE scores of both
the zigzag motions and their corresponding optimal motions. The
ratio of viewing distance with respect to the focal length is 6. In-
creasing (reducing) this ratio only shifts the curves to the right (left)
while it does not change their shapes.

Fig. 8 shows that, as the motion amplitude increases, the VE
scores of the optimal motions decrease since the motions become
larger and shakier. Therefore, we assign VE/SVE score to be the
measurement for motion stability. The VE scores of the zigzag
motions are more interesting. There is a sharp decrease from point

Figure 9: General procedure of motion editing

A to point B in Fig. 8 (b). As we proposed, the negative VE score of
the zigzag motion measures the FPMI, where lower values indicate
more FPMI. So the FPMI increases signi�cantly from A to B. This
is because point B is where the FPF becomes noticeable, which
means the second kind of con�ict we discussed in section 5.1.1
becomes obvious. As the motion amplitude increases beyond this
point, the VE scores of the zigzag motion do not decrease as quickly
after point B. The small decreases are due to the increasing angular
variation corresponding to increasing FPMR.

5.2 Optimization procedure and speeding up
In this section, we introduce the details of the optimization proce-
dure of motion editing. First, we introduce its general procedure
along with the parameters which need optimizing. Then the main
objective function is discussed. After that, we demonstrate how we
speed up the optimization procedure.

5.2.1 General procedure and optimization parameters. Fig. 9
shows the general procedure of our motion editing algorithm. Given
the pure motion extracted from the original motion, the optimiza-
tion module focuses on two tasks: adjusting the motion amplitude
and �nding the optimal shapes for the adjusted motion anchors.
As a result, there are two kinds of parameters the optimization
module must deal with: the motion amplitude reduction rates and
the parameters describing the motion shape.

Suppose the frame index of the ith motion anchor is A(i ), the
original camera motion is θ and the new camera motion is θ̃ . Their
pure motions are θp and θ̃p .Then the motion amplitude reduction
rates of the ith motion anchor is de�ned as D (i ):

D (i ) =

����θ̃p
(
A(i )

)
− θp

(
A(i )

) ����
�����
θp

(
A(i )

)
− θp

(
A

(
argmin

i,j
���A(j ) − A(i )

���
)) �����

. (21)

Easing function methods are popular in the computer graph-
ics community [18, 30]. They are usually used to construct mo-
tion shapes. However, for a motion anchor pair, if we adopt the
n-dimensional polynomial easing function, it will produce n un-
known parameters. It is too time consuming to run the optimization
since a normal FPV usually has over 30 motion anchors for every
300 frames. Considering the constraint that there is no local ex-
treme between two adjacent motion anchors, we construct our own
easing function in equation (22) which only requires 2 parameters
for a motion anchor pair.

θ̃ (n;ki , si ) = θ̃p (n) + si ·
[n −

(
A(i ) + A(i + 1)

)
/2(

A(i + 1) − A(i )
)
/2

]ki
∆θ̃p (n), (22)

∆θ̃p (n) = θ̃p
(
argmin

A

(
A(i ) − n, n − A(i + 1)

))
− θ̃p (n), (23)

where k is the parameter that controls the degree and s is the scalar.
5.2.2 Objective function and speeding up algorithm. Recall that

our target is to increase the stability of FPVs while preserving an



adequate amount of FPMI. Although we illustrate that the FPF is
proportional to the degree of the second kind of con�ict in section
5.1.1, the con�ict is also harmful and may cause motion sickness.
So the point B shown in Fig. 8 (b) is the optimal point we desire.

At point B, the FPF just becomes noticeable and the stability of
the optimal motion we can get is at a high level. So the strategy is
that we want the VE/SVE score of the optimal motion to be high
(to have a high stability). Meanwhile, we want the VE/SVE score of
the corresponding zigzag motion (pure motion) to be low (to have
necessary amount of FPF).

In addition, we need to consider the FPMR. By decreasing the
amplitude of motion anchors, we can increase the stability and
preserve an adequate amount of FPF, but this damages the FPMR.
To solve this problem, we make compensation for those motions
which are larger than the FOV. Usually, motions smaller than FOV
are just vibrations or unintentional head motions. As a result, our
objective function is constructed as:

min
D,k,s

[
1 −




M (i ;N , θ̃ )



K − N − 2

+




M (i ;N , θ̃p )





K − N − 2

]
+ αFPMR · ∆F PMRT , (24)

where K is the number of frames. M (·) is either VE (·) or SVE (·),
which has dimension (K − N − 2) as shown in section 4.1. αF PMR
is the vector of weights for motions that are larger than FOV:

αFPMR (i ) =
∆θ (i ) · 1{x>FOV }∆θ (i )∑
j ∆θ (j ) · 1{x>FOV }∆θ (j )

, (25)

∆θ (i ) = θ
(
A(i )

)
− θ

(
A(i − 1)

)
, (26)

And ∆FPMR is the vector of distortions:

∆F PMR (i ) = 1 −
θ̃
(
A(i )

)
θ
(
A(i )

) . (27)

The optimization is performed based on particle swarm. How-
ever, we notice that for a camera motion which has T motion an-
chors, the objective function has T + 2(T − 1) variables. When T
is large, more particles and longer convergence time are required.
As a result, we construct a look-up table to reduce the number
of variables. The periodic motion in Fig. 8 (a) is used. Since only
‖M (i;N , θ̃ )‖ contains parameters k and s , we can pre-�nd all the
k and s using the objective function below for all possible motion
amplitude:

min
k,s

1 −
‖M (i ;N , θ̃ ) ‖
K − N − 2

. (28)

This look-up table enables us to eliminate the parameter k and s
in equation (24). However, note that this training process of roll
motion needs to be taken separately from the yaw and pitch motion.
This is because they have di�erent equations of target position as
shown in equation (5) and (9).

6 EXPERIMENTS
In this section, we conduct both objective and subjective tests to
evaluate our measurements of viewing experience. The perfor-
mance of our motion editing algorithm is also discussed.
6.1 Objective tests
Both of our measurements VE and SVE are subjective measure-
ments. Although the subjective tests are usually applied to evaluate
this kind of measurements, the objective tests are also useful to
demonstrate its robustness.

Without subjective tests, we have no knowledge about the dif-
ference between two random motions. However, we can create

similar enough motions that are expected to have nearly equivalent
viewing experience for the spectator based on some simple human
perception models. First, we use the sine-wave as our base motion.
Then we modify the sine-wave motion by making small changes.
The small changes are bounded by the minimum angular resolution
(MAR) so that the spectator should not be able to perceive appar-
ent di�erence between the base motion and the synthetic motions.
After that, we compute the VE/SVE scores of the base motion and
the synthetic motions. If the scores are close, then it is reasonable
to conclude that the VE/SVE measurement is robust.

The synthetic motions are generated using 4 operators: �ipping,
shifting, adding Gaussian noise and adding slope. The �ipping op-
erator simply �ips the sine-wave from left to right or up-side down.
The shifting operator randomly chooses a frame index, replicates
the corresponding position value to the next frame and all of the
remaining position values are shifted to the right by 1 frame. The
operator of adding noise adds normally distributed Gaussian noise
using the following equation:

θsyn (n) − θsyn (n − 1) = θ (n) − θ (n − 1) + N
(
0,

(MAR · f
3d

)2)
, (29)

where f is the camera focal length and d is the viewing distance in
pixels. The adopted distribution bounds the amplitude of the noise
so that the noise added to the position error is smaller than MAR
in human eyes with probability 99.73%. It is equivalent to:

θsyn = θ + N
(
0,

(MAR · f
12d

)2)
. (30)

The operator of adding slope is the same with adding accumulated
noise based on equation (30), which models the drifting in motion
estimation. Then we are able to compute the measurement errors
caused by the di�erence between the base motion and the synthetic
motions using:

e =
1
r

r∑
i=1

����
‖M (i ;N , θ isyn ) ‖ − ‖M (i ;N , θ ) ‖

‖M (i ;N , θ ) ‖
���� · 100%, (31)

where r is the number of experiment trials. The sine-wave we
use has amplitude 1, period 20 and 12 periods. We perform the
experiment by increasing the amplitude of the sine-wave from 1
to 20. For each amplitude the number of trials n is set to 100 and
MAR is set to be 0.02. We assume the resolution of the video of the
synthetic motion is 1080p, the viewing distance is 3240 and focal
length is 830. The error of VE and SVE scores are shown in Fig. 10.

From Fig. 10, we can see that our two measurements VE and SVE
are both robust under di�erent operators. There are three main
observations. Firstly, the �ipping operator does not in�uence the
scores at all. Meanwhile, the shifting operator has the largest error
since it changes motion shape more heavily than other operators.
Secondly, VE and SVE have similar performance when the motion
amplitude is large. Meanwhile, they are more robust at high ampli-
tude than at low amplitude. This is simply because when amplitude
is large, the noises are relatively small. Thirdly, in the low ampli-
tude region, SVE is more stable than VE under all operators except
�ipping. However, we cannot assert that SVE is better than VE. On
the contrary, larger changes under noise implies that VE is a more
sensitive measure, especially in the low amplitude region is where
the FPF increases dramatically according to Fig. 8 (b). We prefer a
measurement that has a higher sensitivity. This is supported by the
tests in the next section.
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Figure 10: Error caused by synthetic motions

Table 2: Fraction of Correct Distance Conditions

VE
Conditions Cdn 1 Cdn 2 Cdn 3 Cdn 4 Total

Stability 1 1 1 0.8 0.95
FPMI 0.8 1 1 0.8 0.9

SVE
Conditions Cdn 1 Cdn 2 Cdn 3 Cdn 4 Total

Stability 1 1 1 0.6 0.9
FPMI 0.8 1 1 0 0.7

6.2 Subjective tests
Firstly, we treat our VE/SVE as quality estimators [17]. We use
videos and subjective test results from [28] to test our quality esti-
mators. As a result, this experiment is independent of our motion
editing step and simply considers how e�ective the VE/SVE is to
measure the viewing experience. Secondly, we conduct our own
subjective test to evaluate our whole system.

6.2.1 Test for the measurements. The resulting videos in [28]
include three versions: the original ones, results of their algorithm
and the results from Microsoft Hyperlapse [20, 21]. Their subjec-
tive scores are computed based on the Bradley-Terry model [16].
To test the e�ective of measurements in the sense of subjective
measurements, we apply the model proposed in [9].

The general idea of this model is to examine the consistency of
the subjective scores and the quality estimator scores. As illustrated
in [9], if the Bradley-Terry scores of three version of the videos
have the relationship: BT1 < BT2 < BT3, then the scores of a quality
estimator should be: QE1 < QE2 < QE3. Meanwhile, the distance
between the subjective scores and the distance between the quality
estimator scores should be similar. As a result, the model [9] yields
the following conditions:

siдn (BT3 − BT2) = siдn (QE3 −QE2), (32)
siдn (BT3 − BT1) = siдn (QE3 −QE1), (33)
siдn (BT2 − BT1) = siдn (QE2 −QE1), (34)

siдn (BT3 − 2BT2 + BT1) = siдn (QE3 − 2QE2 +QE1). (35)
By calculating the number of conditions that are satis�ed, we

can use the fraction of correctness to evaluate the e�ectiveness
of our measurements. The results are shown in Table. 2. We can
see that for the �rst three conditions, VE and SVE have the same
performance. It shows that they are both robust for the simple
ranking tasks of stability or FPMI. However, for the condition 4, VE
is much better than SVE, which can support the demonstration in
the objective tests. VE is a more sensitive measure, which ensures
the distance similarity between subjective scores and the quality
estimator scores, especially for measuring the FPMI.

6.2.2 Test for the whole system. To evaluate our whole system,
we conduct a similar subjective test to the one in [28]. We use
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Figure 11: Result comparison of di�erent version videos

the same source videos, which includes 5 di�erent scenes shot by
GoPro Hero Session 4 with 1080p. Three versions are prepared for
each video: the original one, our resulting video and Microsoft’s
result. All the test parameters are the same: videos are played back
on a 27-inch, 82 PPI screen and the ratio of viewing distance with
respect to the equivalent focal length is 4.

Our test uses paired comparison, which includes 21 subjects. Sub-
jects are asked the following questions after shown each compari-
son: (1)Which video ismore stable; (2) Inwhich video you can
recognize more First-person motion; (3) If your friend tries
to share his/her First-person experiencewith you,which one
do you prefer. The subjective scores (with 95% con�dence inter-
val) calculated using the Bradley-Terry model [16] are shown in
Fig. 11, which also includes the result from [28]. A higher score
indicates higher stability, more FPMI or higher preference.

As expected, the original videos have the highest score for FPMI
and Microsoft’s videos have the highest stability. Our system is
in the second place for these two scores. Meanwhile, the scores
of our videos are closer to the desired videos: our FPMI score is
closer to the original videos’ while our stability score is closer to the
Microsoft’s. This illustrates that our system can e�ectively increase
the stability while preserving an adequate amount of FPMI. [28]
has a similar FPMI score to ours. However, their stability score is
lower than ours. Moreover, the preference score of our videos is
the highest. As a result, we can conclude that our system is more
e�ective than the one in [28]. This is because our system is based on
a more precise human perception model and has carefully designed
measurements for the viewing experience.

7 CONCLUSIONS
In this paper, we proposed two measurements (VE and SVE) that
can quantify both the stability and the First-person feeling of a FPV.
Based on the measurements, we further proposed a system that
can enhance the viewing experience of FPVs. To accomplish these
two items, we described the human perception model, analyzed the
perceptual geometry of watching FPVs and systematically de�ned
the First-person motion and its properties. The objective tests show
that our measurements are robust under di�erent operators that
can create visually equivalent motions. The subjective tests show
that both measures of VE or SVE highly align with the subjective
scores. Also, our system can e�ectively increase the stability of
FPVs while preserving an adequate amount of FPMI.

Our work still has places can be improved. First, we will enhance
and speed up 3D motion estimation algorithm based on a recent
work [10], which can improve the robustness in a feature-less en-
vironment. Based on this, we further plan to remove the rolling
shutter by incorporating [11]. We also consider including image
stitching algorithms to remove the black area that appears in our
videos.
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